用户名: 密码: 验证码:
TRPC3、6在难治性颞叶癫痫患者颞叶皮层组织中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究TRPC3 (transient receptor potential canonical 3)、TRPC6 (transient receptor potential canonical 6)在难治性颞叶癫痫患者颞叶皮层中的表达,探讨其在难治性颞叶癫痫发病中的作用。
     方法收集20例难治性颞叶癫痫患者作为实验组,6例急性颞叶脑外伤患者作为对照组。取手术切除颞叶皮层组织为研究对象。采用免疫组化及Western blot方法定性、定量检测TRPC3、6在各组颞叶皮层组织中的表达。
     结果免疫组化染色显示TRPC3、6主要位于神经元胞膜与胞浆内;与对照组相比,实验组TRPC3、6阳性细胞数显著增多,差异具有统计学意义(P<0.05)。Western blot检测显示TRPC3、6分别在相应的分子量97KDa及106KDa处出现蛋白条带;与对照组相比,实验组TRPC3、6与β-actin的灰度比值显著增加,差异具有统计学意义(P<0.05),这与免疫组化的结果一致。
     结论TRPC3、6在难治性颞叶癫痫患者颞叶皮层组织中表达上调,提示TRPC3、6可能参与了难治性颞叶癫痫的发病。
Object To investigate the expression of transient receptor potential canonical 3(TRPC3) and transient receptor potential canonical 6(TRPC6) in the temporal cortex from patients with intractable temporal lobe epilepsy(TLE) and explore their potential roles in epileptogenesis.
     Methods This study was based on 20 patients with intractable temporal lobe epilepsy and 6 controls with acute head trauma.Temporal cortex tissue was obtained from each subject. Immunohistochemistry and Western blot were performed to examine the expression of TRPC3 and TRPC6 in each group.
     Results The immunohistochemisty study showed that TRPC3 and TRPC6 were mainly located in the cytomembrane and cytoplasm of neurons. Immunohistochemistry and Western blot analyses showed increased expression of TRPC3 and TRPC6 in patients with intractable TLE compared with controls.
     Conclusions The expression of TRPC3 and TRPC6 was upregulated in the temporal cortex tissue of patients with intractable TLE, which suggests their potential roles in epileptogenesis.
引文
[1]Mizielinska SM. Ion channels in epilepsy. Biochem Soc Trans,2007,35(5): 1077-9.
    [2]Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Natrue,1969,224(5216):285-287.
    [3]Ramesy IS, Delling M, Clapham DE. An introduction to TRP channel. Annu Rev Physio,2006,68:619-647.
    [4]Hardie RC. TRP channels and lipids:from Drosophila to mammalian physiology. J Physiol,2007,578(1):9-24.
    [5]Dietrich A, Kalwa H, Gudermann T, et al. The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels:functional characterization and physiological relevance. Pflugers Arch,2005,451(1):72-80.
    [6]Dadon D, Minke B. Cellular functions of Transient Receptor Potential channels. Int J Biochem Cell Biol,2010,42(9):1430-1445.
    [7]Moran MM, Xu H, Clapham DE. TRP ion channels in the nervous system. Curr Opin Neurobiol,2004,14(3):362-369.
    [8]Fu M, Xie Z, Zuo H. TRPV1:A potential target for antiepileptogenesis. Med Hypotheses,2009,73(1):100-102.
    [9]Li Y, Jia Y, Cui K, et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature,2005, 434(7035):894-898.
    [10]Zhou J, Du W, Zhou K, et al. Critical role of TRPC6 channels in the formation of excitatory synapses. Nat Neurosci,2008,11(7):741-743.
    [11]Riccio A, Medhurst AD, Mattei C, et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res,2002, 109(1-2):95-104.
    [12]Chung YH, Sun Ahn H, Kim D, et al. Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res,2006, 1085(1):132-7.
    [13]Mizuno N, Kitayama S, Saishin Y, et al. Molecular cloning and characterization of rat trp homologues from brain. Brain Res Mol Brain Res.1999,64(1):41-51.
    [14]Fusco FR, Martorana A, Giampa C, et al. Cellular localization of TRPC3 channel in rat brain:preferential distribution to oligodendrocytes. Neurosci Lett, 2004,365(2):137-142.
    [15]Tai Y, Feng S, Du W, et al. Functional roles of TRPC channels in the developing brain. Pflugers Arch,2009,458(2):283-289.
    [16]Talavera K, Nilius B, Voets T. Neuronal TRP channels:thermometers, pathfinders and life-savers. Trends Neurosci,2008,31(6):287-295.
    [17]Yamamoto S, Wajima T, Hara Y, et al. Transient receptor potential channels in Alzheimer's disease. Biochim. Biophys Acta,2007,1772(8):958-967.
    [18]Selvaraj S, Sun Y, Singh BB. TRPC Channels and their Implications for Neurological Diseases, CNS Neurol Disord Drug Targets,2010,9(1):94-104.
    [19]Adachi N, Kobayashi T, Takahashi H, et al. Enzymological analysis of mutant protein kinase C causing spinocerebellar ataxia type 14 and dysfunction in Ca2+(?) homeostasis. J Biol Chem,2008,283:19854-19863.
    [20]Becker EB, Oliver PL, Glitsch MD, et al. A point mutation in TRPC3 causes abnormal Purkinje cell development and cerebellar ataxia in moonwalker mice. Proc Natl Acad Sci U S A.2009,106(16):6706-6711.
    [21]Leite JP, Neder L, Arisi GM, et al. Plasticity, Synaptic Strength, and Epilepsy: What Can We Learn from Ultrastructural Data? Epilepsia,2005,46(Suppl. 5):134-141.
    [22]Song H, Poo M. The cell biology of neuronal navigation. Nat Cell Biol,2001,3: 81-88.
    [23]Winokur RS, Kubal T, Liu D, et al. Recurrent excitation in the dentate gyrus of a murine model of temporal lobe epilepsy. Epilepsy Res,2004,58(2-3):93-105.
    [24]Dent EW, Gertler FB. Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron,2003,40:209-227.
    [25]Li Y, Calfa G, Inoue T, et al. Activity-dependent release of endogenous BDNF from Mossy fibers evokes a TRPC3 current and Ca2+ elevations in CA3 pyramidal neurons. J Neurophysiol,2010,103(5):2846-2856.
    [26]Wang GX, Poo MM. Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature,2005,434(7035):898-904.
    [27]Shim SW, Goh EL, Ge S, et al. xTRPCl-dependent chemotropic guidance of neuronal growth cones. Nature,2005,8(6):730-735.
    [28]Craig AM, Wyborski RJ, Banker G. Preferential addition of newly synthesized membrane protein at axonal growth cones. Nature,1995,375:592-594.
    [29]Singh BB, Lockwich TP, Bandyopadhyay BC, et al. VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell,2004,15:635-646.
    [30]Bezzerides VJ, Ramsey IS, Kotecha S, et al. Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol,2004,6:709-720.
    [31]Greka A, Navarro B, Oancea E, et al. TRPC5 is a regulator of hippocampal neurite length and growth cone morphology, Nat Neurosci,2003,6(8):837-45.
    [32]McAllister AK. Dynamic aspects of CNS synapse formation. Annu Rev Neurosci,2007,30:425-450.
    [33]Huang W, Young JS, Glitsch MD. Changes in TRPC channel expression during postnatal development of cerebellar neurons. Cell Calcium,2007,42(1):1-10.
    [34]Tai Y, Feng S, Ge R, et al. TRPC6 channels promote dendritic growth via the CaMKIV-CREB pathway. J Cell Sci,2008;121:2301-2307.
    [35]Yuste R, Bonhoeffer T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci,2001:24:1071-1089.
    [36]Murphy DD, Segal M. Morphological plasticity of dendritic spines in central neurons is mediated by activation of cAMP response element binding protein. Proc Natl Acad Sci USA,1997,94:1482-1487.
    [37]Amaral MD, Pozzo-Miller L. TRPC3 Channels Are Necessary for Brain-Derived Neurotrophic Factor to Activate a Nonselective Cationic Current and to Induce Dendritic Spine Formation. J Neurosci,2007,27(19):5179-5189.
    [38]Nakata H, Nakamura S. Brain-derived neurotrophic factor regulates AMPA receptor trafficking to post-synaptic densities via IP3R and TRPC calcium signaling. FEBS Lett,2007,581(10):2047-2054.
    [39]Bengtson CP, Tozzi A, Bernardi G, et al. Transient receptor potential-like channels mediate metabotropic glutamate receptor EPSCs in rat dopamine neurones. J physiol,2004,555(Pt2):323-30.
    [40]Muthu D, Bhaskaran, Bret N Smith. Effects of TRPV1 activation on synaptic excitation in the dentate gyrus of a mouse model of temporal lobe epilepsy. Exp Neuro,2010,223(2):529-536.
    [41]Kauer JA, Gibson. HE Hot flash:TRPV channels in the brain. Trends Neurosci,2003,32(4):215-224.
    [42]Matta JA, Ahem G. TRPV1 and synaptic transmission. Curr Pharm Biotechnol, 2011,12(1):95-101.
    [43]Kim H, Cui L, Kim J, Kim SJ. Transient receptor potential vanilloid type 1 receptor regulates glutamatergic synaptic inputs to the spinothalamic tract neurons of the spinal cord deep dorsal horn. Neurosci,2009,160(2):508-16
    [44]Liao HT, Lee HJ, Ho YC, et al. Capsaicin in the periaqueductal gray induces analgesia via metabotropic glutamate receptor-mediated endocannabinoid retrograde disinhition. Br J Pharmacol,2011,163(2):330-45.
    [45]Li HS, Xu XZ, Montell C. Activation of a TRPC3-dependent cation current through the neurotrophin BDNF. Neuron,1999,24:261-273.
    [46]Tyler WJ, Perrett SP, Pozzo-Miller LD. The role of neurotrophins in neurotransmitter release. Neuroscientist,2002,8(6):524-531.
    [47]Gee CE, Benquet P, Gerber U. group I metabotropic glutamate receptors activate a calcium- sensitive transient receptor potential-like conductance in rat hippocampus. J Physiol,2003,546(Pt3):655-64.
    [48]Glitsch MD. Activation of native TRPC3 cation channels by phospholipase D. FASEBJ,2010,24(1):318-325.
    [49]Hartmann J, Dragicevic E, Adelsberger H, et al. TRPC3 channels are required for synaptic transmission and motor coordination. Neuron,2008,59(3):392-8.
    [50]Wang M, Bianchi R, Chuang SC, et al. Group Ⅰ metabotropic glutamate receptor-dependent TRPC channel trafficking in hippocampal neurons. J Neurochem,2007,101(2):411-421.
    [51]Kim SJ, Kim YS, Yuan JP, et al. Activation of the TRPC1 cation channel by metabotropic glutamate receptor mGluR1. Nature,2003,426(6964):285-91.
    [52]Hartmann J, Henning HA, Konnerth A. mGluR1/TRPC3-mediated synaptic transmission and calcium signaling in mammalian central neurons. Cold Spring Harb Perspect Biol.2011,3(4).
    [53]Munsch T, Freichel M, Flockerzi V, et al. Contribution of transient receptor potential channels to the control of GAB A release from dendrites. PNAS,2003, 100(26):16065- 16070.
    [54]Zhou FW, Matta SG, Zhou FM, et al. Constitutively active TRPC3 channels regulate basal ganglia output neurons. J Neurosci.2008, Jan 9;28(2):473-82.
    [55]Badea J, Goldberg J, Mao B, et al. Calcium imaging of epileptiform events with single-cell resolution. J Neuro Biol,2001,48(3):215-227.
    [56]Mattson MP, Guthrie PB, Kater SB. Intrinsic factors in the selective vulnera-bility of hippocampal pyramidal neurons. Prog Clin Biol Res,1989,317:333-351.
    [57]Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci, 2004,61:657-668.
    [58]Narayanan KL, Irmady K, Subramaniam S, et al. Evidence that TRPC1 is involved in hippocampal glutamate-induced cell death. Neurosci Lett,2008, 446:117-122.
    [59]Bollimuntha S, Ebadi M, Singh BB. TRPC1 protects human SH-SY5Y cells against salsolinol-induced cytotoxicity by inhibiting apoptosis. Brain Res,2006, 1099:141-149.
    [60]Yao H, Peng F, Dhillon N, et al. Involvement of TRPC channels in CCL2-mediated neuroprotection against tat toxicity. J Neurosci,2009,29:1657-1669.
    [61]Chen Q, Surmeier DJ, Reiner A. NMDA and non-NMDA receptor-mediated excitotoxicity are potentiated in cultured striatal neurons by prior chronic depolarization. Exp Neurol,1999,159:283-296.
    [62]Miller BA. The role of TRP channels in oxidative stress-induced cell death. J Membr Biol 2006;209(1):31-41.
    [63]Balzer M, Lintschinger B, Groschner K. Evidence for a role of Trp proteins in the oxidative stress-induced membrane conductances of porcine aortic endothe-lial cells. Cardiovasc Res,1999,42:543-549.
    [64]Shan D, Marchase RB, Chatham JC. Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am J Physiol Cell Physiol,2008,294:833-41.
    [65]Dietrich A, Gudermann T.TRPC6. HEP,2007(179):125-141.
    [66]Eder P, Potesser M, Groschner K, TRPC3:A Multifunctional, Pore-Forming Signalling Molecule. HEP,2007,179:77-92.
    [1]Clapham D. TRP channels as cellular sensors. Nature,2003,426:517-524.
    [2]Hofmann T, Obukhov AG, Schaefer M, et al. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature,1999,397:259-263.
    [3]Dietrich A, Kalwa H, Gudermann T, et al. The diacylgylcerol-sensitive TRPC3/6/7 subfamily of cation channels:functional characterization and physiological relevance. Pflugers Arch-Eur J Physiol,2005,451(1):72-80.
    [4]Eder P, Groschner K. TRPC3/6/7:Topical aspects of biophysics and pathophy-siology. Channels.2008,2(2):94-9.
    [5]Zhu X, Jiang M, Birnbaumer L. Receptor-activated Ca2+influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem,1998,273:133-142.
    [6]Preuss KD, Noller JK, Krause E, et al. Expression and characterization of a trpl homolog from rat. Biochem Biophys Res Commun,1997,240:167-172.
    [7]Ohki G, Miyoshi T, Murata M, et al. A calcium-activated cation current by an alternatively spliced form of Trp3 in the heart. J Biol Chem,2000,275: 39055-39060.
    [8]Riccio A, Medhurst AD, Mattei C, et al. mRNA distribution analysis of human TRPC family in CNS and peripheral tissues. Brain Res Mol Brain Res,2002, 109(1-2):95-104.
    [9]Boulay G, Zhu X, Peyton M, et al. Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem,1997,272:29672-29680.
    [10]Zhang L, SaffenD. Muscarinic acetylcholine receptor regulation of TRP6 Ca2+ channel isoforms.Molecular structures and functional characterization. J Biol Chem,2001,276:13331-13339.
    [11]Corteling RL, Li S, Giddings J, et al. Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. Am J Respir Cell Mol Biol,2004,30:145-154.
    [12]Beech DJ, Muraki K, Flemming R. Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol,2004, 559:685-706.
    [13]Bonaventure P, Guo H, Tian B, et al. Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res,2002,943:38-47.
    [14]Riccio A, Mattei C, Kelsell RE, et al. Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. J Biol Chem,2002,277:12302-12309.
    [15]Walker RL, Hume JR, Horowitz B. Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am J Physiol Cell Physiol, 2001,280:1184-1192.
    [16]Hofmann T, Schaefer M, Schultz G, et al. Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA,2002,99:7461-7466.
    [17]Shi J, Mori E, Mori Y, et al. Multiple regulation of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol,2004,561:415-432.
    [18]Trebak M, Bird GS, McKay RR, et al. Comparison of human TRPC3 channels in receptor-activated and store-operated modes. Differential sensitivity to channel blockers suggests fundamental differences in channel composition. J Biol Chem,2002,277:21617-21623.
    [19]Inoue R, Okada T, Onoue H, et al. The transient receptor potential protein homologue TRP6 is the essential component of vascular al adrenoceptor-activated Ca2+-permeable cation channel. Circ Res,2001,88:325-332.
    [20]Jung S, Strotmann R, Schultz G, et al. TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol,2002,282:347-359.
    [21]Smani T, Zakharov SI, Csutora P, et al. A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol,2004,6:113-120.
    [22]Berridge MJ. Elementary and global aspects of calcium imaging. J Physiol, 1997,499:291-306.
    [23]Yao Y, Ferrer-Montiel AV, Montal M, et al. Activation of store-operated Ca2+ current in Xenopus oocytes requires SNAP-25 but not a diffusible messenger. Cell,1999,98:475-485.
    [24]Bezzerides VJ, Ramsey IS, Kotecha S, et al. Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol,2004,6:709-720.
    [25]Cayouette S, Lussier MP, Mathieu E-L, et al. Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein coupled receptor activation. J Biol Chem,2004,279:7241-7246.
    [26]Zhu X, Jiang M, Peyton M, et al. TRP, a novel mammalian gene family essential for agonist-activated capacitative Ca2+entry. Cell,1996;85:661-71.
    [27]Kiselyov K, Xu X, Mozhayeva G, et al. Functional interaction between InsP3 receptors and store-operated HTRP3 channels. Nature,1998,396:478-82.
    [28]Ma HT, Patterson RL, van Rossum DB, et al. Requirement of the inositol trisphosphate receptor for activation of store-operated Ca+channels. Science, 2000,287:1647-51.
    [29]Trebak M, Bird GSJ, McKay RR, et al. Signaling mechanism for receptor-activated canonical transient receptor potential 3(TRPC3) channels. J Biol Chem,2003,278:16244-52.
    [30]Vazquez G, Wedel BJ, Trebak M, et al. Expression level of the canonical transient receptor potential 3 (TRPC3) channel determines its mechanism of activation. J Biol Chem,2003,278:21649-54.
    [31]Roos J, DiGregorio PJ, Yeromin AV, et al. STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol,2005,169: 435-45.
    [32]Vig M, Peinelt C, Beck A, et al. CRACM1 is a plasmamembrane protein essential for store-operated Ca2+ entry. Science,2006,312:1220-3.
    [33]Soboloff J, Spassova MA, Tang XD, et al. Orail and STIM reconstitute store-operated calcium channel function. J Biol Chem,2006,281(30):20661-5.
    [34]Lockwich T, Singh BB, Liu X, et al. Stabilization of cortical actin induces internalization of transient receptor potential 3 (Trp3)-associated caveolar Ca2+ signaling complex and loss of Ca2+ influx without disruption of Trp3-inositol trisphosphate receptor association. J Biol Chem,2001,276:42401-42408.
    [35]Sinkins WG, Goel M, Estacion M, et al. Association of immunophilins with mammalian TRPC channels. J Biol Chem,2004,279:34521-34529.
    [36]Brazer SC, Singh BB, Liu X, et al. Caveolin-1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localiza-tion of TRPC 1. J Biol Chem,2003,278:27208-27215.
    [37]Groschner K, Rosker C, Lukas M. Role of TRP channels in oxidative stress. Novartis Found Symp,2004,258:222-266.
    [38]Graziani A, Rosker C, Kohlwein SD, et al. Cellular cholesterol controls TRPC3 function:evidence from a novel dominant negative knock-down strategy. Biochem J,2006,396:147-155.
    [39]Singh BB, Lockwich TP, Bandyopadhyay BC, et al. VAMP2-dependent exocytosis regulates plasma membrane insertion of TRPC3 channels and contributes to agonist-stimulated Ca2+ influx. Mol Cell,2004,15:635-646.
    [40]van Rossum DB, Patterson RL, Sharma S, et al. Phospholipase C gammal controls surface expression of TRPC3 through an intermolecular PH domain. Nature,2005,434:99-104.
    [41]TrebakM, Hempel N, Wedel BJ, et al. Negative regulation of TRPC3 channels by protein kinase C-mediated phosphorylation of serine 712. Mol Pharmacol, 2005,67:558-563.
    [42]Kwan HY, Huang Y, Yao X. Regulation of canonical transient receptor potential isoform 3(TRPC3) channel by protein kinase G. Proc Natl Acad Sci USA,2004, 101:2625-2630.
    [43]Hofmann T, Schaefer M, Schultz G, et al. Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J Mol Med,2000, 78:14-25.
    [44]Boulay G, Brown DM, Qin N, et al. Modulation of Ca(2+) entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP):evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci USA,1999,96:14955-14960.
    [45]Estacion M, Li S, Sinkins WG, et al. Activation of human TRPC6 channels by receptor stimulation. J Biol Chem,2004,279:22047-22056.
    [46]Hisatsune C, Kuroda Y, Nakamura K, et al. Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem,2004,279:18887-18894.
    [47]Kawasaki BT, Liao Y, Birnbaumer L. Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous make up of receptor- and store-operated Ca2+ entry channels. Proc Natl Acad Sci USA, 2006,103:335-340.
    [48]Okada T, Inoue R, Yamazaki K, et al. Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca+-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem,1999,274:27359-27370.
    [49]Lievremont JP, Bird GS, Putney JWJr. Canonical transient receptor potential TRPC7 can function as both a receptor- and store-operated channel in HEK-293 cells. Am J Physiol Cell Physiol,2004,287:1709-1716.
    [50]Lievremont JP, Bird GS, Putney JW J. Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol,2005,68:758-762.
    [51]Dietrich A, Mederos YSM, Emmel J, et al. N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem, 2003,278:47842-52.
    [52]Chung YH, Sun Ahn H, Kim D, et al. Immunohistochemical study on the distribution of TRPC channels in the rat hippocampus. Brain Res,2006,1085: 132-7.
    [53]Huang WC, Young JS, Glitsch MD. Changes in TRPC channel expression during postnatal development of cerebellar neurons. Cell Calcium,2007, 42:1-10.
    [54]Zhou J, Du W, Zhou K, et al. Critical role of TRPC6 channels in the formation of excitatory synapses.Nat Neurosci,2008,11(7):741-3.
    [55]Tai Y, Feng S, Du W, et al. Functional roles of TRPC channels in the developing brain. Pflugers Arch - Eur J Physiol,2009,458:283-289.
    [56]Berg AP, Sen N, Bayliss DA. TrpC3/C7 and Slo2.1 are molecular targets for metabotropic glutamate receptor signaling in rat striatal cholinergic interne-urons. J Neurosci,2007,27:8845-8856.
    [57]Lockwich T, Pant J, Makusky A, et al. Analysis of TRPC3-Interacting Proteins by Tandem Mass Spectrometry. J Proteome Res,2008;7:979-89.
    [58]Leuner K, Kazanski V, Muller M, et al. Hyperforin-a key constituent of St. John's wort specifically activates TRPC6 channels. Faseb J,2007,21:4101-11.
    [59]Bibel M, Barde YA. Neurotrophins:key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev,2000,14:2919-2937.
    [60]Jia Y, Zhou J, Tai Y, et al. TRPC channels promote cerebellar granule neuron survival. Nat Neurosci,2007,10:559-567.
    [61]Li Y, Jia Y, Cui K, et al. Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature,2005,434 (7035):894-8.
    [62]Yamamoto S, Wajima T, Hara Y, et al. Transient receptor potential channels in Alzheimer's disease. Biochim. Biophys Acta,2007,1772(8):958-967.
    [63]Rodriguez-Santiago M, Mendoza-Torres M, Jimenez-Bremont JF, et al. Knockout of the trcp3 gene causes a recessive neuromotor disease in mice. Biochem Biophys Res Commun,2007,360:874-879.
    [64]Lopez-Revilla R, Soto-Zarate C. Progressive paralysis associated with diffuse astrocyte anaplasia in A202 mice homozygous for a transgene encoding the SV40 T antigen. Neuropathology,2004,24:30-37.
    [65]Welsh DG, Morielli AD, Nelson MT, et al. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res,2002,90:248-50.
    [66]Onohara N, Nishida M, Inoue R, et al. TRPC3 and TRPC6 are essential for angiotensin II-induced cardiac hypertrophy. Embo J,2006,25:5305-16.
    [67]Kuwahara K, Wang Y, McAnally J, et al. TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 2006,116:3114-26.
    [68]Nakayama H, Wilkin BJ, Bodi I, et al. Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. Faseb J,2006,20:1660-70.
    [69]Satoh S, Tanaka H, Ueda Y, et la. Transient receptor potential(TRP) protein 7 acts as a G protein-activated Ca2+ channel mediating angiotensin II-induced myocardial apoptosis. Mol Cell Biochem,2007,294:205-15.
    [70]Shan D, Marchase RB, Chatham JC. Overexpression of TRPC3 increases apoptosis but not necrosis in response to ischemia-reperfusion in adult mouse cardiomyocytes. Am J Physiol Cell Physiol,2008,294:833-41.
    [71]Brenner JS, Dolmetsch RE. TrpC3 regulates hypertrophy-associated gene expression without affecting myocyte beating or cell size. PLoS ONE,2007, 2:802.
    [72]Dietrich A, Mederos YSM, Gollasch M, et al. Increased vascular smooth muscle contractility in TRPC6-/- mice.Mol Cell Biol,2005,25:6980-6989.
    [73]Liu D, Yang D, He H, et al. Increased Transient Receptor Potential Canonical Type 3 Channels in Vasculature From Hypertensive Rats. Hypertension,2009, 53(1):70-6.
    [74]Yu Y, Sweeney M, Zhang S, et al. PDGF stimulates pulmonary vascular smoothmuscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol,2003,284:C316-330.
    [75]Yu Y, Fantozzi I, Remillard CV, et al. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA,2004,101:13861-13866.
    [76]White TA, Xue A, Eduardo N, et al. Role of Transient Receptor Potential C3 in TNF-a-Enhanced Calcium Influx in Human Airway Myocytes. Am J Respir Cell Mol Biol,2006,35(2):243-51.
    [77]Winn MP, Conlon PJ, Lynn KL, et al. A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science,2005,308: 1801-1804.
    [78]Reiser J, Polu KR, Moller CC, et al. TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet, 2005,37:739-744.
    [79]Gudermann T. A new TRP to kidney disease. Nat Genet,2005,37:663-664.
    [80]KrizW. TRPC6—a new podocyte gene involved in focal segmental glomer-ulosclerosis. Trends Mol Med,2005,11:527-530.
    [81]Philipp S, Strauss B, Hirnet D, et al. TRPC3 mediates T-cell receptor-dependent calcium entry in human T-lymphocytes. J Biol Chem,2003,278:26629-38.
    [82]Liao Y, Erxleben C, Yildirim E, et al. Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA, 2007,104:4682-7.
    [83]Liao Y, Erxleben C, Abramowitz J, et al. Functional interactions among Orai1, TRPCs, and STIM1 suggest a STIM-regulated heteromeric Orai/TRPC model for SOCE/Icrac channels. Proc Natl Acad Sci USA,2008,105:2895-900.
    [84]Cheng KT, Liu X, Ong HL, et al. Functional requirement for Orai1 in store-operated TRPC1/STIM1 channels. J Biol Chem,2008,283(19):12935-40.
    [85]Hassock SR, Zhu MX, Trost C, et al. Expression and role of TRPC proteins in human platelets:evidence that TRPC6 forms the store-independent calcium entry channel. Blood,2002,100:2801-2811.
    [86]Tseng PH, Lin HP, Hu H, et al. The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry,2004,43:11701-11708.
    [87]Rosenberg P, Hawkins A, Stiber J, et al. TRPC3 channels confer cellular memory of recent neuromuscular activity. Proc Natl Acad Sci USA,2004, 101:9387-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700