用户名: 密码: 验证码:
CeO_2-Fe_2O_3/ACF催化剂低温选择性催化还原烟气中NOx的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,我国能源消耗量不断增加,NOx的排放量也持续增加,如不加强控制,NOx将对我国大气环境造成严重污染。国内外最常用也是最有效的烟气NOx脱除技术是NH_3-选择性催化还原(SCR)。本实验即选择SCR法以NH3为还原剂在催化剂的作用下将烟气中NOx还原成N2。目前工程中常用的SCR催化剂主要成分是V_2O_5-WO_3/TiO_2系列,商业SCR催化剂在较高温度(300~400℃)下才有好的催化活性,催化剂主要布置在空气预热器之前,能满足反应温度要求,然而该位置的高灰和二氧化硫容易使催化剂中毒。低温SCR装置可以置于除尘和脱硫之后,不仅可比较容易的用于现有锅炉,而且可以缓解粉尘和SO_2对催化剂的堵塞和毒化,避免烟气的预热耗能,降低脱硝成本。催化剂是SCR脱硝技术的核心,其催化性能直接关系到脱硝效果的好坏。因此,研究和开发能布置在除尘和脱硫之后(烟道气的温度大约为100℃~130℃)的低温SCR催化剂已迫在眉睫。活性碳纤维具有发达的孔结构,是一种良好的吸附剂,同时也是一种很好的催化剂,常常被用作催化剂的载体;Fe具有独特的化学性质,是较好的助催化剂组分;氧化铈(CeO_2)最重要的性质是作为氧的存储器,在氧化和还原条件下能通过Ce~(4+)和Ce~(3+)的转换来存储和释放氧;它也能够促进NO转化成NO2,来提高NH_3选择还原NO活性。三者均被广泛地应用于催化净化NOx的脱硝领域。但目前用ACF负载复合型金属氧化物CeO2-Fe2O3低温SCR催化剂的研究,尚不多见。
     本研究用活性炭纤维(ACF)作载体,负载CeO_2以及CeO_2-Fe_2O_3,采用等体积浸渍法,制备了不同负载量的CeO_2/ACF和不同负载量配比的CeO_2-Fe_2O_3/ACF两个系列的催化剂。用所制备的催化剂进行SCR实验,发现在单独负载CeO_2时,负载量为12%的催化剂在80℃~300℃温度范围内表现出了较好的催化活性;而混合负载时,由于加入了助催化剂,催化活性明显比相同负载量单独负载CeO_2时的要好,尤其是在较低温度范围内(80℃~200℃)活性更佳,10%CeO_2-2%Fe_2O_3/ACF催化剂表现出了最佳的催化活性和稳定性。进而对10% CeO_2-2%Fe_2O_3/ACF催化剂进行了煅烧温度影响实验,同时制备了200℃、300℃和400℃三种煅烧温度下的催化剂,得知300℃为最佳的煅烧温度;分别研究了O2、NH3对10%CeO_2-2%Fe_2O_3/ACF催化剂催化活性的影响,得出O_2和NH_3的存在对SCR反应的NOx净化效率有较大影响,那是因为NOx必须在有O_2的情况下才能被更好的还原成N_2;同时做了该催化剂的催化活性与时间关系的考察,结果显示10% CeO_2-2%Fe_2O_3/ACF催化剂具有较长的使用寿命,超过13小时,较以往研究的脱硝催化剂有很大程度的改进。另外,我们还通过比表面积(BET)测定、扫描电镜(SEM)和X射线衍射实验(XRD)等方法对催化剂的物理化学性能进行了分析:BET结果表明助催化剂Fe_2O_3的加入改变了催化剂的孔结构,也许孔径增大是CeO_2-Fe_2O_3/ACF催化剂活性变大的主要原因之一;SEM结果显示,负载在催化剂载体上的金属氧化物颗粒物分布均匀这说明氧化铈分散性较好,能够很好的负载在ACF上,使得催化剂性能更佳;XRD衍射实验发现CeO_2和Fe_2O_3在12%CeO_2/ACF和10%CeO_2-2%Fe_2O_3/ACF中多以非晶状态存在,没有检测出明显特征峰,从而推断出CeO_2和Fe_2O_3是无定形的。
With the economic development, China's energy consumption has been increasing and nitrogen oxides(NOx) emissions have continued to grow, if not further control, NOx will cause serious pollution of atmospheric environment of our country. The most commonly and effective technology of NOx removing in flue gas used at home and abroad is the NH3-Selective Catalytic Reduction(SCR). We just selected SCR to reduce NOx in the flue gas into N_2 with NH3 as a reductan and under the influence of the catalyst in this study. The main component of SCR catalyst in the current project is V_2O_5-WO_3/TiO_2 series, and commercial SCR catalyst have good catalytic activity only at high temperature (300℃~400℃),with catalyst mainly deployed before the air preheater where it can meet the temperature requirements, but the location of the high ash and sulfur dioxide may easily cause catalyst poisoned. By placing low-temperature SCR device after the dust removal and desulfurization, it can be not only relatively easy for the existing boilers, but also ease the congestion and the poison of dust and SO_2, as well as avoid the flue gas preheat energy consumption and reduce the cost of denitrification. Catalyst is the core of SCR technology, and its catalytic performance is directly related to the effects of denitrification. Therefore, it’s extremely urgent to research and develop a low-temperature SCR which can be arranged after the dust removal and desulfurization (temperature of flue gas is about 100℃~130℃). Active carbon fiber (ACF) is not only used as a good absorbent, but also a good catalyst because ACF has developed pore structure, so often it is also used as a catalyst carrier; Fe has a unique chemical properties, as well as a good catalyst components; the most important nature of oxidation cerium (CeO_2) is as a storage of oxygen, through the conversion of Ce~(4+) and Ce~(3+) to store and release oxygen in the conditions of oxidation and reduction; and with it NO converted to NO_2 can be promoted to improve the NH_3-selective reduction activity of NO. The above-mentioned three are widely used in catalytic areas of the NOx purification. But low-temperature SCR catalysts such as ACF load with CeO_2-Fe_2O_3 are still rare.
     In this study, the activated carbon fiber (ACF) was the support, and CeO_2 and CeO_2-Fe_2O_3 was loaded on it, with equal volume impregnation method,two series catalysts were prepared : different loading of CeO_2/ACF and different load ratio of CeO_2-Fe_2O_3/ACF. It was found that as the temperature increased from 80℃to 300℃, the 12%CeO_2/ACF catalyst showed good catalytic activity for SCR when single load; While mixed load, due to adding cocatalyst, the catalytic activity is significantly higher than single load with the same loading of CeO_2, especially in the lower temperature range(80℃~200℃), the activity is much better, 10%CeO_2-2% Fe_2O_3/ACF catalyst showed the best catalytic activity and stability. Therefore experiments of calcination temperature effction was took for the catalyst of 10%CeO_2-2% Fe_2O_3/ACF, meantime another three kinds of catalyst were prepared, at different calcination temperature which were 200℃, 300℃and 400℃, and it was found that 300℃was the best calcination temperature. The effect of the O_2 and NH_3 for the catalytic activity of 10%CeO_2-2% Fe_2O_3/ACF catalyst were respectively studied,from which we can learn the presence of O_2 and NH_3 do much influence to the NOx purification efficiency in SCR reaction,that is because only in the presence of O2 can NOx be better reduced to N_2. In the meantime,the catalytic activity and time relationship were also studied, and the result presented 10% CeO_2-2%Fe_2O_3/ACF had longer lifetime,and when surpassed thirteen hours it also showed much more improvement contract to previous research. In addition, a combination of various physicochemical techniques containing surface area (BET) measurement, X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to characterize the physico-chemical properties of the catalysts. The reason of CeO_2-Fe_2O_3/ACF catalyst activity becomes larger might be that pore diameter got larger with the injection of cocatalyst Fe_2O_3, which changes the pore structure in the BET study.Cerium oxide’s good dispersivity make it better loaded on ACF, so SEM showed the metal oxide particles distributed evenly on the carrier had best catalytic performance.And from CeO_2-Fe_2O_3/ACF XRD-diffraction we conclude that both CeO_2 and Fe_2O_3 are amorphous for 12%CeO_2/ACF and 10%CeO_2-2%Fe_2O_3/ACF were amorphous state, no obviously characteristic peaks were seen.
引文
[1]刘孜.关于我国NOx污染指标及控制措施等有关问题的探讨.北京城市大气污染防治学术研讨论文选集, 2000, 20-89
    [2]何燧源,金云云.环境化学.上海:华东化工学院出版社, 1989, 90-102
    [3]申半文.无机化学简明教程.北京:人民教育出版社, 1960, 72-95
    [4]大连理工大学无机化学教研组.无机化学第三版(上册).北京:高等教育出版社, 1978, 71-84
    [5]童志权,陈焕钦.工业废气污染控制与利用.北京:化学工业出版社, 1989, 11
    [6]陈秉衡,洪传洁,朱惠刚.上海城区大气NOx污染对健康影响的定量评价.上海环境科学. 2002, 21(3): 129-131
    [7]喻泽斌,张学洪,桂林市大气环境质量分析和污染防治对策.桂林工学院学报, 1998, 18(4): 310-312
    [8]方爱红,张国莹.上海市黄浦区近五年的大气环境质量变化分析.上海大学学报, 2002, 8(5): 459-462
    [9]陈翠枝,陈伟国.城市主要大气污染物与呼吸系统疾病相关性浅析.上海环境科学, 1994, 13(9): 27-30
    [10] Wallace L, Taj H, Lam S, et a1.Personal exposures, indoor-outdoor re1ationships and breath levels of toxic air pollutants measured for 355 persons in New Jersey. Atoms Environ, 1985, 19(11): 652-661
    [11]任剑峰,王增长,牛志卿.大气中氮氧化物的污染与防治.科教情报开发与经济, 2003, 13(5): 92-93
    [12]赵惠富,污染气体NOx的形成控制.北京:科学出版社, 1993, 35-43
    [13] Fenimore C P. Formation of Nitric Oxide in Premixed Hydrocarbon Flames.13th Symposium(international) on Combustion, 1971, 13(1): 373-380
    [14] Mille J A, Bowman C T. Mechanism and Modeling of Nitrogen chemistry in Combustion.Pro.Energy Combust.Sci, 1989, 15(2-3): 287-338
    [15]许岭,武增华,煤燃烧过程中产生机制及影响因素.环境保护, 1998, 12(5): 33-35
    [16]王军.负载型金属氧化物催化氧化烟道气中NO的机理研究: [华东理工大学硕士学位论文].上海:华东理工大学机械与动力工程学院, 1999, 20-31
    [17]王兰新.烟气脱硫脱硝的进展.化学研究与应用, 1997, 9(4): 413-419
    [18] Petunchi J O, Gustave S, Hall W K. Studies of the selective reduction of nitric oxide by hydrocarbons. Applied Catalysis B: Environmental, 1993, 2(4): 303-321
    [19] Gopalakrishnan K H. Selective catalytic reduction of nitric oxide by propane in oxidizing atmosphere over copper-exchanged zeolites. Applied Catalysis B: Environmental, 1993, 2(2-3), 165-182
    [20] Miyadera T. Alumina-supported silver catalysts for the selective reduction of nitric oxide by propane and oxygen-containing organic compounds. Applied Catalysis B: Environmental, 1993, 2(2-3):199-205
    [21] Hamada H, Kintaichi Y, Sasaki M, et al. Transition metal-promoted silica and alumna catalysts for the selective reduction of nitrogen monoxide with propane. Appl Catal, 1991, 75(3): 1-8
    [22] Hamada H, Kintaichi Y, Yoshinari T, et al. Performance of solid acid type catalysts for the selective reduction of nitrogen oxides by hydrocarbons and alcohol. Catalysis Today, 1993, 17(1-2): 111-119
    [23] Nontreuil C N, Shelef M. Selective reduction of nitro oxide over Cu-ZSM-5 zeolite by water-soluble oxygen-containing organic compounds. Applied Catalysis B: Environmental, 1992, 1(2-3): 1-8
    [24]台炳华,工业烟气净化.北京:冶金工业出版社, 1989: 99-100
    [25] Bernhardt L T, et al. Analysis of the Thermochemistry of NO Decomposition over Cu-ZSM-5 zeolite by water-soluble oxygen-containing organic compounds. Applied Catalysis B: Environmental, 1992, 1: 1-8
    [26]彭定一,林少宁.大气污染及其控制.北京:中国环境科学出版社, 1991, 262-263
    [27]李敏,仲兆平.氨选择性催化还原(SCR)脱除氮氧化物的研究.能源研究与利用, 2004, 2(4): 24-26
    [28] Donovan A, Balu S, et al. TiO2-supported metal oxide catalystsfor low-temperature selective catalytic reduction of NO with NH3. Journal of Catalysis, 2004, 221(2): 421-431
    [29]朱洪法.催化剂载体制备及应用技术.北京:石油工业出版社, 2002, 90-116
    [30]杨淑梅,邓淑.二氧化锆作载体的催化剂的应用.化工时刊, 2003, 17(10):1-3
    [31] Sun D K, Liu Q Y, et al. Adsorption and oxidation of NH3 over V2O5/AC surface. Applied Catalysis B: Environmental, 2009, 92(3-4): 462-467
    [32] Zhu Z P, Liu Z Y, Liu S J, et al. NO reduction with NH3 over an activated carbon—supported copper oxide catalysts at low temperatures. AppliedCatalysis B: Environmental, 2000, 26(1): 46-51
    [33] Jurczyk K, Kania W. Base properties of modifiedγ-alumina. Applied. Catalysis, 1989, 56(1): 253-261
    [34]刘清雅,刘振宇. V2O5/炭基材料用于烟气脱硫脱硝的研究进展.化工学报, 2008, 59(8): 1895-1902
    [35]韦正乐,黄碧纯,等.烟气NOx低温选择性催化还原催化剂研究进展.化工进展, 2007, 26(3): 320-323
    [36] Lazaro M J. Characterization of NiAl and NiCuAl catalysts prepared by different methods for hydrogen production by thermo catalytic decomposition of methane. Catalysis Today, 2006, 116(3): 271-280
    [37] Zhu Z P, Liu Z Y, Liu S J. NO reduction with NH3 over activatedcarbon supported copper oxide catalysts at low temperature. Applied Catalysis B Environmental, 2000, 26(1): 25-35
    [38]马建蓉,刘振宇等.同时脱除烟气中硫和硝的V2O5/AC催化剂研究.燃料化学学报, 2005, 33(1): 6-11
    [39] Tang X L, Hao J M, et al. Low-temperature SCR of NO with NH3 over AC/C supported manganese-basedmonolithiccatalysts.Catalysis Today, 2007, 126(3-4): 406-411
    [40]唐晓龙,郝吉明,等.活性炭改性整体催化剂上低温选择性还原NOx.中国环境科学, 2007, 27(6): 845-850
    [41]张守臣.硝酸浸渍对活性炭纤维还原NO性能的影响.化工学报, 2001, 52(8): 690-695
    [42] Yoshikawa M, Yasutake A, Mochida I. Low-temperature selective catalytic reduction of NOx by metal oxides supported on active carbon fibers.Applied Catalysis A: General, 1998, 173(2): 239-245
    [43]沈伯雄,史展亮.基于Mn-CeOx/ACFN的低温SCR脱硝.化工进展, 2008, 27(1):87-91
    [44]张鹏宇,杨巧云,许绿丝,等.活性炭纤维低温吸附氧化NO的试验研究.电力环境保护, 2004, 20(2): 25-28
    [45] Marban G, Antu?a R, Fuertes A B. Low–temperature SCR of NOx with NH3 over activated carbon fiber composite-supported metaloxides. Applied Catalysis B:Environmental, 2003, 41(1): 323-338
    [46] Marban G, Antonio B. Fuertes A, et al. Low-temperature SCR of NOx with NH3 over NomexTM rejects-based activated carbon fibre composite-supported manganese oxides:Part II. Effect of procedures for impregnation and activephase formation. Applied Catalysis B: Environmental, 2001, 34(1): 55-71
    [47] Huang B C, Huang R, et al. Low temperature SCR of NO with NH3 over carbon nanotubes supported vanadium oxides. Catalysis Today, 2007, 126(3-4): 279-283
    [48]万颖,王正,马建新.含金属分子筛上NOx选择性催化还原研究进展I:含非贵金属分子筛体系.分子催化, 2002, 16(2): 15
    [49]万颖,王正,马建新.含金属分子筛上NOx选择性催化还原研究进展Ⅱ:含贵金属分子筛体系和HC-SCR反应机理.分子催化, 2002, 16(3): 234
    [50]王茂章,贺福.碳纤维的制造性能及其应用.北京:科学出版社, 1984, 99-105
    [51]杨国华.碳素材料.北京.中国物质出版社, 1999
    [52] Kakei K, Kaneko K, et aL. Characterization of Porous Solid II. Slzervier Science Publishers B.V.Amesenlam, l99l, 54: 429
    [53] Kaneko K. Anomalous Micropore Filling of No On Fe_2O_3-Dispersed Activated Carbon Fibers.Studies in Surface. Science and Catalysis, 1988, 39: 183-192
    [54]钱慧娟.多用途的活性炭纤维的性质及其制造方法.林产化工通讯, 2001, 3(5): 43
    [55]沈伯雄,郭宾彬,史展亮等. CeO_2/ACF的低温SCR烟气脱硝性能研究.燃料化学学报, 2007, 35(1): 125-128
    [56]朱洪发.催化剂载体制备及应用技术.北京:石油工业出版社, 2002, 1-3
    [57]许越,夏海涛,刘振琦.催化剂设计与制备工艺.北京:化学工业出版社, 2003, 197-279
    [58]吴碧君,刘晓勤等. TiO2负载的二元金属氧化物催化剂低温NH3选择性还原NOx的研究.中国电机工程学报, 2008, 28(23): 7579
    [59]寻洲,童华,等. Mn-Ce-Fe/TiO2低温催化还原NO的性能.环境科学学报, 2008, 28(9): 4371
    [60] Kasepar J, Fornasiero P, Graziani M. Use of CeO_2-based oxides in the three-way catalysis. Catal Today, 1999, 50(2): 285-298
    [61] Trovarelli A. Catalytic properties of ceria and CeO_2 containing materials.Catal, 1996, 34(4): 439-520
    [62]贺福,王茂章.碳纤维及其复合材料.北京:科学出版社, l995, 143-149
    [63]周润兰,喻胜华.应用概率统计.北京:科学出版社, 1999, 211-235
    [64]唐有祺.结晶化学.北京:高等教育出版社, 1957, 203-207
    [65]符若文,杜秀英,黄爱萍.负载Pd/Cu活性炭纤维的孔结构研究.中山大学学报(自然科学版), 2002, 41(1): 46-50
    [66] Hwang B J, Santhanam R, Hu S G. Synthesis and characterization of multidopedlithium manganese oxide spinel, Li1.02Co0.1Ni0.1Mn1.804, for rechargeable lithium batteries. Journal of Power Sources, 2002, 108(2): 250-255
    [67] Willey R J, Eldridge J W, Kittrell J R. Mechanistic model of the selective catalytic reduction of nitric oxide with ammonia. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(2): 226-233
    [68] Cousin R, Dourdin M, Abi-Aad E, et al. Formation of CeVO4 phase during the preparation of CuVCe oxide catalysis. Journal of the Chemical Society, Faraday Transaction, 1997, 93(21): 3863-3867
    [69] Matta J, Courcot D, Abi-Aad E, et al. Identification of vanadium oxide species and trapped single electrons in interaction with the CeVO4 phase in vanadium-cerium oxide systems. 51V MAS, NMR, EPR, Raman and thermal analysis studies. Chemistry of Materials, 2002, 14(10): 4118-4125
    [70]唐有祺.结晶化学.北京:高等教育出版社, 1957, 203-207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700