用户名: 密码: 验证码:
柠檬酸法合成介孔材料及其在Cu~(2+)去除中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔氧化硅和磁性介孔氧化硅纳米复合材料因其在化学化工、生物医药、环境和能源等领域中具有重要的潜在应用而成为当前研究的热点。介孔材料的合成一般采用表面活性剂模板路径通过超分子自组装形成,然而这种方法合成过程过于复杂,高温煅烧、有机溶剂萃取、微波脱除等手段来去除表面活性剂耗能耗时且模板剂一般难以回收利用,此外高温煅烧模板分解产生的有害物质又会带来严重的环境污染。
     来自于冶金、电镀、印刷、纺织、化肥和造纸工业等诸多领域中的Cu2+是废水中一种常见的重金属。较高的Cu2+浓度不但危害水生动植物的生长,阻碍水体自净,还将影响人类健康。吸附法是一种去除污水中重金属离子的有效方法,但寻找合适的吸附材料是其广泛应用的关键。
     为了开辟出一条简单、廉价合成介孔材料的新路径,以更好地满足环境净化应用如重金属Cu2+的有效去除,本论文做了以下几方面的探索工作。
     (1)基于溶胶-凝胶技术通过一种简单、廉价的非表面活性剂合成路径在水溶液体系中合成了一种具有丰富硅烷羟基的介孔氧化硅材料。此法以柠檬酸为模板,正硅酸乙酯((TEOS)为硅源,柠檬酸在合成过程中可同时作为成孔剂和TEOS水解的酸催化剂。另外通过简单水洗的方法可以很容易地将柠檬酸模板去除,从而使合成的介孔氧化硅孔道中保留了丰富的硅烷羟基,滤液干燥后可将柠檬酸回收并循环利用。对合成的介孔氧化硅材料进行了XRD、扫描电子显微镜(SEM)、透射电镜(TEM)、傅里叶红外光谱(FT-IR)和N2吸脱附等的物性表征。丰富的硅烷羟基有利于有机官能团的嫁接,因此我们对介孔氧化硅进行了氨基嫁接修饰并将其用于水溶液中重金属Cu2+离子吸附研究,结果表现出较好的吸附性能。
     (2)磁性介孔复合材料是当前研究的一大热点,基于上述开发的非表面活性剂柠檬酸路径合成介孔氧化硅的方法,本章中将其推广用于合成有序的磁性介孔Fe3O4@SiO2纳米复合微球。N2吸脱附表征发现此类材料具有较大的表面积和孔体积、孔径单一,SEM和TEM显示该复合材料是核-壳结构的球形形貌且氧化硅壳具有一定的介孔有序性,FTIR结果证实该磁性介孔氧化硅复合材料同样具有丰富的硅烷羟基基团。将3-APTES嫁接的磁性介孔氧化硅复合材料用于对Cu2+离子吸附研究,该材料表现出很好的吸附性能和磁性可回收能力。
Mesoporous silica and magnetic mesoporous silica nanoparticles are becoming research focus due to their important potential applications in chemical industry, biomedicine, environment, energy sectors and so on. So far, mesoporous silica is a type of porous material whose synthesis procedure follows supramolecular self-assembly way generally by means of surfactant as the template. However, the mesoporous silica formation method is too complex and also the removal process of surfactant by high-temperature calcination, solvent extraction, microwave removal and else will be energy and time-consuming. The template will be hardly recycled and the harmful substances from template decomposition will result in serious environmental pollution.
     Cu2+is a common heavy metal in wastewater and generally from metallurgy, electroplating, printing, textile, fertilizer, paper industries and many other areas. High Cu2+concentration is not only hazardous to the aquatic plants and animals, impeding water purification, but also harmful to human health. Adsorption method for heavy metal ions removal is an effective way but the key is to find suitable absorption materials for the sake of wide applications.
     In order to open up a simple path for mesoporous materials'formation by means of non-surfactants, from which can remove Cu2+from wastewater well, this paper just explores the aspects as follows.
     1. This paper tells a simple and low-cost route for synthesizing mesoporous silica materials with high silanol groups by means of sol-gel technique under aqueous solution system. This method takes citric acid as the template, tetraethylorthosilicate (TEOS) as the silica source. In this synthesis, the citric acid can directly work as an acid catalyst for the hydrolysis of TEOS besides the function as a pore-forming agent. By using a water extraction method the citric acid template in as-prepared mesoporous silica composite can be easily removed and rich silanol groups were retained in the mesopores, then the citric acid in the filtrate can be recycled after being dried. The structural properties of the obtained mesoporous silica materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and nitrogen adsorption-desorption analysis. Due to rich silanol groups are propitious to the graft of organic functional groups, we used amino groups to modify the mesoporous silica and then take it to the use of Cu2+removal from aqueous solution, which showed excellent adsorption properties.
     2. Magnetic mesoporous nano-composite materials become research hot spot currently. Based on the above non-surfactant citric acid way for mesoporous silica synthesis, this paper extended its application to the synthesis of ordered mesoporous Fe3O4@SiO2 nanocomposite microspheres. N2 adsorption/desorption experiment results showed the high surface area, large pore volume and single aperture of the magnetic mesoporous Fe3O4@SiO2 nanoparticles. TEM and SEM images showed that the composite material is of spherical shape with core-shell structure and meanwhile silica shell has a certain mesoporous ordering. FTIR also showed Fe3O4@SiO2 nanocomposite microspheres have rich silanol groups. After functioned with amino group, the nanocomposite microspheres presented large Cu2+removal capacity and good magnetic recoverable capacity.
引文
1曹茂盛,曹传宝等.纳米材料学[M].哈尔滨:哈尔滨工程大学出版社,2002:1.
    2施利毅等.纳米材料[M],上海:华东理工大学出版社,2007:1.
    3 Warnock J, Awschalom D D. Quantum size effects in simple colored glass [J]. Condens Matter,1985,32(8):5529-5531.
    4 Ryan,F.M.;Pugh,E.W.;Smoluchowski,R.Superparamagnetism,Nonrandomness, and Irradiation Effects in Cu-NI Alloys [J].Physical Review 1959,116(5):1106-1112.
    5 IUPAC:Manual of Symbols and Terminology [J]. Pure Appl Chem,1972,31:578.
    6 D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredirckson, B.F. Chmelka, G.D. Stucky. Triblock copolymers syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J], Science 1998,279 (5350) 548-552.
    7 A. Taguchi, F. Schuth. Ordered mesoporous materials in catalysis [J] Microporous Mesoporous Mater.2005,77 (1) 1-45.
    A. Stein. Advances in microporous and mesoporous solids-Highlights of recent progress [J]. Adv. Mater.2003,15 (10) 763-775.
    9 M. Vallet-Regi, F. Balas, D. Arcos, Mesoporous materials for drug delivery [J]. Angew. Chem. Int. Ed.2007,46 (40) 7548-7558.
    10 I.I. Slowing, B.G. Trewyn, S. Giri, V.S.Y. Lin, Mesoporous silica nanoparticles for drug delivery and biosensing applications [J]. Adv. Funct. Mater.2007,17 (8) 1233-1236.
    11 Y.G. Wang, Y.Q. Wang, J.W. Ren, Y. Mi, F.Y. Zhang, C.L. Li, X.H. Liu, Y. Guo, Y.L. Guo, G.Z. Lu, Synthesis of morphology-controllable mesoporous Co3O4 and CeO2 [J]. Solid State Chem.2010,183 (2) 277-284.
    12 Ying J, Mehnert C, Wong M. Synthesis and applications of supramolecular-templated mesoporous materials [J]. Angew Chem Int Ed, 1999,38(l-2):56-77.
    13 Yiu H, Botting C, Bolting N P. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve [J]. Phys Chem Chem Phys,2001,3(15):2983-2985.
    14 J.S. Beck, J.C. Vartuli, W.J.Roth,et al. A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J]. J.Am.Chem. Soc.1992,114(27):10834-10843.
    13 YUE Y H, GAO Z. Synthesis of mesoporous TiO2 with a crystalline framework [J]. Chem Commun,2000,18,1755-1756.
    16 KAPOOR M P, RAJ A, MATSUMURA Y. Methanol decomposition over palladium supported mesoporous CeO2-ZrO2 mixed oxides [J]. Microporous Mesoporous Mater,2001,44(特刊Sp. Iss. SI):565-572.
    17 CHEN J L, BURGER C, KRISHNAN C V, et al. Morphogenesis of highly ordered mixed-valent mesoporous molybdenum oxides [J]. J Am Chem Soc,2005,127(41): 14140-14141.
    18谢永贤,介孔氧化硅材料的合成、表征及在分离上的应用[M],武汉;武汉理工大学,2002.
    Ciesla,U.,Sehuth,F. Ordered mesoporous materials [J]. Microporous Mesoporous Mater.1999,27(2-3):131-149.
    20 HER P K,The chemistry of silica[M].Wiley,New York,1971.
    21 Lee H C, Kim H J, Choo D H, et al. Nanotechnology in Mesostructured Materials, Studies in Surface Science and Catalysis (eds. Park S E, Ryoo R, Ahn W S). Amsterdam:Elsevier,2003,146:217-220.
    22 Mizuno,N., Hatayama, H., Uchida,S., et al. Tunable One-Pot Syntheses of Hexagonal-, Cubic-,and Lamellar-Mesostructured Vanadium-Phosphorus Oxides [J]. Chem Mater.2001,13(1):179-184.
    23 Liu X Y, Tian B Z, Yu C Z,Gao F, Xie S H,Tu B, Che R C,Peng L M, Zhao D Y, Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry[J]. Angew.Chem.Int.Ed.2002,41(20),3876-3878.
    24 TIAN B Z,LIU X Y,ZHANG Z D,TU B,ZHAO D Y. Syntheses of high-quality mesoporous materials directed by blends of nonionic amphiphiles under nonaqueous conditions[J]. Journal of Solid State Chem.2002,167(2):324-329.
    25 TIAN B Z,LIU X Y,TU B,YU C Z,FAN J,WANG L M,XIE S G,STUCKY G D, ZHAO D Y. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs[J]. Nat.Mater.2003,2(3):159-163.
    26 DU Y C,YANG Y,LIU S,XIAO N,ZHANG Y L,XIAO F-S, Mesoporous aluminophosphates and Fe-aluminophosphates with highly thermal stability and large surface area templated from semi-fluorinated surfactant[J]. Micropor. Mesopor. Mater. 2008,114(1-3):250-256.
    27 Shinae Jun, Sang Hoon Joo,Ryong Ryoo, Michal Kruk, Mietek Jaroniec,et,al. Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure,J. Am. Chem. Soc.,2000,122 (43):10712-10713.
    28 KIM J Y, YOON S B, YU J S. Template synthesis of a new mesostructured silica from highly ordered mesoporous carbon molecular sieves [J]. Chem Mater,2003, 15(10):1932-1934.
    29 ZHU K K, HE H Y, XIE S H, et al. Crystalline WO3 nanowires synthesized by templating method [J]. Chem Phys Lett,2003,377(3-4):317-321.
    30 C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S Beck, Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism[J].Nature,1992,359 (6397) 710-712.
    31 J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.T. Schmitt, C.T. Chu, D.H. Olsen, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular-sieves prepared with liquid-crystal templates, J. Am. Chem. Soc.1992,114 (27):10834-10843.
    32 Ryoo R, Kim J M, Ko C H, et al. Disordered molecular sieve with branched mesoporous channel network[J]. J Phys Chem,1996,100(45):17718-17721.
    33 Tanev P T, Chibwe M, Pinnavaia TJ, et al. TITANIUM-CONTAINING MESOPOROUS MOLECULAR-SIEVES FOR CATALYTIC-OXIDATION OF AROMATIC-COMPOUNDS [J],Nature,1994,368(6469):321-323.
    34 Tanev P T, Chibwe M, Pinnavaia TJ, et al. a neutral templating route to mesoporous molecular-sieves [J],Science,1995,267(5199):865-867.
    35 Zhao D Y, Feng J L,Huo Q S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J]. Science,1998,279(5350):548-552.
    36 Y. Wan, D.Y. Zhao. On the controllable soft-templating approach to mesoporous silicates[J]. Chem. Rev.2007,107 (7) 2821-2860.
    37高雄厚,毛学文.分子催化,1997,(5):379-382.
    38冯芳霞,窦涛.石油学报(石油加工L),1998,14(3):89-92.
    39许磊,王公尉.催化学报,1999,20(3):251-255.
    40 Lin W S, Chen J S, Sun Y, et al. J Chem Soc,Chem Commun,1995,23:2367-2368.
    41 MONNIER A, SCHUTH F, HUO Q, et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures [J]. Science,1993,261(5126):1299-1303.
    42 HUO Q S, MARGOLESE D I, STUCKY G D. Surfactant control of phases in the synthesis of mesoporous silica-based materials [J]. Chem Mater,1996,8(5): 1147-1160.
    43 COLLART O, VAN DER VOORT P, VANSANT E F, et al. A high-yield reproducible synthesis of MCM-48 starting from fumed silica [J]. J Phys Chem B,2001,105(51):12771-12777.
    44 INAGAKI S, FUKUSHIMA Y, KURODA K. Synthesis of highly ordered mesoporous materials from a layered polysilicate [J]. Journal of the Chemical Society-Chemical Communications,1993,(8):680-682.
    45 CHEN C Y, LI H X, DAVIS M E. Studies on mesoporous materials:I. Synthesis and characterization of MCM-41 [J]. Microporous Materials, 1993,2:17-26
    46 BECK J S, VARTULI J C, ROTH W J, et al. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates [J]. J Am Chem Soc,1992, 114:10834-10843.
    47 VARTULI J C, SHIH S S, KRESGE C T, et al. Potential applications for M41S type mesoporous molecular sieves [J]. Mesoporous Molecular Sieves 1998,1998,117:13-21.
    Q.S.Huo, D.I. Margoles,et al. organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays[J] Chem.Mater:1994,6(8),1176-1191.
    49 A. Taguehi, F. Sehuth, Micropor.Mesopor.Mater.2005,77,1.
    50 K.A. Koyano, T. Tatsumi, Y. Tanaka, S. Nakata. Stablization of Mesoporous Molecular Sieves by Trimethylsilylation[J]. J. Phys. Chem.B 1997,101(46):9436-9440.
    51 Feng X, Fryxell G E, Wang L Q, et al. Functionalized monolayers on ordered mesoporous supports [J],Science,1997,276(5314):923-926
    52 R.I. Nooney, M. Kalyanaraman, G. Kennedy, E.J.Maginn. Heavy Metal Remediation Using Functionalized Mesoporous Silicas with Controlled Macrostructure[J]. Langnmir.2001,17(2):528-533.
    53 HuoQ, ZhoaD, Feng J, Weston K, Buratto S K, Stueky GD, SchachtS, Schuth F. Room temperature growth of mesoporous silica fibers:a new high-surface-area optical waveguide[J]. Adv. Mater.1997,12(9):975-978.
    54 Feng X, Rao L, Mohs T R, Xu J, Xia Y, Fryxell G E, Liu J, Raymond K R. Self-assembled monolayers on mesoporous silica, a super sponge for actinides[J]. American Ceramic Society, Westerville, OH 1999,93:35-42.
    55R.C.奥汉德利现代磁性材料原理和应用[J].2002,11:426.
    56 Chien C.L, Xiao J.Q., Jiang J.S. Magnetoresistance in as-deposited CoCu granular films[J].J.Appl. Phys.1993,73 (10):5309-5314.
    57杨霞,李建,白浪.自形成MnFe2O4磁性液体的磁性研究[J].西南大学学报,2007,29(1):9-14.
    58 Daniel T,G.etal.Org.Chem.2000,65,7356.
    59 Murray, C. B.; Norris, D. J.; Bawendi, M. G. synthesis and characterization of nearly monodisperse cde (e= s, se, te) semiconductor nanocrystallites [J]J. Am. Chem. Soc.1993,115(19),8706-8715.
    60 Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices[J]. Science 2000, 287(5460),1989-1992.
    61 Hyeon, T. Chemical synthesis of magnetic nanoparticles [J].Chem. Commun.2003, (8):927-934.
    J. Hu, G.H. Chen, I.M.C. Lo, Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle:Performance and mechanisms[J].J.Environ. Eng.—ASCE.2006,132(7):709-715.
    63 B.R. White, B.T. Stackhouse, J.A. Holcombe, Magnetic gamma-Fe2O3 nanoparticles coated with poly-1-cysteine for chelation of As(Ⅲ), Cu(Ⅱ), Cd(Ⅱ), Ni(Ⅱ),Pb(Ⅱ) and Zn(Ⅱ)[J], J. Hazard. Mater.2009,161(2-3):848-853.
    64 Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification [J], Sep. Sci. Technol.68.2009,68(3):312-319.
    65 Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water[J],Bioresour. Technol.2009,100(18):4139-4146.
    66 Gross A F, Diehl M R, Beverly K C, et al. Controlling magnetic coupling between cobalt nanoparticles through nanoscale confinement in hexagonal mesoporous silica [J]J. Phys. Chem. B,2003,107(23):5475-5482.
    67 Barbe C B, Bartlett J, Kong L, et al. Silica particles:A novel drug-delivery system [J].Adv. Mater.,2004,16(21):1959-1966.
    68 Yang H H, Zhang S Q, Chen X L, et al. Magnetite—Containing Spherical Silica Nanoparticles for Biocatalysis and Bioseperations(J). Anal Chem,2004,76(5): 1316-1321.
    69 Tartaj P, Carreno T G Serana C J. Magnetic Behavior of γ-Fe2O3 Nanocrystals Dispersed in Colloidal Silica Particles[J]. J Phys Chem B,2003,107(1):20-24.
    70 Ulman A. Formation and Structure of Self-Assembled Monolayers[J], Chem Rev,1996,96(4):1553-1554.
    71 W ang Y angang, R en Jiaw en, L iu X iaoh u,i et a.l Facile Synthesis of Ordered M agnetic M esoporou s γ-Fe2O3/S iO2 Nanocomposites with Diverse Mcsostructures[J]. J Colloid Interface Sci,2008,326(1):158-165.
    77 Froba M.,Kohn R.,Bouffaud G.,Fe2O3 nanoparticles within mesoporous MCM-48 silica:in situ formation and characterization [J]. Chem. Mater.,1999,11(10),2858-2865.
    73 Lee D, Lee J, Lee H, et al. Filtration Free Recyclable Catalytic A symm etric D ihydroxy lation Using a Ligand Immobilized on Magnetic Mesocellular Mesoporou s Silica. Adv Synth Cata 1,2006,348(1-2):41-46.
    74 Andrei A.E.,Irina V.K.,Alexey V.L.,Yuri D.T.,Preparation of hollow silica spheres with different mesostructures[J]. Adv.Eng.Mater.,2005,7(2):610-612.
    Wu P.,Zhu J.,Xu Z.,Template-assisted synthsis of mesoporous magnetic nanocomposite particles[J]. Adv.Funct.Mater.,2004,14,345-351.
    76 Kim J.,Lee J.E.,Lee J.,Yu J.H.,Kim B.C.,An K.,Hwang Y.,Shin C.-H.,Park J.-G., Kim J.,Hyeon T.,Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse nagnetic and semiconductor nanocrystals[J]. J.Am.Chem.Soc.,2006,128:688-689.
    77 Yonghui Deng, Dawei Qi, Chunhui Deng, Xiangmin Zhang, and Dongyuan Zhao, Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins. [J].J.Am.Chem.Soc.,2008,130:28-29.
    H odgk in s R P, Ahn iyaz A, Parekh K, et a.l M aghem ite N ano-crystal Im pregnat ion by Hyd rophob ic S urface Modification of Mesoporous Silica[J]. Langmuir,2007,23(17):8838-8844.
    Zhu Yu fang, K ask el S, Sh i Jian lin, et al. Immobilization of Trametes Wersicolor Laccase on Magnetically Separable Mesoporous Silica Spheres[J]. C hem Mater, 2007,19 (26):6408-6413.
    80 Prakasham R S, D eviG S, Laxm iK R, et al. Novel Synthesis of Ferric Im pregnated Silica Nanoparticles and Their Evaluation as a Matrix for Enzyme Immobilization[J]. J Phys C hem C,2007,111(10):3842-3847.
    Congying Liu, Jia Guo, Wuli Yang,* Jianhua Hu, Changchun Wang and Shoukuan Fu, Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release[J], J. Journal of Materials Chemistry,2009,19(27):4764-4770.
    Dong Jie, Xu Zhenghe, Wang Feng. Engineering and Characterization of Mesoporous Silica-Coated Magnetic Particles for Mercury Removal from Industrial Effluents[J]. Appl Surf Sci,2008,254(11):3522-3530.
    Liu C K, Bai R B, Hong L,. Diethylenetriamine-grafted poly (glycidyl methacrylate) adsorbent for effective copper ion adsorption [J]. Journal of Colloid and Interface Science,2006,303(1):99-108.
    84 A.E. Finefrock, A.I. Bush, P.M. Doraiswamy, Current status of metals as therapeutic targets in Alzheimer's disease[J], J. Am. Geriatr. Soc.2003,51(8): 1143-1148.
    85 S.S. Hindo, A.M. Mancino, J.J. Braymer, Y. Liu, S. Vivekanandan, A. Ramamoorthy, M.H. Lim, Small molecule modulators of copper-induced a beta aggregation[J], J. Am. Chem. Soc.2009,131(46):16663-16665.
    86 J.F. Quinn, S. Crane, C. Harris, T.L. Wadsworth, Copper in Alzheimer's disease: too much or too little? Expert Rev. Neurother.9 (2009) 631-637.
    87 Kim D H, Shin M C, Choi H D, Seo C I, Baek K,. Removal mechanisms of copper using steel-making slag:adsorption and precipitation[J]. Desalination,2008, 223(1-3):283-289.
    88 Ozcan A, Ozcan A S, Tunali S, Akar T, Kiran I,. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper(II) ions onto seeds of Capsicum annuum[J]. Journal of Hazardous Materials,2005,124(1-3):200-208.
    89 Bhattacharyya K G, Gupta S S,. Adsorptive accumulation of Cd(II), Co(II), Cu(II), Pb(II), and Ni(II) from water on montmorillonite:Influence of acid activation[J]. Journal of Colloid and Interface Science,2007,310(2):411-424.
    90 Wong K K, Low K S, Haron M J. Removal of Cu and Pb from electroplating wastewater using tartaric acid modified rice husk. Process Biochemistry,2003,39(4): 437-445.
    91 L. Mercier, T.J. Pinnavaia, Access in mesoporous materials:Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation[J], Adv. Mater.1997,9(6):500-503.
    92 A.M. Liu, K. Hidajat, S. Kawi, D.Y. Zhao, A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions[J], Chem. Commun.2000,13:1145-1146.
    93 A. Sayari, S. Hamoudi, Y. Yang, Applications of pore-expanded mesoporous silica. Removal of heavy metal cations and organic pollutants from wastewater[J], Chem. Mater.2005,17(1):212-216.
    94 Perez-Quintanilla,D.,del Hierro,I.,Fajardo,M.,et al.Preparation of 2-mercaptobenzothiazole-deriva-tized mesoporous silica and removal of Hg(II) from aqueous solutionJ Environ[J].Monit,2006,8:214-222.
    95 Genhua Wu, Guocheng Song, Dayu Wu, et al. Synthesis of ion-imprinted mesoporous silica gel sorbent for selective adsorption of copper ions in aqueous media[J]. microchimica acta,2010,171(1-2):103-209.
    96 Hanna, K.; Beurroise, I.; Denoyel, R.; Desplantier-Giscard, D.;Galarneau, A.; De Renzo, F. J. Sorption of hydrophobic molecules by organic/inorganic mesostructures [J]Colloid Interface Sci.2002,252(2):276-283.
    97 D.D. Whitehurst, Method to recover organic templates from freshly synthesized molecular sieves, US. Patent, No.5143879 (1992).
    98 L. Huang, S. Kawi, C. Poh, K. Hidajat, S.C. Ng, Extraction of cationic surfactant templates from mesoporous materials by CH3OH-modified CO2 supercritical fluid, Talanta 66 (2005) 943-951.
    99 B. Tian, X. Liu, C. Yu, F. Gao, Q. Luo, S. Xie, B. Tu, D. Zhao, Microwave assisted template removal of siliceous porous materials, Chem. Commun.11(2002) 1186-1187.
    100 F. Kleitz, W. Schmidt, F. Schuth, Calcination behavior of different surfactant-templated mesostructured silica materials, Microporous Mesoporous Mater. 65 (2003) 1-29.
    101 R. Atluri, N. Hedin, A.E. Garcia-Bennett, Nonsurfactant supramolecular synthesis of ordered mesoporous silica, J. Am. Chem. Soc.131 (2009) 3189-3191.
    102 R. Takahashi, S. Sato, T. Sodesawa, M. Kawakita, K. Ogura, High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid, J. Phys. Chem. B 104 (2000) 12184-12191.
    103 J.B. Pang, K.Y. Qiu, Y. Wei, Preparation of mesoporous silica materials with non-surfactant hydroxy-carboxylic acid compounds as templates via sol-gel process, J. Non-Crystalline Solids 283 (2001) 101-108.
    104 D.W. Lee, S.K. Ihm, K.H. Lee, Mesoporous silica framed by sphere-shaped silica nanoparticles, Microporous Mesoporous Mater.83 (2005) 262-268.
    105 D.W. Lee, S.J. Park, S.K. Ihm, K.H. Lee, Synthesis of bimodal mesoporous titania with high thermal stability via replication of citric acid-templated mesoporous silica, Chem. Mater.19 (2007) 937-941.
    106 J.M. Rosenholm, M. Linden, Wet-chemical analysis of surface concentration of accessible groups on different amino-functionalized mesoporous SBA-15 silicas, Chem. Mater.19 (2007) 5023-5034.
    107 M. Mureseanu, A. Reiss, I. Stefanescu, E. David, V. Parvulescu, G. Renard, V. Hulea, Modified SBA-15 mesoporous silica for heavy metal ions remediation, Chemosphere,73 (2008) 1499-1504.
    108 J. Aguado, J.M. Arsuaga, A. Arencibia, M. Lindo, V. Gascon, Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica, J. Hazard. Mater.163(2009)213-221.
    109 H. Landmesser, H. Kosslick, W. Storek, R. Fricke, Interior surface hydroxyl groups in ordered mesoporous silicates, Solid State Ionics 101 (1997) 271-277.
    110 K. Cassiers, P. Van Der Voort, E.F. Vansant, Synthesis of stable and directly usable hexagonal mesoporous silica by efficient amine extraction in acidified water, Chem. Commun.24 (2000) 2489-2490.
    111 J. Trebosc, J.W. Wiench, S. Huh, V.S.Y. Lin, M. Pruski, Solid-state NMR study of MCM-41-type mesoporous silica nanoparticles, J. Am. Chem. Soc.127 (2005) 3057-3068.
    112 P.D. Yang, D.Y. Zhao, D.I. Margolese, B.F. Chmelka, G.D. Stucky, Generalized synthesis of large-pore mesoporous metal oxides with semicrystalline frameworks, Nature 396 (1998) 152-155.
    113 R. Ryoo, S.H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem. B 103 (1999) 7743-7746.
    114 Y.G. Wang, J.W. Ren, X.H. Liu, Y.Q. Wang, Y. Guo, Y.L. Guo, G.Z. Lu, Facile synthesis of ordered magnetic mesoporous y-Fe2O3/SiO2 nanocomposites with diverse mesostructures, J. Colloid Interface Sci.326 (2008) 158-165.
    115 S.A. Bagshaw, E. Pouzet, T.J. Pinnavaia, Templating of mesoporous molecular-sieves by nonionic polyethylene oxide surfactants, Science 269 (1995) 1242-1244.
    116 R. Ryoo, J.M. Kim, C.H. Ko, C.H. Shin, Disordered molecular sieve with branched mesoporous channel network, J. Phys. Chem.100 (1996) 17718-17721.
    117 A.E. Finefrock, A.I. Bush, P.M. Doraiswamy, Current status of metals as therapeutic targets in Alzheimer's disease, J. Am. Geriatr. Soc.51 (2003) 1143-1148.
    118 S.S. Hindo, A.M. Mancino, J.J. Braymer, Y. Liu, S. Vivekanandan, A. Ramamoorthy, M.H. Lim, Small molecule modulators of copper-induced a beta aggregation, J. Am. Chem. Soc.131 (2009) 16663-16665.
    119 J.F. Ouinn, S. Crane, C. Harris, T.L. Wadsworth, Copper in Alzheimer's disease: too much or too little? Expert Rev. Neurother.9 (2009) 631-637.
    120 X. Feng, G.E. Fryxell, L.Q. Wang, A.Y. Kim, J. Liu, K.M. Kemner, Differential regulation of HIV-1 fusion cofactor expression by CD28 costimulation of CD4(+) T cells, Science 276 (1997) 273-276.
    121 L. Mercier, T.J. Pinnavaia, Access in mesoporous materials:Advantages of a uniform pore structure in the design of a heavy metal ion adsorbent for environmental remediation, Adv. Mater.9 (1997) 500-503.
    122 A.M. Liu, K. Hidajat, S. Kawi, D.Y. Zhao, A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions, Chem. Commun.13 (2000) 1145-1146.
    123 A. Sayari, S. Hamoudi, Y. Yang, Applications of pore-expanded mesoporous silica. 1. Removal of heavy metal cations and organic pollutants from wastewater, Chem. Mater.17 (2005) 212-216.
    124 X.M. Xue, F.T. Li, Removal of Cu(II) from aqueous solution by adsorption onto functionalized SBA-16 mesoporous silica, Microporous Mesoporous Mater.116 (2008) 116-122.
    125 H. Yang, R. Xu, X. Xue, F. Li, G. Li, Hybrid surfactant-templated mesoporous silica formed in ethanol and its application for heavy metal removal, J. Hazard. Mater. 152 (2008) 690-698.
    126 H. Wang, J. Kang, H. Liu, J. Qu, Preparation of organically functionalized silica gel as adsorbent for copper ion adsorption, J. Environ. Sci.21 (2009) 1473-1479.
    127 S.L. Burkett, S.D. Sims, S. Mann, Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors, Chem. Commun.11 (1996) 1367-1368.
    128 D. Perez-Quintanilla, A. Sanchez, I. del Hierro, M. Fajardo, I. Sierra, Preparation, characterization, and Zn2+ adsorption behavior of chemically modified MCM-41 with 5-mercapto-l-methyltetrazole, J. Colloid Interface Sci.313 (2007) 551-562.
    129 A.M. Liu, K. Hidajat, S. Kawi, D.Y. Zhao, A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions, Chem. Commun.13 (1996) 1145-1146.
    130 L. Bois, A. Bonhomme, A. Ribes, B. Pais, G. Raffin, F. Tessier, Functionalized silica for heavy metal ions adsorption, Colloids Surf. A:Physicochem. Eng. Aspects 221 (2003) 221-230.
    131 Shaojun Guo, Dan Li, Lixue Zhang, Jing Li, Erkang Wang,Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery[J],Biomaterials,2009,30:1881-1889.
    132 R.D.Waldron. Infrared spectra of ferrites.Physical review.99(1995).
    133 M. Yamaura, R.L. Camilo, L.C. Sampaio, M.A. Macedo,M. Nakamura, H.E. Toma. Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles [J]. Journal of Magnetism and Magnetic Materials,2004,279(2-3):210-217.
    134 Tianzhong Yang, Chengmin Shen, Zian Li, Huairuo Zhang, et al. Highly ordered self-assmbly with large area of Fe3O4 nanoparticles and the magnetic properties [J]. J.Phys. Chem.B,2005,109:23233-23236.
    133 Pablo M. Arnal, Claudia Weidenthaler, and Ferdi Schuth. Highly Monodisperse Zirconia-Coated Silica Spheres and Zirconia/Silica Hollow Spheres with Remarkable iextural Properties [J]. Chem. Mater.2006,18(11):2733-2739.
    Dongyun Chen, Mengjun Jiang, Najun Li, Hongwei Gu,Qingfeng Xu, Jianfeng Ge, Xuewei Xia and Jianmei Lu. Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery[J]. Journal of Materials Chemistry,2010,20(31):6422-6429.
    137 Yonghui Deng, Dawei Qi, Chunhui Deng, Xiangmin Zhang, and Dongyuan Zhao. Superparamagnetic High-Magnetization Microspheres with an Fe3O4@SiO2 Core and Perpendicularly Aligned Mesoporous SiO2 Shell for Removal of Microcystins[J]J.A.C.S.2008,130(1):28-+.
    138 S.H. Huang, D.H. Chen, Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent[J], J.Hazard. Mater.2009,163(1):174-179.
    139 S.S. Banerjee, D.H. Chen, Fast removal of copper ions by gum arabic modified magnetic nano-adsorbent[J], J. Hazard. Mater.2007,147(3):792-799.
    140 Chaozhang Huang, Bin Hu. Silica-coated magnetic nanoparticles modified with Υ-mercaptopropyltrimethoxysilane for fast and selective solid phase extraction of trace amounts of Cd, Cu, Hg, and Pb in environmental and biological samples prior to their determination by inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B.2008,63:437-444.
    141 Lee, H.; Yi, J. Removal of copper ions using functionalized mesoporous silica in aqueous solutions[J]. Sep. Sci. Technol.2001,36 (11):2433-2448.
    142 Hao Yong-Meia, Chen Man, Hu Zhong-Bo, Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles[J]. Journal of Hazardous Materials,2010,184(1-3):392-399.
    143 Pinggui Wu,Zhenghe Xu, Silanation of Nanostructured Mesoporous Magnetic Particles for Heavy Metal Recovery[J]. Ind. Eng. Chem. Res.2005,44(4):816-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700