用户名: 密码: 验证码:
盐湖卤水萃取提锂及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西部拥有丰富的卤水锂资源,是世界上最具开发价值的盐湖区之一,但绝大部分盐湖卤水中锂离子含量低,同时富含大量的钠、钾、钙、镁离子,因此实现锂离子与其它离子的高效分离,是开发我国盐湖锂资源的关键所在。本文以盐湖卤水体系为研究对象,采用分子模拟和实验相结合的方法研究萃取剂与卤水中各离子之间的相互作用,初步建立了盐湖卤水萃取提锂的作用机理模型和计算方法,为后续萃取剂的改进提供依据。
     论文首先通过研究西台及察尔汗卤水蒸发过程中的化学组成变化,盐类析出顺序、种类和物理化学性质的变化,获得锂在卤水蒸发过程中的富集与损失规律,为盐湖提锂工艺的优化提供依据。
     选择经过富集的老卤作为水相,TBP-煤油-FeCl3萃取体系作为萃取剂,对锂离子萃取—反萃过程进行系统研究。实验结果表明,TBP-煤油-FeCl3萃取体系对锂离子的选择性较好,萃取效果稳定。获得了萃取的最优工艺条件:萃取相比O/A为1.5,TBP质量分数为75%,[Fe3+]/[Li+]为2,[H+]为0.02 mol/L,萃取时间为20 min,萃取温度为20℃;洗涤的相比为15;反萃取的盐酸浓度为1 mol/L,相比为2.5。锂离子的单级萃取率可达到90%左右,反萃取液中锂离子浓度约为1.670g/L,单级循环锂离子收率约为70%,并通过斜率法确定了萃取反应萃合比为2,萃取平衡常数为5.26 L3.mol-3.
     通过红外与核磁分析研究,初步探明是TBP上的P=O双键与LiFeCl4金属络合物的配位水分子产生氢键作用而使得金属络合物与TBP结合。利用分子模拟对萃取机理进行进一步研究,结果证明了LiFeCl4是通过3个配位水分子与TBP结合的。通过比较LiFeCl4、NaFeCl4、KFeCl4与TBP结合后最优结构的结合能,证明TBP-煤油-FeCl3萃取体系对锂离子具有选择性。
There exists a large amount of lithium resource at Qinghai and Tibet in China, the world's most valuable salt lake areas. It is very difficult to separate lithium from salt lake brine, since lithium ion content is low, and others ions, such as sodium, potassium, calcium, magnesium ions contents are high in brine. In this work, the extraction mechanism and extraction process of lithium from salt lake brine were studied theritically and experimentally, the moluculor modeling method was used to study the interaction between extraction agent molecular and metal ions, in order to provide a theoretical basis for the optimal selection and improvement on extraction agent in the future.
     To increase the extraction efficency of lithium from salt lake brine, firstly, lithium ion in West taijnar and Quarhan salt lake brine was concentrated from the lower concentration (<30mmol/L) to a higer concentration (>200mmol/L) by natural evaporation under the ambient environmrntal condition. The evaporation condition, the physical and chemical properties of crsystallized salt, and chemical composition in the concentrated brine, were researched, the suitable brine for the lithium extraction experiment was selected.
     Then, the lithium ion in the concentrated brine was extracted using a organic phase of tributyl phosphate(TBP)-kerosene-FeCl3. The experimental results showed that the extraction system could recover lithium ion from brine with the higer selectivity, and the extraction process was more efficient and stable. The operating conditions were optimized experimentally by studying the single factors of extraction O/A ratio, extractant composition, molar ratio of Fe3+ to Li+and so on. The optimal condition for the extraction process were: extraction O/A=1.5, TBP%=75%, [Fe3+]/[Li+]=2, [H+]=0.02 mol/L, extraction time=20 min; washing O/A=15; back extraction O/A-20, back extraction [H+]=1 mol/L.
     Furthermore, the complex compound of lithium ion and TBP was investigated by IR and NMR. The results showed that the interaction among litium ion, FeCl3, TBP was by hydrogen bond. The mechanism was further studied by the molecular simulation. The results showed that LiFeCl4 complex compound and TBP were associated through three coordinated water molecules, and the TBP-kerosene-FeCl3 extraction system can extracted lithium ion with higher selectivity.
引文
[1]T.Jean-Marie. Is lithium the new gold[J]. Nature Chemistry,2010,2 (6):510-510
    [2]张阳春,孙莉.锂(Li)盐的用途[J].金属世界,1992,2:17-18
    [3]祝增虎,朱朝梁,温现明等.碳酸锂生产工艺的研究进展[J].盐湖研究,2008,16(3):64-72
    [4]S. Bruno, J. Garche. Lithium batteries:Status, prospects and future[J]. Journal of Power Sources,2010,195 (9):2419-2430
    [5]林大泽.锂的用途及其资源开发[J].中国安全科学学报,2004,14(9):72-76
    [6]戴自希.世界锂资源现状及开发利用趋势[J].中国有色冶金,2008,4:17-31
    [7]W. Jaskula Brian. Lithium Mineral Commodity Summaries. U. S. G. Survey.2010
    [8]陈正炎,古良伟,陈富珍.国内外盐湖卤水提锂方法及其发展[J].新疆有色金属,1996,1:21-25
    [9]郑春辉,董殿权,刘亦凡.卤水锂资源及其开发进展[J].盐业与化工,2006,35(6):38-42
    [10]游清治.世界锂资源的资源、生产与应用前景[J].世界有色金属,2008,5:42-46
    [11]P. Neipert Marshall, K. Bon Charles. Method of lithium recovery [P]. U.S. Patent: 3306700,1967
    [12]A. Boryta Daniel. Method for removing magnesium from brine to yield lithium carbonate [P]. U.S. Patent:6143260,2000
    [13]巫辉,张柯达,吴杰等.我国盐湖锂资源开发的技术进展[J].无机盐技术,2006,3:7-10
    [14]钟辉,杨建元.高镁锂比盐湖卤水中制取碳酸锂的方法[P].国家发明专利:CN1335262
    [15]Dilic, Mkeb, Kholl. Recent progress in rechargeable nickel metal hydride and lithium-ionminiature rechargeable batteries[J]. Journal of Power Sources,1990,80:112-135
    [16]潘立玲,朱建华,李渝渝.锂资源及其开发技术进展[J].矿产综合利用,2002,2(2):28-33
    [17]Zhang Qin Hui, Li Shao Peng, Yu Jian Guo. Nanostructure ion sieves for lithium adsorption[J]. International Journal of Chemical Reactor Engineering,2008,5:1-9
    [18]Zhang Qin Hui, Li Shao Peng, Yu Jian Guo. Synthesis and Characterization of Titania Nanoribbons for Lithium Selective Adsorption[J]. Materials Science Forum,2009,610: 14-20
    [19]Zhang Qin Hui, Sun Shu Yin, Li Shao Peng, et al. Adsorption of lithium ions on novel nanocrystal MnO2[J]. Chemical Engineering Science,2007,62 (18):4869-4874
    [20]孙淑英,张钦辉,于建国.纳米MnO2离子筛的锂吸附性能[J].化工学报,2007,58(7):1757-1760
    [21]李少鹏,张钦辉,孙淑英等.TiO2离子筛的制备及表征[J].天津大学学报,2007,40(4): 453-456
    [22]于建国,张钦辉,李少鹏等.二氧化钛离子筛[P].国家发明专利:CN101157476
    [23]于建国,张钦辉,孙淑英等.二氧化锰离子筛[P].国家发明专利:CN101157480
    [24]C. Willam. Composition for the lithium values from brine and process of making/using saidcomposition[P]. U.S. Patent:6280693,2001
    [25]肖小玲,戴志峰,祝增虎.吸附法盐湖卤水提锂的研究进展[J].盐湖研究,2005,13(2):66-69
    [26]钟辉,杨建元.用碳化法从高镁锂比盐湖卤水中分离镁锂制取碳酸锂的方法[P].国家发明专利:CN1335263
    [27]杨建元,程温莹,邓天龙等.东台吉乃尔湖晶间卤水综合利用研究(煅烧法提锂工艺)[J].无机盐工业,1996,2:29-32
    [28]钟辉,周燕芳,殷辉安.卤水锂资源开发技术进展[J].矿产综合利用,2003,1:23-28
    [29]马培华,邓小川.从盐湖卤水中分离镁和浓缩锂的方法[P].国家发明专利:CN1626443
    [30]陈婷,闫书一,康自华.我国盐湖卤水提锂的研究进展[J].盐业与化工,2006,36(2):19-21
    [31]张军.盐田卤水蒸发过程的研究进程[J].盐湖研究,2000,8(1):63-71
    [32]时历杰,孙柏,丁秀萍等.三元体系KCl-SrCl2-H2O25℃相平衡研究[J].无机化学学报,2010,26(2):333-338
    [33]冉广芬,宋彭生.三元体系Li2CO3-C2H5OH-H2O25℃相平衡的研究[J].盐湖研究,2001,9(3):23-26
    [34]丁秀萍,毕玉敬,时历杰等.三元体系NaCl-CaCl2-H2O25℃相关系研究[J].盐湖研究,2009,17(3):40-43
    [35]任开武,宋彭生.四元交互体系Li+, K+/Cl-, SO42--H2O 50,75℃相平衡研究[J].应用化学,1994,11(1):7-11
    [36]任开武,宋彭生.四元交互体系Li+, K+/Cl-, SO42--H2O 25℃相平衡及物化性质研究[J].无机化学学报,1994,10(1):69-74
    [37]黄雪莉,朱丽娟,梁涛等298.16KNa+, K+, Mg2+/Cl-, NO3--H2O五元体系的相平衡研究[J].化学学报,2007,65(9):798-802
    [38]#12
    [39]金作美,尚显志,梁式梅.系统介稳平衡的研究[J].化学学报,1980,38(4):313-320
    [40]金作美,周惠南,王励生.Na+, K+, Mg2+/Cl-, SO422--H2O五元体系15℃介稳相图研究[J].高等学校化学学报,2001,22(4):634-638
    [41]金作美,周惠南,王励生.Na+, K+, Mg2+/Cl-, SO422--H2O五元体系35℃介相图研究[J].高等学校化学学报,2002,23(4):630-634
    [42]彭时利.海相深层富钾硼卤水析盐规律及钾的分离途径研究[硕士学位论文].成都理工大学,2009
    [43]Я安诺索夫B,波哥金C A,王继彰.物理化学分析基本原理(第三册)[M].北京:科学出版社,1958
    [44]陈敬清,刘子琴,房春晖.盐湖卤水的蒸发结晶过程[J].盐湖研究,1994,2(1):43-51
    [45]张兆广,祁燕.察尔汗盐湖低品位卤水自然蒸发试验研究[J].盐湖研究,2006,14(1):17-23
    [46]祁贵明,王发科,贺海成等.气象条件对察尔汗盐田卤水蒸发的影晌分析[J].青海科技,2008,5:30-32
    [47]陈敬清,刘子琴,符廷进.东台吉乃尔湖间晶卤水25℃等温蒸发与天然蒸发试验[J].盐湖研究,1980,1:8
    [48]张宝全,刘铸唐,符廷进等.东台吉乃尔盐湖卤水的相化学研究(I)25℃等温蒸发实验[J].盐湖研究,1994,2(2):57-61
    [49]张宝全,刘铸唐,符廷进等.东台吉乃尔盐湖卤水的相化学研究(Ⅱ)冬夏季卤水蒸发实验[J].盐湖研究,1994,2(2):27-33
    [50]郭爱武,李吉生,王菊香等.西台吉乃尔盐湖卤水自然蒸发试验研究[J].盐湖研究,2009,17(3):29-31
    [51]高世扬,宋彭生,夏树屏等.盐湖化学——新类型硼锂盐湖[M].北京:科学出版社,2007
    [52]李俊德,石天成,王英孝等.一里坪矿区卤水自然蒸发试验研究[J].盐湖研究,2008,16(4):32-36
    [53]杨建元,张勇,程温莹等.西藏扎布耶盐湖冬季卤水25℃等温蒸发研究[J].海湖盐与化工,1996,25(5):21-24
    [54]郑绵平,邓月金,乜贞等.西藏扎布耶盐湖秋季卤水25℃等温蒸发研究[J].地质学报,2007,81(12):1742-1749
    [55]张永生,郑绵平,乜贞等.西藏扎布耶盐湖碳酸盐型卤水15℃等温蒸发实验[J].海湖盐与化工,2005,34(4):1-5
    [56]齐文,郑绵平.西藏盐湖卤水蒸发速率的实验与计算[J].地质学报,2007,81(12):1727-1733
    [57]乜贞,令忠,郑绵平等.西藏扎布耶碳酸盐型盐湖卤水相化学研究[J].地质学报,2010,84(4):587-592
    [58]王开毅,成本诚,舒万银.溶剂萃取化学[M].湖南:中南工业大学出版社,1991
    [59]G. Gabra. Lithium Chloride Extraction by n-Butanol[J]. Hydrometallurgy,1978,3(1): 23-33
    [60]J. Epstein, E. Feist, J. Zmora. Extraction of Lithium from The Dead Sea [J]. Hydrometallurgy,1981,6 (3-4):269-275
    [61]G. Soeley, W. Baldwin. Extraction of lithium from natrual salt solutions with fluorinated β-diketones[J]. Journal of Inorganic and Nuclear Chemistry,1976,38 (5):1049-1052
    [62]J. Shibata, G. Gawata, Y. Nishimura. Co-extraction of lithium[J]. Nihon Kinzoku Gakkaishi,1975,39:82-87
    [63]A. lee, W. Taler, W. Medowell. Solvent extraction of lithium [J]. Journal of Inorganic and Nuclear Chemistry,1976,30:2807-2821
    [64]E. Klmugita, J, Kim, K. Isao. Extraction and separation of lithium and sodium by solvent extraction with diketone and neutral ligand[J]. Kagaku Kogaku Ronbunshu,1989,15: 504-509
    [65]R. Neilli, T.Arthur, N. Castonia. Recovery of lithium from bitterns [P]. U.S. Patent: 3537813,1970
    [66]许庆仁.从氯化镁饱和卤水中萃取锂的研究[J].有机化学,1979,1:13-32
    [67]中科院青海盐湖研究所.一种从含锂卤水中提取无水氯化锂的方法[P].国家发明专利:CN87103431 A
    [68]郑延军.从饱和氯化镁卤水中分离锂镁的新萃取体系的研究[硕士学位论文].北京科技大学,2002
    [69]陈正炎,仇世源,古伟良等.从饱和氯化镁卤水中分离锂镁的新萃取体系研究[J].稀有金属,1996,20(3):161-164
    [70]陈正炎,古伟良,陈富珍等.对高镁卤水萃取锂的性能及热力学函数的研究[J].稀有金属,1997,21(2):89-92
    [71]陈正炎,陈富珍,古伟良等.从饱和氯化镁卤水萃取分离锂镁的相比研究[J].稀有金属,1998,22(1):5-9
    [72]陈正炎,古伟良,陈富珍等.从饱和氯化镁卤水萃取锂的流程研究[J].稀有金属,1999,23(2):95-99
    [73]孙锡良,陈白珍,徐微等.从盐湖卤水中萃取锂[J].中南大学学报(自然科学版),2007,38(2):262-266
    [74]孙锡良.含锂卤水萃取锂及制备碳酸锂工艺研究[硕士学位论文].中南大学,2005
    [75]徐徽,孙锡良,侯立松.从盐湖卤水萃取锂的影响因素分析[J].湖南有色金属,2005,21(1):9-10
    [76]朱慎林,朴香兰,缑泽明.中性磷类萃取剂从卤水中萃取锂的研究[J].清华大学学报(自然科学版),2000,40(10):47-50
    [77]盛怀禹,李蓓,陈耀焕等.锂的新萃取体系研究[J].化学学报,1995,53:689-694
    [78]方胜强,傅立安.冠醚萃取体系中锂的同位素效应—混合锂盐效应[J].同位素,1994,7(3):168-171
    [79]梁渠,闫书一,吴忠忠等.冠醚聚氨酯泡塑的合成及其在锂镁分离中的应用[J].成都理工大学学报:自然科学版,2009,36(3):326-332
    [80]张金才,王敏,戴静.卤水提锂的萃取体系概述[J].盐湖研究,2005,13(1):42-48
    [81]黄群.锂的溶剂萃取[J].有机化学,1979,1:90-118
    [82]D. Morris, E. Short. The Extraction of Lithium Chloride by Tri-n-butyl Phosphate [J]. Journal of Inorganic and Nuclear Chemistry,1963,25 (3):291-301
    [83]朱屯.萃取与离子交换[M].北京:冶金工业出版社,2005
    [84]K. Evguenii. How Wave Interference May Help Explain Wave functions and Energy Quantization [J]. Spectroscopy Letters,2010,43 (7):609-617
    [85]K. Walter. Fundamentals of density functional theory.10th Chris Engelbrecht Summer School in Theoretical Physics MEERENSEE,1997
    [86]K. Walter. Periodic Thermodynamics [J]. Journal of Statistical Physics,2001,103 (3/4): 417-423
    [87]P. Hohenberg, K.Walter. Inhomogeneous Electron Gas [J]. Physical Review,1964, 136:B864-B871
    [88]E. Baerends. Perspective on "Self-consistent equations including exchange and correlation effects"-Kohn W, Sham LJ (1965) Phys Rev A 140:133-1138[J]. Theoretical Chemistry Accounts,2000,103 (3-4):265-269
    [89]张阳,杨基础,于养信等.分子模拟在超临界流体领域中的应用[J].化学进展,2005,17(6):955-962
    [90]P. Dayan, R. Ramirez-Tagle, E. Codorniu-Hernandez, et al. Quantum relativistic investigation about the coordination and bonding effects of different ligands on uranyl complexes[J]. Polyhedron,2010,29:975-984
    [91]K. Mehdi, F. Ahmadib. Computer-assisted design and synthesis of molecularly imprinted polymers for selective extraction of acetazolamide from human plasma prior to its voltammetric determination[J]. Talanta,2010,81:1446-1453
    [92]J. Dybal, M. Emanuel, B. Jan, et al. DFT-calculated structure of protonated tetraphenyl p-tert-butylcalix[4]arene tetraketone[J]. Monatshefte fur Chemie/Chemical Monthly,2008, 139:1353-1355
    [93]M. Emanuel, J. Dybal, P. Vanvura. Contribution to protonated tetraethyl p-tert-butylcalix[4]arene tetraacetate:stability and DFT calculated structure[J]. Monatshefte fur Chemie/Chemical Monthly,2009,140:29-32
    [94]M. Emanuel, P. Toman, P. Vanvura, et al. Extraction and DFT study on the complexation of the cesium cation with a hexaarylbenzene-based receptor[J]. Journal of Radioanalytical and Nuclear Chemistry,2010,286:55-59
    [95]M. Emanuel, J. Dybal, J. Sˇvorˇc1'Ykova', et al. Solvent extraction of silver trifluoromethanesulfonate from water into nitrobenzene in the presence of silver ionophore IV[J]. Monatshefte fur Chemie/Chemical Monthly,2010,141:507-510
    [96]Sheng Diao Kai, Wang Hai Jun, Qiu Zai Ming. A DFT Study on the Selective Extraction of Metallic Ions by 12-Crown-4[J]. Journal of Solution Chemistry,2009,38:713-724
    [97]A.S. Musharaf, D.K. Maityb, S. Dea, et al. Ligands for selective metal ion extraction:A molecular modeling approach[J]. Desalination,2008,232:181-190
    [98]宋海华,张学岗,宋高鹏.溶剂分子QSPR的人工神经网络模型[J].化工学报,2007,58(8):2010-2015

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700