用户名: 密码: 验证码:
重金属污染河流沉积物质量评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以湘江干流衡阳-株洲和岳阳段沉积物为主要研究对象,进行了沉积物重金属质量评价的初步研究。文中沿湘江370公里江面设置37个采样站点,对沉积物的地球化学性质和沉积物中的Cu、Zn、Pb、Cd等主要重金属元素含量及形态进行了测试分析,探讨了重金属的空间分布的规律及其与相应的地球化学因子之间的关系。
     本文以相平衡分配理论模型建立的沉积物质量基准(SQC)为基础,参考潜在生态危害指数法,初步建立了湘江表层沉积物重金属质量标准和相应的评价方法,并对湘江表层沉积物重金属质量进行了评价,为湘江水环境管理和决策提供科学依据,同时,对其他水域的水环境重金属质量评价也具有一定的参考价值。相应结果如下:
     湘江6种污染重金属元素Cu、Pb、Zn、Cd、Cr、As的含量均超过了湘江的背景值,其中以Cd的富集最为严重,最高值出现在衡阳中游HY-19B站点,达到170.25(μg/g)。6种重金属元素在各水域中下游的重金属含量大多明显高于上游,在衡阳中游的水口山地区的污染最为严重,6种污染重金属元素Cu、Pb、Zn、Cd、Cr、As含量(ig/g)分别为514.49,2246.09,3656.94,170.25,231.98,408.88,分别超过背景值的倍数为30,90,51,340,4,20。
     湘江4种主要重金属元素Cu、Pb、Zn、Cd的赋存形态均以可提取态为主,平均百分比含量达到(70.84~97.07)%。由于各元素的性质不同,赋存形态也有差异。其中Cu、Pb以可还原态为主,具有较强的潜在生态危害;Zn、Cd以弱酸溶解态为主,具有很强生物有效性,Cd可提取态含量极高,是湘江调查区域最主要的污染元素。由表层沉积物中重金属含量及赋存形态的分布特征可以发现,人为污染源排放与湘江表层沉积物的重金属污染关系密切。
     湘江沉积物重金属质量评价结果表明:衡阳段上游(好),衡阳段中游(差),衡阳段下游(差),株洲段(中等),岳阳段上游(中等),岳阳段下游(中等)。
This study discussed the sediment quality assessment of heavy metals in surface sediment from Xiangjiang river (Hengyang-Zhuzhou and Yueyang sections). Geochemical properties of sediments and the contents and speciation and distribution of heavy metals in surface sediments from a 370km length section of Xiangjiang river were studied. The relationship between the speciation of heavy metals and their environmental factors have also been described. Based on Equilibrium Partitioning approach and Potential Ecological Risk method, this study established a heavy metals quality assessment method and assessed the heavy metals quality in surface sediment from Xiangjiang river with this method.
     Contents of Cu, Pb, Zn, Cd, Cr, As in sediments from Xiangjiang river were all higher than background values. Of these 6 heavy metals, Cd was the most polluted element, especially in Hengyang Shuikoushan area where the content of Cd reached 170.25μg/g. Cu, Pb, Zn, Cr, As in this area were also very high and their values were 514.49 pg/g,2246.09μg/g,3656.94μg/g,231.98μg/g, 408.88μg/g, exceeding their background values by 30,90,51,340,4,20 times, respectively.
     Four major metals Cu, Pb, Zn, Cd, in sediment from Xiangjiang river existed mainly in extractable fraction. Percentage of contents of these elements reached to 70.84-97.07μg/g. Different natures of elements cause various speciation characteristics. Cu, Pb existed mainly in reducible fraction, and Zn, Cd existed mainly in weak soluble fraction. Bioavailability for four metals varied in the order of Cd>Pb>Zn>Cu.
     The results show that Cd was the most contaminated heavy metal in the sediment from Xiangjiang river. The result implies that emissions from enterprises along the river was a major impact factor for the spatial distribution of heavy metals in the sediment in Xiangjiang river area.
     The results of heavy metals quality assessment in sediment trom Xiangjiang River show that Hengyang upper (Ⅰ), Hengyang middle (Ⅲ), Hengyang lower (Ⅲ), Zhuzhou (Ⅱ), Yueyang upper (Ⅱ), Yueyang lower (Ⅱ).
引文
[1]Chapman P.M. Current approaches to developing sediment quality criteria[J]. Environ.Toxicol,Chem 1989,8,589-599.
    [2]USEPA,1992, Sediment Classification Methods Compendium, September EPA 823-R-92-006.
    [3]USEPA,1998a, Contaminated sediment management strategy. April EPA 823-R-98-001.
    [4]USEPA,2002, uidance Manual to Support the Assessment of Contaminated Sediments in Freshwater Ecosystems December EPA-905-B02-001-C.
    [5]Macdonald, D.D., Carr, R.S., Calder, F.D. and Long, E.R. Development and evaluation of sediment quality guidelines for Florida coastal waters [J].Ecotoxicology,1996,5(4):253-278.
    [6]Chapman PM, et al.Development of sediment quality values for Hong Kong special administrative region:a possible model for other jurisdietions[J].Marine Pollution Bulletin,1999.38(3):161-169.
    [7]刘文新,栾兆坤,汤鸿霄.河流沉积物重金属污染质量控制基准的研究Ⅱ相平衡分配方法(EqP)[J].环境科学学报,1999.19(3):230-235.
    [8]霍文毅,陈静生.我国部分河流重金属水-固分配系数及在河流质量基准研究中的应用[J].环境科学,1997.18(4):10-13.
    [9]Ankley, G.T., Di Toro, D.M., Hansen, D.J. and Berry,W.J. Technical basis and proposal for deriving sediment quality criteria for metals[J]. Environ. Toxicol. Chem.1996,15,2056-2066.
    [10]王立新,陈静生.建立水体沉积物重金属质量基准的方法研究进展[J].内蒙古大学学报,2003,34(4):472477.
    [11]US EPA. The Incidence and Severity of Sediment Contamination in Surface Waters of the United States:National Sediment Quality Survey[R].Washington DC: EPA28232R2042007,2004.
    [12]陈静生,王立新,洪松等.各国水体沉积物重金属质量基准的差异及原因分析[J].环境化学,2001,20(5):417424.
    [13]陈静生,王飞越.关于水体沉积物质量基准问题[J].环境化学,1992,11(3):60270.
    [14]文湘华.水体沉积物重金属质量基准研究[J].环境化学,1993,12(5):334-341.
    [15]USEPA.Teehnieal basis for the derivation of equilibrium Partitioning sediment guidelines ESGs)for the Protection of benthic organisms:Nonionic organies.Washington, D.C.2000a. Environmental Protection Agency, Office of Water. Washington, DC.
    [16]Smith SL. The development and implementation of Canadian Sediment quality guidelines. Development and progress in sediment quality assessment:rational, challenge, techniques& strategies[J].SPB academic Publishing, Amsterdam, The Netherlands.1996.233-249.
    [17]USEPA. Methods for the derivation of the derivation of site-speeific equilibrium partitioning sediment guidelines (ESGs) for the protection of benthic organisms. Washington, D.C.2000b. Environmental Proteetion Agency, office of wrater.Washington, DC.
    [18]LONG E R, MORGAN L G. The potential for biological effects of sediment-sorbed contaminants tested in the national status and trends program. National Oceanic Atmospheric Administration Technical Memorandum [R]. NOS OMA 52. Seattle, Washington [s.n.],1990:175.
    [19]MacDonald DD, Carr RS.Calder FD, Long ER, Ingesoll CG.Development and evaluation on sediment qualty guidelines for Florida coastal wates[J].Ecotoxicol.1996.5:253-278.
    [20]Batley G. ANZWCC interim sediment quality guidelines. Prepared for environmental research institute of the Supervision Scientist.1997.
    [21]VAN DER KOOIJ L A,VAN DE MEENT D, VAN LEEUWEN C J,et al. Deriving quality criteria for water and sediment from the results of aquatic toxicity tests and product standards: application of the equilibrium partitioning method[J]. Water Reseach.1991.25(6):697-705.
    [22]WEBSTER J and RIDGWAY I. The application of the equilibrium partitioning approach for establishing sediment quality criteria at two UK sea disposal and outfall sites[J]. Marine Pollution Bulletin.1994.28(11):653-661.
    [23]张曙光,赵沛伦,李雅卿.多泥沙河流水质评价标准研究[J].人民黄河,1996,7:29-33.
    [24]董双双,陈静生.三种土壤Pb和Cd的质量基准初步研究[J].地理研究,1997,16(4):31-38.
    [25]Adams W.J., Kimerle R.A., Barnett J.W. Sediment quality and aquatic life assessment[J].Environ.Sci. 1Technol,1992.26(10):1865-1875.
    [26]Calmano W, Forstner U. Sediments and toxic substance:environmental effects and eco-toxicity. Berlin:Springer-Verlag.1996.
    [27]Chapman, P.M.1989, Current approaches to developing sediment quality criteria[J]. Environ.Toxicol. Chem.8,589-599.
    [28]黄钥,吴群河.水体沉积物质量基准问题的研究和进展[J].环境技术.2003.增刊:24~27.
    [29]Peter M. Chapman, Patrick J Allard, Gary A Vigers, et al. Chapman et al. Development of sedi ment quality values for Hong Kong Special Administrative Region: a possible model for other jurisdictions[J]. M arine Pollution Bulletin,1999,38 (3):161-169.
    [30]陈云增,杨浩,张振克,等.水体沉积物环境质量基准建立方法研究进展[J].地球科学进展,2006,21(1):53-61.
    [31]US EPA. Evaluation of the equilibrium partitioning (EqP) approach for assessing sediment quality. Report of the sediment criteria subcommittee of the ecological processes and effects committee [R]. Washington DC:EPA2SAB2EPEC29902006,1990:4224.
    [32]US EPA.Briefing report to the EPA Science Advisory Board on the equilibrium partitioning approach to generating sediment quality criteria[R]. Washington DC: EPA2440252892002,1989.
    [33]NOAA. The Utility of AVS/EqP in Hazardous Waste Site Evaluations [R]. Washington: NOS ORCA 87,Seattle,1995:11-40.
    [34]孟伟,张远,郑丙辉.水环境质量基准、标准与流域水污染物总量控制策略[J].环境科学研究,2006,19(3):126.
    [35]USEPA. Office of Water of Science and Technology. Draft implementation framework for the use of equilibrium partitioning sediment quality guideline[R]. Washington DC,2000:4217.
    [36]王飞越.我国河流颗粒物-重金属环境地球化学[D].北京:北京大学,1995.
    [37]DITORO D M,MAHONY J D,HANSEN D J,et al. Toxicity of cadmium in sediments: the role of acid volatile sulfide[J]. Environmental Toxicology and Chemistry,1990,9:1487-1502.
    [38]DITORO D M,MAHONY J D,HANSEN D J,et al. Acid volatile sulfide predicts the acute toxicity of cadmium and nickel in sediments [J]. Environmental Toxicology and Chemistry,1992,26:96-101.
    [39]ALLEN H E, FU G, DENG B. Analysis of acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments [J]. Environmental Toxicology and Chemistry,1993,12:1441-1453.
    [40]CHEN Y Z, YANG H, ZHANG Z K, et al. Application of equilibrium partitioning approach to the derivation of sediment quality guidelines for metals in Dianchi Lake*[J]. Pedosphere,2007,17(3):284-294.
    [41]USEPA. National recommended water quality criteria[R]. Office of Water,4304T,2009.
    [42]WANG F Y,CHEN J,FORSLING W. Modeling sorption of t race metals on natural sediments by surface complexation model [J]. Environmental science & technology.1997,31:448-453.
    [43]文湘华,杜青,汤鸿霄.乐安江沉积物对重金属的吸附模式研究[J].环境科学学报,1996,16(1):13-22.
    [44]COATES J A,DELFINO J J.Sources of uncertainty in the application of the equilibrium partitioning approach to sediment quality assessment[J]. Water Science & Technology,1993,28 (829):317-328.
    [45]刘文新,汤鸿霄.区域沉积物质量基准常用建立方法的改进与优化[J].中国环境科学,1997,17(3):220-224.
    [46]刘素美,张经.沉积物间隙水的几种制备方法[J].海洋环境科学,1999,18(2):66-71.
    [47]洪松.水体沉积物重金属质量基准研究[D].北京:北京大学,2001.
    [48]金相灿.沉积物污染化学[M].北京:中国环境科学要出版社.1992:78,376.
    [49]王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J].黄金2003,24(1):47-49.
    [50]Stone, M. and Droppo, I.D. Distribution of lead, copper and zinc in size fractionated river bed sediment in two agricultural catchments of southern Ontario[J]. Canada Environ. Pollut. 1996,93(5),353-362.
    [51]Wallschlager, D., Desai, M.V.M., Spengler, M. et al., How humic substances dominate mercury geochemistry in contaminated floodplain soil sand sediments[J]. Environ. Qual.1998,27(5), 1044-1054.
    [52]Tessier, A., Carignan, R., Dubreur, B. and Rafin, B. Partitioning of zinc between the water column and the oxic sediments in lakes[J]. Geochim. Cosmochim. Acta.1989,53,1511-1522.
    [53]Tessier, A. Sorption of trace elements on natural particles in oxic environments, in Buffle[J]. (ed.), Environmental particles, Boca Raton, FL: Lewis Publishers.1992:425-453.
    [54]Lee, S.Z., Allen, H.E., Huang, C.P., Sparks, D.L. and Sanders, P.F. Predicting soil-water partition coefficients for cadmium[J]. Environ. Sci. Technol.1996,30(12),3418-3424
    [55]Horowitz, A.J. and Elrick, K.A. The relation of stream sediment surface area, grain size and composition to trace element chemistry[J]. Appl. Geochem.1987,2:437-451.
    [56]Lofts, S. and Tipping, E. Solid-solution metal partitioning in the Humber rivers:application of WHAM and SCAMP[J]. Sci. Total Environ.2000,251/252:381-399.
    [57]Brumbaugh,W.G, Ingersoll,C.G, Kemble, N.E., May, T.W. and Zajicek, J.L. Chemical characterization of sediments and pore water from the upper Clark Fork River and Milltown reservoir[J]. Montana. Environ. Toxicol. Chem.1994,13:1971-1983.
    [58]Li, X.D., Coles, B.J., Ramsey, M.H. and Thornton, I. Sequential extraction of soil for multielement analysis by ICP-AES[J]. Chem. Geol.1995,124:109-123.
    [59]Howari, F.M. and Banat, K.M. Assessment of Fe, Zn, Cd, Hg, and Pb in the Jordan and Yarmouk river sediments in relation to their physicochemical properties and sequential[J].2001.
    [60]汤鸿霄,薛含斌,田宝珍,等.逐级化学分离法对水体中沉积物各组分吸附作用模式的研究[J].环境科学学报19822(4):279-292.
    [61]URE A M, QUEVAUVILLIER PH, MUNTAU H,et al. EUR Report, nr.14763, C. E. C.,Brussels, 1992.
    [62]RAURET G, LOPEZ-SAHCHEZ J F, SAHUQUILLO A, et al. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials[J]. Journal of environmental monitoring,1999, (1):57-61.
    [63]LEONARD E N, ANKLEY G T, HOKE R A. Evaluation of metals in marine and freshwater surficial sediments from the environmental monitoring and assessment program relative to proposed sediment quality criteria for metals:Metal bioavailability in sediments[J]. Environmental Toxicology and Chemistry,1996,15(12):2221-2232.
    [64]PESCH R E, HANSEN D J, BOOTHMAN W S,et al.The role of acid-volatile sulfide and interstitial water metal concentrations in determining bioavailability of cadmium and nickel from contaminated sediments to the marine polychaete Neanthes arenaceodentata[J].Environmental Toxicology and Chemistry,1995,14:129-141.
    [65]马德毅,王菊英,闫启仑,等.酸溶硫化物(AVS)对沉积物-孔隙水系统中二假有毒金属化学活动性的影响[J].海洋学报,1997,19(5):83-90.
    [66]王飞越,汤鸿宵.水体沉积物中的酸可挥发硫化物(AVS)及其对沉积物环境质量的影响[J].环境科学进展,1997,5(1):1-7.
    [67]刘景春,严重玲,胡俊.水体沉积物中酸可挥发性硫化物(AVS)研究进展[J].生态学报,2004,24(4):812-818.
    [68]林玉环,郭明新,庄岩.底泥中酸性挥发硫及同步浸提金属的测定[J].环境科学学报,1997,17(3):353-358.
    [69]文湘华,Allen H E乐安江沉积物酸可挥发硫化物含量及溶解氧对重金属释放特性的影响[J].环境科学,1997,18(4):32-34.
    [70]陈淑梅,王菊英,马德毅,等.酸溶硫化物与沉积物中重金属化学活性的关系[J].海洋环境科学,1999,18(3):16-21.
    [71]储昭升,刘文新,汤鸿霄.官厅水库-永定河沉积物中AVS-SEM的分析[J].环境化学,2003,22(4):313-317.
    [72]李金成,王晓蓉.博斯腾湖沉积物中的酸可挥发性硫化物[J].环境科学与技术,2008,31(12):121-124.
    [73]陈云增,杨浩,张振克,等.相平衡分配法在滇池沉积物环境质量评价中的应用研究[J].环境科学学报,2006,26(9):1545-1552.
    [74]方涛,徐小清.应用平衡分配法建立长江水系沉积物金属相对质量基准[J].长江流域资源与境,2007,16(4):525-531.
    [75]祝凌燕,邓保乐,刘楠楠,胡凤燕,王贺.应用相平衡分配法建立污染物的沉积物质量基准[J].环境科学研究,2009,22(7):762-767.
    [76]TESSIER A, CAMPBELL P G, AUCLAIR J C, et al. Relationship s between the partitioning of trace metals in sediments and their accumulation in the tissues of the freshwater in a mining area [J]. Canadian Journal of Fisheries and Aquatic Science,1984,41:1463-1472.
    [77]韩建波,王菊英,陈淑梅,马德毅.平衡分配法评价有毒金属沾污沉积物的应用研究[J].海洋环境科学,2001,20(4):5-8.
    [78]王秋衡,王淑云,刘美英.湖南湘江流域污染的安全评价[J].中国给水排水,2004,20(8):104~106
    [79]唐文清,曾荣英,冯泳兰,等.2008.湘江(衡阳段)河流沉积物中重金属潜在生态风险评价[J].环境监测管理与技术,20(5):25-27.
    [80]邱丽君,杨喆.2008.湘江衡阳段底泥重金属沉积现状分析[J].资源与环境,8:166-168.
    [81]赵宏英,湘江株洲至长沙段底泥重金属的分布与水质预测模型[D].长沙:湖南农业大学,2008
    [82]姚志刚,鲍征宇,等.洞庭湖沉积物重金属环境地球化学[J].地球化学.2006,35(6):629-638
    [83]郭朝晖,肖细元,陈同斌,等.湘江中下游农田土壤和蔬菜的重金属污染[J].地理学报.2005,63(1):3-11
    [84]张立成,赵桂久,董文江.湘江水系河水的地球化学特征[J].地理学报.1987,42(3):243-251.
    [85]刘汉元,李远鄂.湘江流域若干重金属元素在岩石、残坡积物及水中的背景值研究[J].环境科学学报.1954,4(1):17-32.
    [86]钱杏珍,李霞.洞庭湖水系沉积物的地球化学背景值[J].科学通报.1988,6:458-462.
    [87]李健,曾北危,姚岳云.洞庭湖水系水体环境背景值调查研究[J].科学通报.1986,6:458-462.
    [88]陈喜保,章申.湘江水体中重金属的化学形态及分布特征的研究[J].环境科学学报.1986,6(2):131-140.
    [89]张立成,董文江,郑建勋,等.湘江河流沉积物重金属的形态类型及其形成因素[J].地理学报953,35(1):55-63.
    [90]尹春艳.湘江三角洲沉积物重金属污染地球化学特征[D].长沙:湖南师范大学,2010.
    [91]毛美洲,刘子蕙,魏金玺.湘江表层底泥中重金属化学形态的研究[J].环境科学.1983,2(5):35-41.
    [92]成杭新,杨忠芳,溪小环,等.长江流域沿江锡异常源追踪与定量评估的研究框架[J].地学前缘.2005,12(1):261-27.
    [93]童霆.河口三角洲元素含量与矿产资源:以湘资沉遭为例.[J].第四系研究.2005,25(3):298-305.
    [94]郭振华,吴苏喜,胡可信,等.长株潭湘江段生态经济带建设水环境容量研究[J].湖南师范大学自然科学学报,2005,28(2):80-83
    [95]刘文华,刘芬,李方文等.湘江铜霞段锅环境容量模型研究[J].安全与环境学报,2005,5(6):72-75
    [96]毛美洲,张光元,崔春国,等.水体中重金属形态沿程分布变化及转化条件的研究[R]1985:5-10.
    [97]彭利,罗钰,朱奕,等.2009.湘江长沙段沉积物重金属污染状况及潜在生态风险评价[J].环境研究与监测,22(3):1-4.
    [98]李军,刘云国,许中坚.2009.湘江长株潭段底泥重金属存在形态及生物有效性[J].湖南科技大学学报,24(1):116-121.
    [99]黄钟霆,周振,罗岳平.2009.湘江霞湾港段底泥的含镉量分布研究[J].环境污染与防治,31(7):56-58.
    [100]陈云飞.湘江重金属的分布特征_化学行为及生态风险评价[D].长沙:湖南农业大学,2008
    [101]唐晓燕,湘江沉积物重金属元素环境地球化学特征[J].云南地理环境研究,2008,20(3):26-32.
    [102]秦延文,孟伟,郑丙辉,等.渤海湾天津段潮间带沉积物柱状样重金属污染特征[J].环境科学,2006,27(2):268-273.
    [103]株洲市环境保护局,湖南省环境保护科学研究所.湘江重金属水环境容量研究-湘江株洲江段重金属水质管理规划[R]:29.
    [104]马力,杨晓波,佟成冶,等.辽宁省浑河流域底质中重金属元素地球化学特征[J].岩矿测试,2008,27(3):184-188.
    [105]柳德新,成新平.黄亮斌.2008.水口山重金属污染缘何大幅减少[Z]湖南日报,4月7日,A01:1-2.
    [106]秦延文,苏一兵,郑丙辉,等.2007.渤海湾表层沉积物重金属与污染评价[J].海洋科学,31(12):28-33.
    [107]鞠莉.沉积物中重金属的形态分析及生物有效性的研究[D].济南:山东大学,2007.
    [108]隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用[J].海洋湖沼通报,2002,(03)
    [109]WieseSBO, MacleodCL, LesterJN.A recent history of metal accumulation in the sediments of the Thames Estuary, United Kingdom[J].Estuaries.1997,20(3):483-93.
    [110]Tretry JH, MetZ S. A decline in lead transport by the Mississippi[J].Riv.Sci.,1985,230: 439-441.
    [111]李字庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004,13(2).
    [112]单丹.向海湿地沉积物中重金属污染现状及潜在生态风险评价[D].长春:吉林农业大学,2008.
    [113]李晶,臧淑英,宋延山,等.2009.连环湖阿木塔泡沉积物中重金属形态及其对环境影响分析[J].环境科学与管理,34(1):37-41.
    [114]汪玉娟,吕文英,刘国光,等.沉积物中重金属的形态及生物有效性研究进展[J].安全与环境工程,2009.16(4):28-29,37.
    [115]刘爱菊,王洪海,刘家弟,等.孝妇河水体沉积物中重金属的污染及形态分布特征[J].环境化学,2010.29(5):875-879.
    [116]徐圣友,叶琳琳,朱燕,等.巢湖沉积物中重金属的BCR形态分析[J].环境科学与技术,2008. 31(9):20-23,28.
    [117]Quevauviller Ph, Rauret G, Lopez-Sanchez J F, et al. Certification of trace metal extractable contents in a sediment reference material(CRM 601) following a three-step sequential extraction procedure[J]. Science of the Total Environment,1997.205:223-234.
    [118]刘恩峰,沈吉,朱育新.重金属元素BCR提取法及在太湖沉积物研究中的应用[J].环境科学研究,2005.18(2):57-60.
    [119]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992:327-356.
    [120]张凤英,阎百兴,朱立禄.松花江沉积物重金属形态赋存特征研究[J].农业环境科学学报,2010.29(1):163-167.
    [121]Fan W H, Wang W X, Chen J S, et al.2002. Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China[J]. Marine Pollution Bulletin,44:816-832.
    [122]Abd E1-Azim H, El-Moselhy Kh M.2005. Determination and partitioning ofmetals in sediments along the Suez Canal by sequential extraction[J]. Journal of Marine Systems,56:363-374.
    [123]霍文毅,黄风茹,陈静生,等.河流颗粒物重金属污染评价方法比较研究[J].地理科学,1997.17(1):81-86.
    [124]陈静生,陶澍,邓宝山,等.水环境化学[M].北京:高等教育出版社1987.:179-181.
    [125]卢少勇,焦伟,金相灿,等.滇池内湖滨带沉积物中重金属形态分析[J].中国环境科学,2010.30(4):487~492.
    [126]张立成,董文江,郑建勋,等.湘江河流沉积物重金属的形态类型及其形成因素[J].地理学报,1983.38(1):54-64.
    [127]何江,王新伟,李朝生,等.黄河包头段水-沉积物系统中重金属的污染特征[J].环境科学学报,2003.23(1):53-57.
    [128]Hakanson L. An ecological risk index for aquatic pollution control, a sedimentological approach[J]. Water Res,1980.14:975-986
    [129]陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社.1992.
    [130]范文宏,张博,张融,等.2008.锦州湾沉积物中重金属形态特征及其潜在生态风险[J].海洋环境科学,27(1):54-58.
    [131]夏青,陈艳卿,刘宪兵.2004.水质基准与水质标准[M].北京:中国标准出版社:113-133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700