用户名: 密码: 验证码:
固体氧化物燃料电池电解质材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)是直接将燃料和氧化剂的化学能转换为电能的全固态能量装置。目前SOFC体系中广泛使用的电解质材料为钇稳定的氧化锆(YSZ)。但其要求必须在较高的工作温度(900-1000℃)下才具有足够高的离子电导率,而这将引起电池组件之间的化学反应、电极烧结、热膨胀系数不匹配等问题。本文以立方萤石结构的Ce0.8Sm0.2O1.9基电解质材料和六方磷灰石型晶体结构的La9.33Si16O26电解质材料为研究对象,研究了掺杂和复合手段对电解质材料导电性能的影响,主要开展了以下几方面的工作。
     (1)利用化学共沉淀法合成了Ce_(0.8)Sm_(0.2-x)Y_xO_(1.9) (x=0,0.05,0.1,0.15)粉体材料,经传统烧结工艺制备出了陶瓷烧结块体材料。以XRD、SEM和交流阻抗等分析测试手段对电解质材料的微观结构和性能进行了表征;对Y~(3+)掺杂量对Ce_(0.8)Sm_(0.2-x)Y_xO_(1.9)电解质材料的导电性能的影响进行了研究。结果表明,随Y~(3+)掺杂量的增加,电解质的电导率呈现先增大后减小的趋势,x=0.1时达到最大,700℃时总电导率为7.94×10-3S/cm;初步探讨了Ce_(0.8)Sm_(0.2-x)Y_xO_(1.9)电解质材料的导电机理;
     (2)采用化学共沉淀法制备出了5x (x=0,0.2,0.4)粉体材料,经传统烧结制度获得了陶瓷烧结块体材料;以XRD和交流阻抗等分析测试手段对电解质材料的微观结构和性能进行了表征;对La~(3+)的含量对其导电性能的影响进行了研究。结果表明,过量La~(3+)的加入能够很大程度的提高电解质材料的离子电导率,从x=0到x=0.4,电导率从2.5×10-4 S·cm~(-1)提高至1.48×10-3S·cm~(-1),提高了约6倍;利用Jonscher经验公式对其导电过程机理进行了初步探讨,认为长程导电机制在该种电解质材料的导电过程中占主导地位。
     (3)采用复合技术制备出了复合氧离子导电体;分别利用共沉淀法、溶剂热法和球磨等方法引入第二相制备出了具有不同复合量的Ce_(0.8)Sm_(0.2)0_(1.9)-La_(9.33)Si_6O_(26)复合电解质材料;采用传统的烧结工艺过程获得了相应的烧结块体复合电解质陶瓷材料;利用XRD、SEM、EDS和交流阻抗技术等检测手段对其物相组成和导电性能进行了表征。研究发现经复合后形成了由Ce0.8Sm0.2O1.9和La_(9.33)Si_6O_(26)两种物相所组成的复合材料体系;认为在复合电解质的导电过程中,两相间的界面效应对于总电导率的提高有着重要的作用;探讨了第二相的复合量和引入手段对于复合电解质导电性能的影响。
     (4)利用两步共沉淀法合成了Ce0.8Sm0.1Y0.1O1.9-La9.73Si6O26.6复合电解质材料,利用交流阻抗分析技术对其导电性能进行了测试,结果表明,复合相的相纯度以及界面处固溶反应的发生对于复合电解质的导电性能具有重要影响。
Solid oxide fuel cell (SOFC) is an all-solid-state energy device which could convert directly the chemical energy of fuels and oxidants into electrical energy. At present the most electrolyte materials used in the SOFC system are yttrium stable zirconia (YSZ). YSZ requires a high operating temperature (900-1000℃) to get high enough ionic conductivity, and this will cause problems such as the chemical reaction of battery components, electrode sintering and thermal expansion coefficient mismatch. Ce0.8Sm0.2O1.9-based electrolytes with a fluorite structure and La_(9.33)Si_6O_(26)-based electrolytes with an apatite structure were studied in this thesis. Influences of doping and composite technology on the conductive properties of these two electrolyte materials were studied. The research work comprises the following aspects.
     (1) Chemical co-precipitation method was employed to synthesize the Ce_(0.8)Sm_(0.2-x)Y_xO_(1.9)(x=0,0.05,0.1,0.15) powers and the conventional sintering technique was utilized to prepare the related ceramics. The structure and electrical properties of the electrolyte materials were characterized by XRD, SEM and ac impedance technology, respectively. The influence of Y~(3+) contents on the electrical properties of Ce_(0.8)Sm_(0.2-x)Y_xO_(1.9) ceramics was studied. With Y~(3+) content increases, electrical conductivities of electrolytes increase first and then decrease and reach a maximum value when x=0.1, the total conductivity is 7.94×10-3 S·cm~(-1) at 700℃. The conductive mechanism was discussed preliminary.
     (2) Chemical co-precipitation method was employed to synthesize the La9.3~(3+)xSi6O26+1.5x (x=0,0.2,0.4) powers and the conventional sintering technique was utilized to prepare the related ceramics. The structure and electrical properties of the electrolyte materials were characterized by XRD and ac impedance technology. The influence of La~(3+) contents on the electrical properties of La9.3~(3+)xSi6O26+1.5x ceramics was studied. Addition of excessive La~(3+) could enhance obviously electrical conductivities of electrolytes. From x=0 to x=0.4, conductivities increase from 2.5×10-4Scm~(-1)to 1.48×10-3S·cm~(-1) at 700℃, about 6 times improved. The conductive mechanism was discussed with Jonscher experience formula, and long-range conduction mechanism was regarded as the dominant one.
     (3) Ce0.8Sm0.201.9-La9.33Si6026.6 composite oxygen ion conductors were prepared by composite technology. The second phase was introduced via chemical co-precipitation, solvothermal and ball milling mixing. The composite electrolyte materials with different composite amounts were prepared. The conventional sintering technique was utilized to prepare the related ceramics. The phase and electrical properties of the electrolyte materials were characterized by XRD, SEM, EDS and ac impedance technology. The results show that composite electrolytes consist of Ce0.8Sm0.2O19 and La9.33Si6026-Interfaces between phases play important role in total conductivities. The influences of quantity and introducing way of the second phase on the composites conductive properties were studied.
     (4) Ce0.8Sm0.1Y0.1O1.9-La9.73Si6026 composite electrolyte was prepared by two-step co-precipitation method. The electrical properties were characterized by ac impedance technology. The results showed that phase purity and solid solution reaction between interfaces have important influences on the performances of composite electrolytes.
引文
[1]梁广川.燃料电池中温固体电解质研究:[博士学位论文].天津:天津大学,2000.
    [2]Stambouli A B, Traversa E. Solid oxide fuel cells (SOFCs):a review of an environmentally clean and efficient source of energy. Renewable and Sustainable Energy Reviews,2002,6 (5):433-455.
    [3]马小叶.Gd掺杂Ce02电解质薄膜的生长与电学特性研究:[硕士学位论文].大连:大连理工大学,2008.
    [4]徐红梅.Ce02基固体电解质的低温燃烧合成及性能研究:[博士学位论文].长沙:湖南大学,2007.
    [5]Williams M C, Singhal S C. Mass-produced ceramic fuel cells for low-cost power. Fuel Cells Bulltin,2000,16 (3):8-11.
    [6]Bockris J O M, Reddy A K N. Modern electrochemistry. New York:Plenum Press, 1970.
    [7]严瑞廷.Ce02基电解质的电性能研究及在中温固体氧化物燃料电池中的应用:[博士学位论文].长春:吉林大学,2010.
    [8]李瑛,王林山.燃料电池.北京:冶金工业出版社,2000.
    [9]衣宝廉.燃料电池-高校、环境友好的发电方式.北京:化学工业出版社,2000.
    [10]石井弘毅.图说燃料电池的原理与应用(白彦华,杨晓辉,译者).北京:科学出版社,2003.
    [11]毛宗强.燃料电池.北京:化学工业出版社,2005.
    [12]肖钢.燃料电池技术.北京:电子工业出版社,2009.
    [13]Knudsen P, Bagger C, Mogensen M. Combining science and practice in the Danish DK-SOFC program. Journal of Power Sources,1994:291-298.
    [14]陈宇.复合电解质(CGO)x(ScSZ)1-x的合成与表征:[硕士学位论文].长沙:中南大学,2007.
    [15]江义,李文钊,王世忠.高温固体氧化物燃料电池(SOFC)进展.化学进展,1997,9(4):387-396.
    [16]Wang S, Jiang Y, Zhang Y. Electrochemical performance of mixed ionic-electronic conducting oxides as anodes for solid oxide fuel cell. Solid State Ionics,1999,120 (1-4):75-84.
    [17]AndreWeber, Ellen Ivers-Tiffee. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources,2004, 127 (1-2):273-283.
    [18]Wang S, Jiang Y, Zhang Y. Promoting effect of YSZ on the electrochemical performance of YSZ+LSM composite electrodes. Solid State Ionics,1998, 113-115:291-303.
    [19]Liu J, Liu Z, Su W. Study on the properties of YSZ electrolyte made by plaster casting method and the applications in solid oxide fuel cells. Solid State Ionics, 1999,118 (1-2):67-72.
    [20]Zhu B, Meng G, Mellander B. Non-conventional fuel cell systems:new concepts and development. Journal of Power Sources,1999,79 (1):30-36.
    [21]衣宝廉.燃料电池-原理技术应用.北京:化学工业出版社,2003:428.
    [22]韩敏芳,尹会燕,唐秀玲,等.固体氧化物燃料电池发展及展望.真空电子技术,2005,4:23-26.
    [23]陆天红,孙公权.我国燃料电池发展概况.电源技术,1999,22(4):182-184.
    [24]Ishihara T, Honda M, Shibayama T, et al. Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor. Journal of the Electrochemical Society,1998,145(9):3177-3183.
    [25]Simwonis D, Naoumidis A, Dias F J, et al. Material characterization in support of the development of an anode substrate for solid oxide fuel cells. Journal of Materials Research,1997,12 (6):1508-1518.
    [26]易光宇.中温固体氧化物燃料电池CeO2基复合电解质材料的制备及性能研究:[博士学位论文].长春:吉林大学,2006.
    [27]张国权.中低温固体氧化物燃料电池Ce02基复合电解质研究:[硕士学位论文].天津:天津大学,2009.
    [28]于吉.复合电解质材料Ce0.85Sm0.15O1.925-BaCe0.8Y0.2O2.9的制备与性能表征:[硕士学位论文].长春:吉林大学,2010.
    [29]徐丹.中温固体氧化物燃料电池CeO2基复合电解质材料的制备和性能研究:[博士学位论文].长春:吉林大学,2008.
    [30]安永听.氧基磷灰石离子导体的制备及性能研究:[硕士学位论文].哈尔滨:黑龙江大学,2007.
    [31]韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.北京:科学出版社,2004.
    [32]夏正才,唐超群,潘小龙,等.固体氧化物燃料电池研究进展.功能材料,1997,28(5):11-15.
    [33]马良.掺杂氧化铈基电解质的制备和性能研究:[硕士学位论文].包头:内蒙古科技大学,2009.
    [34]郝学光.Sm掺杂Ce02与Y掺杂BaCeO3复合电解质材料的制备和性能研究:[硕士学位论文].长春:吉林大学,2009.
    [35]孙帆,郑勇,高小龙,等.固体氧化物燃料电池电解质和电极材料的研究进展.金属功能材料,2010,17(4):75-80.
    [36]宋希文,彭军,赵永旺,等.低温燃烧合成氧化钆掺杂氧化铈粉体.硅酸盐学报,2005,33(3):309-313.
    [37]丁姣,刘江,郭为民.用于制备SOFC电解质膜Sm0.2Ce0.8O1.9的合成及性能研究.无机材料学报,2009,24(1):152-156.
    [38]崔学军,李国军,任瑞铭.提高Ce02基固体电解质电性能的几种方法.陶瓷科学与艺术,2006,1:9-12.
    [39]Kim D J. Lattice Parameters, Ionic Conductivities and solubility limits in fluorite-structure MO2 Oxide [M=Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions. Journal of the American Ceramic Society,1989,72 (8):1415-1421.
    [40]Yahiro H, Eguchi K, Arai H. Electrical-properties and reducibilities of ceria rare earth oxide systems and their application to solid oxide fuel cell. Solid State Ionics, 1989,36 (1-2):71-75.
    [41]赵晓锋,邵刚勤,段兴龙,等.新型SOFC电解质Ce0.8Smo.2O1.9的制备与表征.武汉理工大学学报,2007,29(10):77-79.
    [42]Zhang T, Peter H, Huang H, et al. Ionic conductivity in the CeO2-Gd2O3 system (0.05    [43]Huang W, Shunk P, Greenblatt M. Properties of sol-gel prepared Ce1-xSmxO2-x/2 solid electrolytes. Solid State Ionics,1997,100 (1-2):23-27.
    [44]Steele B C H. Appraisal of Ce1-yGdyO1-y/2 electrolyte for IT-SOFC operation at 500℃. Solid State Ionics,2000,129 (1-4):95-110.
    [45]Zhang H, Wang J, Wang S C, et al. Conductivity investigations of cerium oxides doped by trivalent cations. Transactions of Nonferrous Metals Society of China, 2007,17(1):S565-569.
    [46]马志芳.氧化铈基固体电解质材料性能的研究:[硕士学位论文].天津:河北工业大学,2005.
    [47]Maricle D L, Swarr T E, Karavolis S. Enhanced ceria—a low-temperature SOFC electrolyte. Solid State Ionics,1992,52 (1-3):173-182.
    [48]邓莉萍,罗军明,艾云龙,等Ce0.8Y0.1Gd0.1O1.9电解质的制备及其性能研究.硅酸盐通报,2008,27(2):281-284.
    [49]刘丹,沙雪清,叶乃清.掺杂铈基电解质Ce0.8Sm0.2-xYxO1.9的制备和性能.桂林工学院学报,2009,29(3):334-337.
    [50]尹艳红,杨书廷,夏长荣,等.不同方法制备的Ce0.8Sm0.2O1.9(SDC)性能对比.河南师范大学学报(自然科学版),2005,33(2):56-59.
    [51]徐丹,刘晓梅,王德军,等.中温复合固体电解质SDC-LSGM的制备和性能.高等学校化学学报,2008,29(8):1523-1527.
    [52]Shimonosono T, Hirata Y, Ehira Y, et al. Electronic conductivity measurement of Sm-and La-doped ceria ceramics by Hebb-Wagner method. Solid State Ionics, 2004,174 (1-4):27-33.
    [53]Celerier S, Laberty C, Ansart F, et al. New chemical route based on sol-gel process for the synthesis of oxyapatite La9.33Si6O26.Ceramic International,2006, 32 (3):271-276.
    [54]Higuchi M, Masubuchi Y, Nakayama S, et al. Single crystal growth and oxide ion conductivity of apatite-type rare-earth silicates. Solid State Ionics,2004,174 (1-4):73-80.
    [55]Kendrick E, Islam M S, Slater P R. Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties. Journal of Materials Chemistry,2007,17 (30):3104-3111.
    [56]Tolchard J R, Slater P R, Islam M S. Insight into doping effects in apatite silicate ionic conductor. Advanced Functional Materials,2007,17 (14):2564-2571.
    [57]Leon-Reina L, Losilla E R, Martinez-Lara M, et al. Interstitial oxygen conduction in lanthanum oxy-apatite electrolytes. Journal of Materials Chemistry, 2004,14(7):1142-1149.
    [58]Nakayama S, Kageyama T, Aono H, et al. Ionic conductivity of lanthanoid silicates, Ln10(Si04)603 (Ln=La, Nd, Sm, Gd, Dy, Y, Ho, Er, Yb). Journal of Materials Chemistry,1995,5 (11):1801-1805.
    [59]Panteix P J, Julien I, Abelard P, et al. Influence of porosity on the electrical properties of La9.33(SiO4)6O2 oxyapatite. Ceramic International,2008,34 (7): 1579-1586.
    [60]Martinez-Gonzalez L G, Rodriguez-Reyna E, Moreno K J, et al. Ionic conductivity of apatite-type rare-earth silicates prepared by mechanical milling. Journal of Alloys and Compounds,2009,476 (1-2):710-714.
    [61]Nakayama S, Sakamoto M, Giguchi M, et al. Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal. Journal of the European Ceramic Society, 1999,19 (4):507-510.
    [62]Nakayama S, Aono H, Sadaoka Y. Chemistry Letters, Ionic conductivity of Ln10(SiO4)603 (Ln=La, Nd, Sm, Gd and Dy). Chemistry Letters,1995,24 (6): 431-432.
    [63]Takeda N, Itagaki Y, Sadaoka Y. Relationship between pre-exponential factor and activation energy of conductivity in sintered Ln9.33+x/3Si6-xMx026 (Ln=La, Nd, Sm, M=Al, Gd) with apatite-like structure. Journal of the Ceramic Society of Japan,2007,115 (10):643-647.
    [64]Sansom J E H, Kendrick E, Tolchard J R, et al. A comparison of the effect of rare earth vs Si site doping on the conductivities of apatite-type rare earth silicates. Journal of Solid State Electrochemistry,2006,10 (8):562-568.
    [65]Christensen A N, Hazell R G, Hewat A W. Synthesis, crystal growth and structure investigations of rare-earth disilicates and rare-earth oxyapatites. Acta Chemica Scandinavica,1997,51:37-43.
    [66]Panteix P J, Bechade E, Julien I, et al. Influence of anionic vacancies on the ionic conductivity of silicated rare earthe apatites. Materials Research Bulletin,2008, 43(5):1223-1231.
    [67]Panteix P J, Julien I, Abelard P, et al. Influence of cationic vacancies on the ionic conductivity of oxyapatites. Journal of the European Ceramic Society,2008,28 (4):821-828.
    [68]Sansom J E H, Slater P R. Oxide ion conductivity in the mixed Si/Ge apatite-type phases La9.33Si6-xGexO26. Solid State Ionics,2004,167 (1-2):23-27.
    [69]王贵领,张密林,赵辉,等La9(SiO4)6-x(VO4)xO1.5+0.5x的合成及其导电性能的研究.无机材料学报,2006,5(21):1258-1262.
    [70]Sansom J E H, Tolchard J R, Slater P R. et al. Synthesis and structural characterization of the apatite-type phases La10-xSi6O26+z doped with Ga. Solid State Ionics,2004,167 (1-2):17-22.
    [71]Shaula A L, Kharton V V, Marques F M B. Oxygen ionic and electronic transport in apatite-type La10-x(Si,Al)6026-δ.Journal of Solid State Chemistry, 2005,178 (6):2050-2061.
    [72]陶善文,彭定坤,孟广耀.无机盐-氧化物复合电解质导电机制.无机材料学报,1999,14(2):203-209.
    [73]Liang C C. Conduction characteristics of the lithium iodide-aluminum oxide solid electrolytes. Journal of the Electrochemical Society,1973,120 (10): 1289-1292.
    [74]Sanna S, Esposito V, Tebano A, et al. Enhancement of ionic conductivity in Sm-doped ceria/yttria-stabilized zirconia heteroepitaxial structures. Small,2010,6 (17):1863-1867.
    [75]Xu D, Liu X, Wang D, et al. Fabrication and characterization of SDC-LSGM composite electrolytes material in IT-SOFCs. Journal of Alloys and Compounds, 2007,429 (1-2):292-295.
    [76]Jo S H, Muralidharan P, Kim D K. Electrical conductivity studies on the LSGM-CGO composite electrolytes. Journal of Alloys and Compounds,2010, 491 (1-2):416-419.
    [77]Li S, Li Z, Bill B. Lanthanum gallate and ceria composite as electrolyte for solid oxide fuel cells. Journal of Alloys and Compounds,2010,492 (1-2):392-395.
    [78]Yuzaki A, Kishimoto A. Effects of alumina dispersion on ionic conduction of toughened zirconia base composite. Solid State Ionics,1999,116 (1-2):47-51.
    [79]Kumar B, Thokchom J S. Space charge-mediated ionic transport in yittria-stabilized zirconia-alumina composite membranes. Journal of the American Ceramic Society,2008,91 (4):1175-1181.
    [80]Raza R, Abbas G, Wang X, et al. Electrochemical study of the composite electrolyte based on samaria-doped ceria and containing yttria as a second phase. Solid State Ionics, In press.
    [81]Chockalingam R, Chockalingam S, Amarakoon V R W. The electrical properties of microwave sintered gadolinia doped ceria-alumina nano-composite electrolyte. Journal of Power Sources,2011,196 (4):1808-1817.
    [82]黄建兵.新型复合电解质低温陶瓷燃料电池的研究:[博士学位论文].北京:清华大学,2007.
    [83]Knauth P, Tuller H L. Solid state ionics:roots, status, and future prospects. Journal of the American Ceramic Society,2002,85 (7):1654-1680.
    [84]Dudek M. Ceramic oxide electrolytes based on CeO2-preparation, properties and possibility of application to electrochemical devices. Journal of the European Ceramic Society,2008,28 (5):965-971.
    [85]Dudek M, Bogusz W, Zych L, et al. Electrical and mechnical properties of CeO2-based electrolyte in the CeO2-Sm2O3-M2O3 (M=La, Y) system. Solid state Ionics,2008,179 (1-6):164-167.
    [86]S Zha, C Xia, G Meng. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. Journal of Power Sources,2003,115 (1): 44-48.
    [87]Mukundan R, Brosha E L, Brown D, et al. Ceria-electrolyte-based mixed potential sensors for the detection of hydrocarbons and carbon Monoxide. Electrochemical and Solid-State Letters,1999,2 (8):412-414.
    [88]Kang Y J, Park H J, Choi G M. The effect of grain size on the low-temperature electrical conductivity of doped CeO2. Solid State Ionics,2008,179 (27-32): 1602-1605.
    [90]Inaba H, Tagawa H. Ceria-based solid electrolytes. Solid State Ionics,1996,83 (1-2):1-16.
    [91]Ma J, Zhang T S, Kong L B, et al. Ce0.8Gd0.2O2-δ ceramics derived from commercial submicron-sized CeO2 and Gd2O3 powders for use as electrolytes in solid oxide fuel cells. Journal of Power Sources,2004,132 (1-2):71-76.
    [92]Yoshida H, Inagaki T, Miura K, et al. Density functional theory calculation on the effect of local structure of doped ceria on ionic conductivity. Solid State Ionics, 2003,160(1-2):109-116.
    [93]Christie G M, Berkel F P F. Microstructure-ionic conductivity relationships in ceria-gadolinia electrolytes. Solid State Ionics,1996,83 (1-2):17-27.
    [94]Jung B, Huang T J. Sintering temperature, microstructure and resistivity of polycrystalline Ce0.8Sm0.2O1.9. Journal of Materials Science,2003,38 (11): 2461-2468.
    [95]Huang W, Shuk P, Greenblatt M. Hydrothermal synthesis and properties of terbium and praseodymium-doped Ce1-xSmxO2 solid solutions. Solid State Ionics, 1998,113-115:305-310.
    [96]Lubke S, Wiemhofer H. Electronic conductivity of Gd-doped ceria with additional Pr-doping. Solid State Ionics,1999,117 (3-4):229-243.
    [97]Maffei N, Kuriakose A K. Solid oxide fuel cells of ceria-doped gadolinium with praseodymium. Solid State Ionics,1998,107 (1-2):67-71.
    [98]Wang X, Lin Y, Holt C, et al. Electric conductivity and oxygen permeability of modified cerium oxides. Journal of Materials Science,2003,38 (5):1073-1079.
    [99]Wang F, Chen S, Chen S. Gd3+ and Sm3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. Electrochemistry Communications, 2004,6 (8):743-746.
    [100]Mori T, Dreenan J, Lee J, et al. Oxide ionic conductivity and microstructures of Sm and La-doped CeO2-based systems. Solid State Ionics,2002,154-155: 461-466.
    [101]马志芳,梁广川,梁金生.碱土金属氧化物掺杂氧化铈基电解质材料中的晶格缺陷,物理化学学报,2005,21(6):663-667.
    [102]周海涛.新型纳米复合氧离子导电体的制备及其纳米离子导电机理的研究:[硕士学位论文].长沙:中南大学,2009.
    [103]Tuller H L, Nowick A S. Small polaron electron-transport in reduced CeO2 single-crystals. Journal of Physics and Chemistry of Solids,1977,38 (8):859-867.
    [104]宋希文,安胜利,赵文广,等.稀土氧化物LnO1.5掺杂Ce02-δ固体电解质的缺陷与电导率.稀土,2005,26(3):23-26.
    [105]Heitjans P, Indri S. Diffusion and ionic conduction in nanocrystalline ceramics. Journal of Physics Condensed Matter,2003,15:1257-1289.
    [106]汪健.六方BaTi1-xCoxO3-δ基新型NTC热敏陶瓷材料的结构与电子性质研究:[硕士学位论文].长沙:中南大学,2009.
    [107]Gerhardt R. Impedance and dielectric spectroscopy revisited:distinguishing localized relaxation from long-range conductivity. Journal of Physics and Chemistry of Solids,1994,55 (12):1491-1506.
    [108]Nakayama S, Sakamoto M. Electrical properties of new type high oxide ionic conductor RE10Si6027 (RE=La, Pr, Nd, Sm, Gd, Dy). Journal of European Ceramic Society,1998,18 (10):1413-1418.
    [109]Bechade E, Julien I, Iwata T, et al. Synthesis of lanthanum silicate oxyapatite materials as a solid oxide fuel cell electrolyte. Journal of European Ceramic Society,2008,28(14):2717-2724.
    [110]Risbud A S, Helean K B, Wilding M C, et al. Enthalpies of formation of lanthanide oxyapatite phases. Journal of Materials Research,2001,16 (10): 2780-2783.
    [111]Chesnaud A, Dezanneau G, Estournes C, et al. Influence of synthesis route and composition on electrical properties of La9.33+xSi6O26+3x/2 oxy-apatite compounds. Solid State Ionics,2008,179 (33-34):1929-1939.
    [112]Masubuchi Y, Higuchi M, Takeda T, et al. Preparation of apatite-type oxide ion conductor by alcoxide-hydrolysis. Journal of Alloys and Compounds,2006,408-412:641-644.
    [113]Yoshioka H, Tanase S. Magnesium doped lanthanum silicate with apatite-type structure as an electrolyte for intermediate temperature solid oxide fuel cells. Solid State Ionics,2005,176 (31-34):2395-2398.
    [114]Yoshioka H. Oxide ionic conductivity of apatite-type lanthanum silicates. Journal of Alloys and Compounds,2006,408-412:649-652.
    [115]Zhang H, Li Z, Bergman B, et al. Investigation of La9.33Si6O26 Oxygen Ionic Conductor. Journal of Materials Sciences and Technology,2007,23(5):629-632.
    [116]Sansom J E H, Richings D, Slater P R. A powder neutron diffraction study of the oxide-ion-conducting apatite-type phases, La9.33Si6O26 and La8Sr2Si6O26.Solid State Ionics,2001,139(3-4):205-210.
    [117]Okudera H, Masubuchi Y, Kikkawa S, et al. Structure of oxide ion-conducting lanthanum oxyapatite, La9.33(SiO4)6O2. Solid State Ionics,2005,176(15-16): 1473-1478.
    [118]Julian R. Tolchard, M. Saiful Islam, Peter R. Slater. Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26. Journal of Materials Chemistry,2003,13(8):1956-1961.
    [119]Tao S W, Irvine J T S. Synthesis and ionic conduction of apatite-type materials. Ionics,2000,6 (5-6):389-396.
    [120]Yoshioka H. Oxide ionic conductivity of apatite-type lanthanum silicates. Journal of Alloys and Compounds,2006,408-412:649-652.
    [121]Tao S, Irvine J T S. Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process. Materials Research Bulletin,2001,36 (7-8): 1245-1258.
    [122]Bellino M G, Lamas D G, Walsoe de Reca N E. A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes. Advanced Materials,2006, 18 (22):3005-3009.
    [123]Maki-Ontto R, de Moel K, Polushkin E, et al. Tridirectional protonic conductivity in soft materials. Advanced Materials,2002,14 (5):357-361.
    [124]Mariappan C R, Govindaraj G, Ramya L, et al. Synthesis, characterization and electrical conductivity studies on A3Bi2P3O12 (A=Na, K) materials. Materials Research Bulletin,2005,40 (4):610-618.
    [125]Minh N Q. Ceramic fuel cells. Journal of the American Ceramic Society,1993, 76(3):563-588.
    [126]刘莉,唐超群.CeO2基中低温固体电解质材料研究进展.电源技术,2001,25(6):428-431.
    [127]Peng C, Zhang Z. Nitrate-citrate combustion synthesis of Ce1-xGdxO2-x/2 powder and its characterization. Ceramics International,2007,33 (6):1133-1136.
    [128]Thangadurai V, Kopp P. Chemical synthesis of Ca-doped CeO2-Intermediate temperature oxide ion electrolytes. Journal of Power Sources,2007,168 (1): 178-183.
    [129]Sha X Q, Lu Z, Huang X Q, et al. Preparation and properties of rare earth co-doped Ce0.8Sm0.2-xYxO1.9 electrolyte materials for SOFC. Journal of Alloys and Compounds,2006,424 (1-2):315-321.
    [130]Tian C, Liu J, Cai J, et al. Direct synthesis of La9.33Si6O26 ultrafine powder via sol-gel self-combustion method. Journal of Alloys and Compounds,2008,458 (1-2):378-382.
    [131]田长安,刘俊亮,蔡俊,等.溶胶凝胶-自然燃烧法合成La9.33Si6O26超细粉体.无机材料学报,2008,23(1):77-81.
    [132]Milliken C, Guruswamy S, Khandkar A. Evaluation of Ceria Electrolytes in Solid Oxide Fuel Cells Electric Power Generation. Journal of the Electrochemical Society,1999,146 (3):872-882.
    [133]Zheng M Z, Liu X M, Su W H. Preparation and performance of La1-xSrxCuO3-δ as cathode material in IT-SOFCs. Journal of Alloys and Compounds,2005,395 (1-2):300-303.
    [134]Mogensen M, Sammes N M, Tompsett G A. Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics,2000,129 (1-4):63-94.
    [135]A. Sin, Yu. Dubitsky, A. Zaopo, et al. Preparation and sintering of Ce1-xGdxO2-x/2 nanopowders and their electrochemical and EPR characterization. Solid State Ionics,2004,175 (1-4):361-366.
    [136]Mineshige A, Yasui T, Ohmura N, et al. Oxygen chemical potential and mixed conduction in doped ceria under influence of oxygen partial pressure gradient. Solid State Ionics,2002,152/153:493-498.
    [137]Mishima Y, Mitsuyasu H, Ohtaki M, et al. Solid oxide fuel cell with composite electrolyte consisting of samaria-doped ceria and yttria-stabilized zirconia. Journal of the Electrochemical Society,1998,145 (3):1004-1007.
    [138]Yang F, Zhao X, Xiao P. Electrical properties of YSZ/Al2O3 composite and YSZ/Al2O3 interface studied by impedance spectroscopy and finite element modelling. Solid State Ionics,2010,181 (17-18):783-789.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700