用户名: 密码: 验证码:
风电场电网电压故障检测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,风电机组并网运行的要求越来越严格。其中很重要的一项就是要求风电机组具有低电压穿越能力。而实现低电压穿越的前提条件为获取准确的电网电压正负序基波分量的幅值、相角和频率信息。因此快速、准确的检测出以上信息具有重要的意义。
     当电网发生不平衡故障时,电压中会出现负序基波分量。而负序分量会造成风电机组的震荡和过流,所以要求风电机组快速检测出正负序分量,以此来调整控制策略。针对现有检测方法检测速度慢和抗谐波能力差的问题,提出了一种基于复最小二乘的新型检测方法,此方法在经典最小二乘算法的基础上利用协方差复位技术,可以准确的检测出电网电压的正负序分量的幅值和相角。从仿真结果可以看出,即使在含有高次谐波的情况下,依然可以在半个电网周期内准确的检测出电网电压幅值和相角信息。
     电网电压频率是重要的电网信息,大多数控制策略都需要用到它。但目前的检测方法不能很好的抑制电网不平衡和谐波等典型故障,所以本文介绍了一种可适用于以上典型故障的新型锁相环结构:基于自适应线性最优滤波的改进锁相环。仿真结果表明与其他电网同步方法相比,此算法在通用性及鲁棒性上都有了很大提高。
     以上两种方法只是对电网的部分故障信息进行检测,并没有把非正弦、非对称、相角突变、幅值突变、频率偏移、随机噪声全部考虑进去。针对此问题,这里提出一种基于扩展复卡尔曼滤波(ECKF)的快速检测方法。该方法可以在含有高次谐波和随机噪声的情况下,准确快速地检测出电网电压的正负序分量的幅值和相角,以及频率偏移。
     在TMS320F2812芯片上用C语言实现了以上三种方法,然后利用可编程交流电源模拟出实验所需要的各种电网故障情况。以此来测试所提出方法在检测各种故障时的通用性。实验结果验证了方法的正确性和有效性。
Currently, the requirements of the wind generators operating on the grid are becoming increasingly strict. One of the important requirements is that the wind generators must have the ability of low voltage ride through. The prerequisite of realizing low voltage ride through is that grid voltage positive and negative sequence’s amplitude, phase, and frequency offset must be detected accurately, therefore rapid and accurate detection of the above information has important significance.
     When the voltage imbalance happens, the negative sequence voltage appears. It can cause wind turbine oscillation and overcurrent, so the grid voltage positive and negative sequence must be detected rapidly in order to adjust the control strategy. The existing detection methods have slow detection speed and poor anti-harmonics. Aimed at this problem, a new method based on complex least squares is presented. This method which can detect the grid voltage positive and negative sequence’s amplitude and phase accurately adds covariance resetting technology to the classical least squares. The simulation results show that the grid voltage’s amplitude and phase information can be detected in half a grid period even when the grid voltage contains high order harmonics.
     Grid voltage frequency is very important because most of control strategies need to use it. However, the current detection methods can not meet voltage imbalance and harmonics which are the typical grid faults, so the paper introduces a new phase locked loop structure based on adaptive linear optimal filter that can meet the typical grid faults. Simulation results show that compared with other synchronization methods, the new one is more generic and robust.
     The above two methods can only detect a part of grid fault information, and they can’t take into account of all the typical faults, including non-sinusoidal, asymmetric, phase jump, amplitude jump, frequency offset and random noise. To solve this problem, a new rapid detection method based on extended complex kalman filter is proposed. This method can detect grid voltage positive and negative sequence’s amplitude, phase, and frequency offset accurately and rapidly when the voltage contains high order harmonics and random noise.
     The C language is used to program the three methods on TMS320F2812, and various grid faults which the experiments need are generated by programmable AC source. Through these experiments, the generality of the above three methods is tested. The experimental results verify the correctness and validity of the methods.
引文
1林成武,王凤翔,姚兴佳.变速恒频双馈风力发电机励磁控制技术研究.中国电机工程学报. 2003, 23(11): 122~125
    2胡书举,李建林,梁亮等.风力发电用电压跌落发生器研究综述.电力自动化设备. 2008, 28(2): 101~103
    3张学广,徐殿国.电网对称故障下基于active crowbar双馈发电机控制.电机与控制学报. 2009, 13(1): 99~103
    4关宏亮,赵海翔,迟永宁等.电力系统对并网风电机组承受低电压能力的要求.电网技术. 2007, 31(7): 78~82
    5 Lie Xu, Yi Wang. Dynamic Modeling and Control of DFIG-Based Wind Turbines Under Unbalanced Network Conditions. IEEE Transactions on Power Systems. 2007, 22(1): 314~323
    6 E.on Netz, Grid Code, High and extra high voltage. April, 2006. www.eon-netz.com
    7袁小明.长线路弱电网情况下大型风电场的联网技术(英文).电工技术学报. 2007, 22(7): 29~36
    8肖湘宁,韩民晓,徐永海等.电能质量分析与控制.中国电力出版社. 2004: 124~126
    9 J.Svensson. Synchronisation Methods for Grid-Connected Voltage Source Converters. IEE Proceedings - Generation, Transmission and Distribution. 2001, 148(3): 229~235
    10肖湘宁,徐永海,刘昊.电压凹陷特征量检测算法研究.电力自动化设备. 2002, 22(1): 19~22
    11赵国亮,刘宝志,肖湘宁等.一种无时延的改进d-q变换在动态电压扰动识别中的应用.电网技术. 2004, 28(7): 53~57
    12张庆超,肖玉龙.一种改进的电压暂降检测方法.电工技术学报. 2006, 21(2): 123~126
    13胡书举,李建林,李梅.风电系统实现LVRT的电网电压跌落检测方法.大功率变流技术. 2008, (6): 17~21
    14陈海荣,徐政,钱向明.空间矢量法自适应检测基波正负序及谐波分量.高电压技术. 2006, 32(10): 85~90
    15 Changjiang Zhan, C. Fitzer, V. K. Ramachandaramurthy, etc. Software Phase-Locked Loop Applied to Dynamic Voltage Restorer (DVR). IEEE Power Engineering Society Winter Meeting. 2001, 3: 1033~1038
    16 Se-Kyo Chung. A Phase Tracking System for Three Phase Utility Interface Inverters. IEEE Transactions on Power Electronics. 2000, 15(3): 431~438
    17 R. M. Santos Filho, P. F. Seixas, P. C. Cortizo, etc. Comparison of Three Single-Phase PLL Algorithms for UPS Applications. IEEE Transactions on Industrial Electronics. 2008, 55(8): 2923~2932
    18 P. Rodriguez, J. Pou, J. Bergas, etc. Decoupled Double Synchronous Reference Frame PLL for Power Converters Control. IEEE Transactions on Power Electronics. 2007, 22(2): 584~592
    19 P. Rodriguez, A. Luna, R. Teodorescu, etc. Grid Synchronization of Wind Turbine Converters under Transient Grid Faults using a Double Synchronous Reference Frame PLL. Proceedings of IEEE Energy 2030 Conference, Atlanta, 2008: 1~8
    20 M. K. Ghartemani, M. Reza Iravani. A Signal Processing Module for Power System Applications. IEEE Transactions on Power Delivery. 2003, 18(4): 1118~1126
    21 M. K. Ghartemani, M. Reza Iravani. A Method for Synchronization of Power Electronic Converters in Polluted and Variable-Frequency Environments. IEEE Transactions on Power Systems. 2004, 19(3): 1263~1270
    22 M. K. Ghartemani, H. Karimi, M. Reza Iravani. A Magnitude/Phase-Locked Loop System Based on Estimation of Frequency and in-Phase/Quadrature-Phase Amplitudes. IEEE Transactions on Industrial Electronics. 2004, 51(2): 511~517
    23 R. Chudamani, K. Vasudevan, C. S. Ramalingam. Real-Time Estimation of Power System Frequency Using Nonlinear Least Squares. IEEE Transactions on Power Delivery. 2009, 24(3): 1021~1028
    24王茂海,孙元章.基于DFT的电力系统相量及功率测量新方法.电力系统自动化. 2005, 29(2): 20~24
    25 IEEE Standard for Synchrophasors for Power Systems. IEEE Power Engineering Society. 2006: 1~57
    26马仁政,陈明凯.减少频谱泄漏的一种自适应采样算法.电力系统自动化. 2002, 26(7): 55~58
    27向东阳,王公宝,马伟明等.基于FFT和神经网络的非整数次谐波检测方法.中国电机工程学报. 2005, 25(9): 35~39
    28 Liu Hua, Zhao Baoqun, Zhang Hong. Recognition and Classification of Power Quality Event in Power System Using Wavelet Transformation. Proceedings of the 27th Chinese Control Conference, Kunming, 2008: 43~46
    29 S. Santoso, J. P. Edward, W. M. Grady, etc. Power Quality Disturbance Waveform Recognition Using Wavelet-Based Neural Classifier-Part2: Application. IEEE Transactions on Power Delivery. 2000, 15(1): 229~235
    30 Jidong Wang, Chengshan Wang. Detection of Power Quality Disturbance Based on Binary Wavelet Transform. Proceedings of TENCON 2007-2007 IEEE Region 10 Conference, Taipei, 2007: 1~3
    31吴红春.基于小波及DQ算法的电压暂降检测方法研究.重庆大学硕士论文. 2008: 17~19
    32 R. G. Stockwell, L. Mansinha, R. P. Lowe. Localization of the Complex Spectrum: the S Transform. IEEE Transactions on Signal Processing. 1996, 44(4): 998~1001
    33 I. W. C. Lee, P. K. Dash. S-Transform-Based Intelligent System for Classification of Power Quality Disturbance Signals. IEEE Transactions on Industrial Electronics. 2003, 50(4): 800~805
    34 M. V. Chilukuri, P. K. Dash. Multiresolution S-Transform-Based Fuzzy Recognition System for Power Quality Events. IEEE Transactions on Power Delivery. 2004, 19(1): 323~330
    35 H. Boche, V. Pohl. On the Calculation of the Hilbert Transform from Interpolated Data. IEEE Transactions on Information Theory. 2008, 54(5): 2358~2366
    36刘毅华,赵光宙.希尔伯特-黄变换在电力系统故障检测中的应用研究.继电器. 2006, 34(14): 4~6
    37 S. Z. Chen, N. C. Cheung, K. C. Wong, J. Wu. Integral Sliding-Mode Direct Torque Control of Doubly-Fed Induction Generators Under Unbalanced Grid Voltage. IEEE Transactions on Energy Conversion. 2010, 25(2): 356~368
    38 A. Yazdani, R. Iravani. A Unified Dynamic Model and Control for the Voltage-Sourced Converter Under Unbalanced Grid Conditions. IEEE Transactions on Power Delivery. 2006, 21(3): 1620~1629
    39 Jiabing Hu, Yikang He. Modeling and Control of Grid-Connected Voltage-Sourced Converters Under Generalized Unbalanced Operation Conditions. IEEE Transactions on Energy Conversion. 2008, 23(3): 903~913
    40吴旭光.系统建模和参数估计—理论与算法.机械工业出版社. 2002: 41~42
    41崔博文,陈剑,陈心昭等.复参数最小二乘估计方法.安徽大学学报. 2005, 29(3): 5~10
    42 J. R. de Carvalho, C. A. Duque, M. V. Ribeiro, etc. A PLL-Based Multirate Structure for Time-Varying Power Systems Harmonic/Interharmonic Estimation. IEEE Transactions on Power Delivery. 2009, 24(4): 1789~1800
    43 Y. Han, L. Xu, M. M. Khan, etc. A Novel Synchronization Scheme for Grid-Connected Converters by Using Adaptive Linear Optimal Filter Based PLL (ALOF-PLL). Simulation Modelling Practice and Theory. 2009, 17(7): 1299~1345
    44王福昌,鲁昆生.锁相技术.华中理工大学出版社. 1997: 3~6
    45何娜,黄丽娜,武健等.一种新型快速自适应谐波检测算法.中国电机工程学报. 2008, 28(22): 124~129
    46 Simon Haykin.自适应滤波器原理.郑宝玉等译.第四版.电子工业出版社. 2006: 251~254
    47 Wee-Peng Ang, B. Farhang-Boroujeny. A New Class of Gradient Adaptive Step-Size LMS Algorithms. IEEE Transactions on Signal Processing. 2001, 49(4): 805~810
    48 Jeng-Kuang Hwang, Yuan-Ping Li. Variable Step-Size LMS Algorithm With a Gradient-Based Weighted Average. IEEE Signal Processing Letters. 2009, 16(12): 1043~1046
    49 R. H. Kwong, E. W. Johnston. A Variable Step Size LMS Algorithm. IEEE Transactions on Signal Processing. 1992, 40(7): 1633~1642
    50王志贤.最优状态估计与系统辨识.西北工业大学出版社. 2004: 132~138
    51刘玮.可控电压质量扰动发生装置的研究.哈尔滨工业大学硕士论文. 2009: 40~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700