用户名: 密码: 验证码:
基于ICP-MS的昆明荷叶山柱状沉积物环境意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以昆明荷叶山柱状沉积物为研究对象,通过对沉积物中常量元素、微量元素包括稀土元素在内的四十余种元素进行定量分析,结合沉积学、地球化学、14C建立的年代序列等来探讨昆明荷叶山柱状沉积物的环境意义,重建昆明北部地区末次冰盛期(始于1.8万年前)以来的气候环境演变过程。
     本研究采用ICP-MS测定了荷叶山柱状沉积物中微量元素:Li、Rb、Cs、Be、Sr、Ba、Se、Ga、Th和U,重金属元素:Cr、Ni、Pb、Co以及稀土元素La、Ce、Pr、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu。用ICP-AES测定了常量元素:Al、Ti、Ca、Mg、Fe和Mn,用AAS测定了Na。研究表明:
     常量元素中Na、Ti波动较剧烈。Na/Al, Mg/Al, Ca/Al的比率呈现出相似的变化趋势,在距今1万年前左右,这些元素的比率相比1万年前增大,而且1万年以后变化显著,这与末次冰消期(1.5万年前-1.1万年前)的结束全新世(白1.1万年前至今)的开始有关。
     Mg/Ca比值指示了昆明北部气温的变化。该比值显示在17.8m~10.6m(20~11kaBP)之间,该段时期温度较低;在10.6m~2m(11~2kaBP)之间,Mg/Ca比值开始逐渐增大,在8kaBP时突然增大,表明昆明北部气温逐渐升高,但温度仍有波动。在2m-表层(2kaBP~至今)之间,Mg/Ca比值突然降低,表明温度降低。
     微量元素中Rb/Sr比值的大小反映了环境的气候条件。结合14C定年结果和沉积学等,恢复了昆明北部末次冰盛期以来的气候环境变化过程17.8m~15.2m(20~17kaBP):Rb/Sr比值最低,属于末次冰盛期的干燥寒冷气候;15.2m~10.2m(17~11kaBP):Rb/Sr比值波动地逐渐增大,属于末次冰消期的寒冷干燥向温暖湿润过渡阶段;10.2m~4.6m(11~5kaBP):进入全新世大暖期;4.6m-表层(5kaBP~至今):Rb/Sr比值突然降低,为全新世干冷时期。
     荷叶山柱状沉积物中稀土元素的球粒陨石标准化曲线趋势基本一致,δEu的平均值为0.72,表现出弱的Eu负异常,δCe的平均值为7.12。∑LREE/∑HREE比值大于1,说明荷叶山沉积物稀土元素分馏较明显。La/Yb、La/Sm和Gd/Yb均大于1,说明荷叶山沉积物中轻稀土元素富集。
     ΣREE含量的变化与气候环境温暖湿润、寒冷干旱等相对应。ΣREE含量的变化与末次冰盛期以来的几次气候变化相对应。18~17 kaBP:末次冰盛期的干燥寒冷阶段,与玉木冰期Ⅱ对应;15~12 kaBP:温度波动地上升,与晚更新世玉木冰期的晚冰期和新仙女木时期相对应。
This paper used a geochemical analysis of core sediments from a twenty-meter column taken from Lotus Mountain in Kunming, Yunnan, China to reconstruct environmental conditions over the past 20 kyr. ICP-MS operation condition was used in the determination of trace elements (Li, Rb, Cs, Be, Sr, Ba, Se, Ga, Th and U), heavy metals (Cr, Ni, Pb and Co), and REEs (La, Ce, Pr, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu). ICP-AES was used to determine Al, Ti, Ca, Mg, Fe and Mn. Na was determined by AAS. The age of the sediment column was determined by 14C analysis.
     The general trend for Na/Al, Mg/Al and Ca/Al ratios were similar as well as higher than they were 10 thousand years ago, which correlates with the gradually warming climate during the Holocene (dated from 11 thousand years ago).
     The Mg/Ca ratio was used as an indicator of temperature change. The results indicated that temperatures between 20-11kaBP gradually decreased before starting to warm from 11-2kaBP. The last 2,000 years have seen temperatures once again decreasing.
     The Rb/Sr ratio recorded similar a pattern with temperatures decreasing between 20~17kaBP, warming between 17~115kaBP, then becoming particularly warm between 11 to 5kaBP before cooling during the last 5,000 years.
     Chondrite patterns for the REEs were all similar. The meanδEu value was 0.72, which showed the core sediments to be part of the negative Eu anormally, while the meanδCe value was 7.12, which showed the core sediments as a positive Ce anormally. Values for the∑LREE/∑HREE ratio showed that the sediments were rich in LREE Futhermore, the individual element ratios for La/Yb, La/Sm and Gd/Yb also suggested the column to be rich in LREE.
     Changes in the∑REE of the core sediments also correlated well with climate changes during the last Glacial Maximum(LGM). From 18 to 17 kaBP it was the cold while from 15~12 kaBP it was warming.
引文
[1]符超峰,安芷生,强小科,宋友桂,常宏.全球变化研究进展和面临的挑战及应对策略[J].干旱区研究,2006,23(1):1-6
    [2]褚玉娟,江淮平原浅钻孔岩芯粘土矿物环境意义研究[硕士学位论文],南京,南京师范大学,2008
    [3]Helge W. Arz, Frank Lamy, Jurgen Patzold. A pronounced dry event recorded around 4.2 ka in brine sediments from the northern Red Sea. Quaternary Research[J],2006,66: 432-441
    [4]D. Klitgaard-Kristensen, T.L. Rasmussen, H.P. Sejrup, H. Haflidason, Tj.C.E. van Weering. Rapid changes in the oceanic fronts in the Norwegian Sea during the last deglaciation:implications for the Younger Dryas cooling event Younger Dryas cooling event[J]. Marine Geology,1998,152:177-188
    [5]黄俊华,胡超涌,周群峰,杨桂芳.长江中游和尚洞石笋的高分辨率同位素、微量元素记录及古气候研究[J].沉积学报,2002,20(3):443-447
    [6]陆敏,张卫国,师育新,俞立中,郑祥民.太湖北部沉积物金属和营养元素的垂向变化及其影响因素[J].湖泊科学,2003,15(3):213-220
    [7]赵锦慧,王丹,鹿化煜,张小曳,李杨,严立文.西宁地区黄土地球化学元素所揭示的古气候变化[J].干旱区资源与环境,2006,20(5):104-108
    [8]杨守业,李从先.长江与黄河沉积物元素组成与地质背景[J].海洋地质与第四纪地质,1999,19(2):19-26
    [9]S.Q. Qiao, Z.Sh. Yang, Y.J. Pan, Z.G. Guo. Metals in suspended sediments from the Changjiang (Yangtze River) and Huanghe (Yellow River) to the sea, and their comparison[J]. Estuarine, Coastal and Shelf Science,2007,74:539-548
    [10]S.Y. Yang, Hoi Soo Jung, Man Sik Choi, Cong Xian Li. The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments[J]. Earth and Planetary Science Letters,2002,201:407-419
    [11]杨丽原,沈吉,张祖陆,朱育新,孙庆义.近四十年来山东南四湖环境演化的元素地球化学记录[J].地球化学,2003,32(5):453-460
    [12]K. Fytianos, A. Lourantou. Speciation of elements in sediment samples collected at lakes Volvi and Koronia, N. Greece[J]. Environment International,2004,30:11-17
    [13]S.M.N. Moalla. Physical fractionation of trace and rare earth elements in the sediments of Lake Nasser[J]. Talanta,1997,45:213-221
    [14]E.L. Goldberg, M.A. Phedorin, E.P. Chebykin, K.B Zolotarev, N.A. Zhuchenko. Decade-centenary resolution records of climate changes in East Siberia from elements in the bottom sediments of lake Baikal for the last 150 kyr[J]. Nuclear Instruments and Methods in Physics Research A,2007,575:193-195
    [15]K. Tanaka, F. Akagawa, K. Yamamoto,Y. Tani, I. Kawabe, T. Kawai. Rare earth element geochemistry of Lake Baikal sediment:its implication for geochemical response to climate change during the Last Glacial/Interglacial transition[J]. Quaternary Science Reviews,2007,26:1362-1368
    [16]毛建忠,王雨春,赵琼美,吴秀萍.滇池沉积物内源磷释放初步研究[J].中国水利水电科学研究院学报,200,3(3):229-233
    [17]薛传东,刘星,亓春英,魏海霞,宋雪丽,刘勇强,郝百武.滇池近代沉积物的元素地球化学特征及其环境意义[J].岩石矿物学杂志,2007,26(6):582-590
    [18]李鸣,吴结春,张小林,邹雪静.鄱阳湖五河入湖口重金属污染和分析评价[J].南昌大学学报(理科版),2008,32(5):483-486
    [19]黄顺生,华明,廖启林,吴新民,朱佰万,冯金顺.太湖北部沉积物微量元素垂直分布特征及指示意义[J].海洋地质动态.2005,21(8):1-5
    [20]曹德菊,岳永德,黄祥明,魏明.巢湖水体Pb, Cu, Fe污染的环境质量评价[J].中国环境科学2004,24(4):509-512
    [21]叶瑛,王汝建,屠霄霞,杨帅杰,柳志卿.东太平洋柱状沉积物的古气候和古环境记录[J].海洋学报,2005,27(3):170-175
    [22]R. Wei, H. Haraguchi. Multielement determination of major-to-ultratrace elements in river and marine sediment reference materials by inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry[J]. Analytical sciences,1999,15:729-735
    [23]蒋富清,李安春,李铁刚.冲绳海槽南部柱状沉积物地球化学特征及其古环境意义[J].海洋地质与第四纪地质,2002,22(3):11-17
    [24]赵宏樵,韩喜彬,陈荣华,初凤友,高水土.南海北部191柱状沉积物主元素特 征及其古环境意义[J].海洋学报,2008,30(6):85-93
    [25]H.H. Zhang, H.X. Yuan, Y.G. Hu, Z.F. Wu, L.A. Zhu, L. Zhu, F.B. Li, D.Q. LI. Spatial distribution and vertical variation of arsenic in Guangdong soil profiles[J]. ChinaEnvironmental Pollution,2006, 144:492-499
    [26]T. Liaghati, M. Preda, M. Cox. Heavy metal distribution and controlling factors within coastal plain sediments, Bells Creek catchment, southeast Queensland, Australia[J]. Environment International,2003,29:935-948
    [27]郑国璋.关中娄土剖面中重金属元素的垂直分布规律研究[J].地球学报,2008,29(1):109-115
    [28]侯青叶,杨忠芳.山西临汾盆地黄土剖面重金属分布特征及其影响因素[J].现代地质,2008,22(6):922-928
    [29]李秉成,胡培华,王艳娟.关中泾阳塬全新世黄土剖面磁化率的古气候阶段划分[J].吉林大学学报(地球科学版),2009,39(1):99-106
    [30]W.J. Zhou, M.J. Head, X.F. Lu, Z.S. An, A.J.T. Jull, D. Donahue Teleconnection of climatic events between East Asia and polar, high latitude areas during the last deglaciation[J]. Palaeoecology,1999,152:163-172
    [31]D. Genty, D. Blamart. Ghaleb, V. Plagnes, C. Causse.M. Bakalowicz, K. Zouari, N. Chkir, J. Hellstrom, K. Wainer, F. Bourges. Timing and dynamics of the last deglaciation from European and North African δ 13C stalagmite profiles—comparison with Chinese and South Hemisphere stalagmites[J]. Quaternary Science Reviews,2006(25):2118-2142
    [32]D.D. Rousseau, P. Antoine, S. Kunesch, C. Hatte, J. Rossignol, S. Packman, A. Lang, C. Gauthier. Evidence of cyclic dust deposition in the US Great plains during the last deglaciation from the high-resolution analysis of the Peoria Loess in the Eustis sequence (Nebraska, USA) [J]. Earth and Planetary Science Letters; 2007(262):159-174
    [33]Q.Y. Guan, B.T. Pan, N. Li, H.S. Gao,Q. Li, X.Y. Yang. Differences among sub-orbital time scale events recorded in two high-resolution loess sections, China, during the last deglaciation[J]. Quaternary International,2009,198:246-254
    [34]赵锦慧,王丹,樊宝生,鹿化煜,张小曳,屈文军,汶玲娟,李东平.延安地区黄土堆积的地球化学特征与最近13万年东亚夏季风气候的波动[J].地球化学,2004,33(5):495-500
    [35]王小如,电感耦合等离子体质谱应用实例第1版[M].化学工业出版社,北京,2005
    [36]戴特,格雷主编.李金英,姚继军译.电感耦合等离子体质谱分析的应用[M].原子能出版社,1998
    [37]齐剑英,苏兆斌,董玉莲.生活饮用水中的重金属元素ICP-MS分析[J].水质分析与监测,2006,6:42-43
    [38]Y.B. Zhu, Akihide Itoh, Eiji Fujimori, Tomonari Umemura, Hiroki Haraguchi. Determination of rare earth elements in seawater by ICP-MS after preconcentration with a chelating resin-packed minicolumn. Journal of Alloys and Compounds,2006:985-988
    [39]张华,王英锋,施燕支,陈玉红,李平,John Lau, Steven Wilbur. ICP-MS法测定电子电器材料中的有害元素铅、镉、砷、铬[J].环境化学,2006,25(5):657-660
    [40]谢华林,李立波,聂西度.催化裂化催化剂中微量金属元素的电感耦合等离子体质谱分析[J].冶金分析,2006,26(2):21-24
    [41]梁永利,张翼明,郝冬梅,郝茜,张雪梅ICP-MS法测定镝铁合金中稀土杂质及非稀土杂质[J].内蒙古科技与经济,2006,17:82-83
    [42]S.Kozono, H.Haraguchi. Determination of ultratrace impurity elements in high purity niobium materials by on-line matrix separation and direct injection/inductively coupled plasma mass spectrometry[J]. Talanta,2007,5:1791-1799
    [43]王长华,李明洁,李继东,伍星,郑永章.共沉淀分离-ICP-MS测定高纯阴极铜中硒和碲[J].分析试验室,2006,25(8):100-103
    [44]郭峰,谭红,何锦林,谢锋,曾广铭,宋光林.改进的挥硅-ICP-MS法测定高纯四氯化硅中金属杂质[J].福建分析测试,2006,15(4):7-9
    [45]E.P. Nardi, F.S. Evangelista, L.Tormen, T.D. Pierre, A J. Curtius, S S. de Souza, F Barbosa.The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples[J]. Food Chemistry,2009,112:727-732
    [46]R. Nageswara Rao, M. V.N. Kumar Talluri. An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals[J]. Journal of Pharmaceutical and Biomedical Analysis,2007,43:1-13
    [47]王松君,曹林,常平,侯天平,侯悦ICP—MS测定中草药狼毒中稀土和微量元 素[J].光谱学与光谱分析,2006,26(7):1330-1333
    [48]施丽飞,薛大方,徐恒瑰,刘辉,滕文锋ICP—MS测定三种抗肿瘤中成药中铅镉汞砷含量[J].光谱学与光谱分析,2007,27(5):1036-1037
    [49]高健会,赵良娟,葛宝坤,刘呖,王伟.密闭高压消化ICP—MS测定茶叶等植物性样品中15种痕量稀土元素[J].中国卫生检验杂志,2006,16(5):551-553
    [50]林松.电感耦合等离子体质谱法测定茶叶样品中稀土含量[J].福建轻纺,2006,8:30-33
    [51]刘昌龄,贺行良ICP-MS及其联用技术在海洋地质研究中的应用前景.海洋地质动态,2006,22(8):30-34
    [52]陈隽璐,李好斌,王洪亮,何世平,曾佐勋,徐学义,李向民.秦祁结合部位王家岔石英闪长岩体锆石LA-ICP-MS定年及地质意义[J].吉林大学学报(地球科学版),2007,37(3):423-441
    [53]Y. Sawaki, M. Nishizawa, T. Suo, T. Komiya, et al. Internal structures and U-Pb ages of zircons from a tuff layer in the Meishucunian formation, Yunnan Province, South China[J]. Gondwana Research.2008,14:148-158.
    [54]M.R. Greentree, Z.X. Li. The oldest known rocks in south-western China:SHRIMP U-Pb magnetic crystallisation age and detrital provenance analysis of the Paleoproterozoic Dahongshan Group[J]. Journal of Asian Earth Sciences.2008, 33:289-302.
    [55]L.G. Zheng, G.J. Liu, C.L. Chou, C.Qi, et al. Geochemistry of rare earth elements in Permian coals from the Huaibei Coalfield, China[J]. Journal of Asian Earth Sciences. 2007,31:167-176.
    [56]郭志英,于水HPLC/ICP-MS在环境样品的痕量元素形态分析中的应用[J].质谱学报,2006,27(1):56-64
    [57]李德明.超灵敏小型回旋加速器质谱计原理性成功后的深入研究[博士学位论文],上海,中国科学院上海原子核研究所,2001
    [58]王云,魏复盛.土壤环境元素化学[M].中国环境科学出版社.1995
    [59]天津大学无机化学教研室,无机化学[M].高等教育出版社.2003
    [60]顾尚义,毛健全,张启厚.广西龙塘蚀变流纹岩风化过程中Ti、Nb、Ta、Zr、Hf、 Th的活动性研究.贵州工业大学学报(自然科学版),2002,31(10):14-18
    [61]李清,王建力,李红春,叶明阳,王勇,李廷勇,何潇.重庆地区石笋记录中Mg/Ca比值及古气候意义[J].中国岩溶,2008,27(2):145-150
    [62]M.S. Robert, P.L. Smart. A. Baker. Annual traceelement variations in a Holoeene speleothem[J]. Earth and Planetary Science Letters,1998,154:237-246.
    [63]J.J. Bahk, S.K. Chough, K.S. Jeong, S.J. Han. Sedimentary records of paleoenvironmental changes during the last deglaciation in the Ulleung Interplain Gap, East Sea Sea of Japan[J]. Global and Planetary Change,2001,28:241-253
    [64]张兴茂,翁焕新.南海东北部陆坡铁锰沉积记录对环境变化的指示意义[J].海洋学报,2005,27(1):93-100
    [65]陈骏,汪永进,季峻峰等.陕西洛川黄土剖面的Rb/Sr值及其气候地层学意义[J].第四纪地质,1999,7(4)350-356
    [66]周厚云,赵建新,朱照宇,俸月星,Michael LAWRENCE,迟宝泉,闫峻,周国庆.石笋中稀土元素含量的测定及气候环境意义[J].地球化学,2006,35(5):525-530

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700