用户名: 密码: 验证码:
核主泵用深槽端面机械密封性能理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械密封作为核主泵的关键部件,其性能和可靠性直接影响主泵的稳定和安全运行。深槽端面流体动压型机械密封是核主泵轴封常采用的主要密封类型之一。论文研究了高参数状态下机械密封的密封性能、磨损性能及其作用机理,该项研究对我国自主开发高性能的机械密封具有重要的理论意义和工程应用价值。
     首先,基于流体润滑理论,建立了圆弧深槽流体动压型机械密封的数学分析模型,采用有限元方法,分析了端面形貌几何参数对密封性能的影响规律,结果表明在不考虑变形时深槽机械密封动压效应较小,主要为静压效应;在泵启动过程且转速较小时,较浅槽机械密封的端面更容易打开。
     其次,建立了高参数下密封环压力变形的三维计算模型,引入弹压比参数作为变形影响分析的判断依据,对压力分布与表面变形耦合影响作了研究,结果表明,密封环的变形对密封性能影响明显,主要表现为增加了密封的刚度和刚漏比,有利于密封的稳定运行。
     最后,针对容易产生磨损的二级密封,结合U型槽端面密封的应用实例,建立了磨损端面机械密封性能分析模型,采用有限元计算了端面磨损形式对密封性能的影响规律,结果表明可以通过密封监测数据判断其磨损状态,进行预防性维护,从而避免紧急停堆带来的重大损失。
As one of the key parts of a reactor coolant pump(RCP), mechanical seal can strongly influence the pump’s stability and security. A hydrodynamic face seal with deep grooves was usually used in a RCP. The sealing performance, wear behavior and principle of such a seal used at high pressure was studied in this thesis. The results are valuable to our country to develop independently such high-performance seals.
     First of all, the Reynolds equations was employed. Then a mathematical model was developed to analysis the performance of circular arc groove hydrodynamic mechanical seal, which based on lubrication theory. Then the finite element method(FEM) was used to solve the governing equations for circular arc deep groove hydrodynamic seal. It is suggested that the dynamic effect of deep groove mechanical seal is unobvious when the face’s deformations is neglected. The static effect, which is more obvious than shallow groove mechanical seal, will help to open the mechanical face when starting the pump and then the velocity is small.
     Secondly, three dimensional numerical model of mechanical seal was built to analysis the deformations of the seal rings, both stator and rotor. A parameter named the ratio of elastic modulus and pressure of outside surrounding was introduced as the criterion to analysis the effect of deformation. The coupling effect of pressure distribution and face deformations was studied. It is suggest that it is obviously different when take the deformation into account. The deformation, which can be divided into radial taper deformation and circumferential wave deformation, can increase the stiffness and the ratio of stiffness and leakage which is benefit for stability.
     Lastly, an abrasion model was developed to study the seal’s performance when it is wore. The leakage trend was calculated after wore. It is suggested that one can judge the seal condition by indicating the leakage rate, thus it can be managed previously to prevent urgent shutdown, which may involve great losses.
引文
[1]麻省理工学院跨学科研究.核电的未来[R].核能经济学和政策分析, 2004.
    [2]欧阳予.世界核电国家的发展战略历程与我国核电发展[J].中国核电. 2008, 1(3): 194-201.
    [3]秦武,李志鹏,沈宗沼,等.核反应堆冷却剂循环泵的现状及发展[J].水泵技术. 2007, (3): 1-6.
    [4]苏先顺,王勇.秦山核电二期工程主泵轴密封及保障其完整性而采取的措施[J].核动力工程. 2003, 24(2): 180-184.
    [5] Singh A K. Pumped Up Improving Availability at Tarapur [J]. Nuclear Engeering International. 1995, 40(4): 32-34.
    [6] Nisa. Examination Result of Report from Japan Atomic Power Company on Cause and Countermeasures of Manual Shutdown of Tsuruga Power Station Unit-1[R]. Japan Atomic Power Company, 2003.
    [7]陈捷.巴基斯坦恰希玛核电站主泵轴密封[J].水泵技术. 2003, (1): 40-44.
    [8]国家发展改革委员会,科学技术部,商务部,等.当前优先发展的高技术产业化重点领域指南(2004/2007年度)[Z]. http://www.sdpc.gov.cn, 2007.
    [9]科技部.核主泵制造的关键科学问题[Z]. http://www.973.gov.cn/, 2008.
    [10]顾永泉.机械密封实用技术[M].北京:机械工业出版社, 2001.
    [11]中国化工装备总公司.机械密封技术标准汇编[M].化工部化工专用标准技术委员会, 1996.
    [12]袁世先,薛晓虎,杨惠霞.机械端面密封的动压效应[J].工程机械. 2003, (9): 39-42.
    [13] Cheng H S, Chow C Y, Wilcock D F. Behavior of Hydrostatic and Hydrodynamic Noncontacting Face Seals[J]. Journal of Lubrication Technology. 1967, 89(2): 510-519.
    [14] Etsion I, Burstein L. A Model for Mechanical Seals with Regular Microsurface[J]. Tribology Transactions. 1996, 39(3): 677-683.
    [15] Etsion I, Kligerman Y, Halperin G. Analytical and Experimental Investigation of Laser-Textured Mechanical Seal Face[J]. Tribology Transactions. 1999, 42(3): 511-516.
    [16]彭旭东,杜东波,李纪云,等.不同型面微孔对激光加工多孔端面机械密封性能的影响[J].摩擦学学报. 2006, 26(4): 367-371.
    [17]彭旭东,杜东波,盛颂恩,等.端面微形体对液体润滑机械密封性能的影响[J].摩擦学学报. 2007, 27(4): 352-356.
    [18]潘晓梅,彭旭东,骆建国,等.激光加工多孔端面机械密封中空化边界条件的比较[J].润滑与密封. 2007, 32(2): 47-50.
    [19]蔡永宁.激光加工多孔端面机械密封变形的数值分析[D].中国石油大学(华东), 2007.
    [20]彭旭东,王玉明,黄兴,等.密封技术的现状与发展趋势[C].长沙: 2009.
    [21]赵惠清,蔡嵘,国巨发.深槽浅槽机械密封的对比分析[J].北京化工大学学报. 1999, 26(2): 37-40.
    [22] Gabriel R P. Fundamentals of Spiral Groove Noncontacting Face Sesls[J]. Lubrication Engineering. 1979, 35(7): 367-375.
    [23]宋鹏云.螺旋槽流体动压型机械密封端面间液膜特性研究[D].四川:四川大学, 1999.
    [24]周剑锋.机械密封中的热流体动力效应研究[D].南京工业大学, 2006.
    [25] Kowalski C A, Basu P. Reverse Rotation Capability of Spiral-groove Gas Face Seals[J]. Tribology Transactions. 1995, 38(3): 549-556.
    [26]彭建,鄢新华,左孝桐,等.上游泵送密封研究[J].流体机械. 1998, 26(2): 3-8.
    [27]郝木明,胡丹梅,杨惠霞.上游泵送机械密封的研究开发及应用[J].流体机械. 2001, 29(2): 13-16.
    [28] Mayer E.机械密封[M].姚兆生,许仲梅,王俊德.北京:化学工业出版社, 1981.
    [29]顾伯勤,蒋小文,孙见君,等.机械密封技术最新进展[J].化工进展. 2003, 22(11): 42-46.
    [30] Key W E, Salant R F, Payvar P, et al. Analysis of a Mechanical Seal with Deep Hydropads[J]. Tribology Transactions. 1989, 32(4): 481-489.
    [31] Person V, Tournerie B, Frene J. A Numerical Study of the Stable Dynamic Behavior of Radial Face Seals With Grooved Faces[J]. Journal of Tribology. 1997, 119(2): 507-513.
    [32]关雅贤,李松虎.流体动压效应在机械密封里应用——介绍弧形槽流体动压型机械密封[J].北京化工学院学报. 1986, 13(4): 1-8.
    [33]朱良,朱毅征,李松虎.动压环槽端面密封的泄流量影响因素[J].流体机械. 1994, 23(1): 19-24.
    [34]彭旭东,谢友柏,陈逊.热流体动力楔机械密封性能参数的近似计算[J].流体机械. 1997, 25(6): 24-28.
    [35]杨惠霞,顾永泉.圆弧深槽热流体动压机械密封理论研究[J].流体机械. 1997, 25(9): 12-18.
    [36]杨惠霞,顾永泉.高参数深槽热流体动压机械密封特性计算[J].流体机械. 1998, 26(8): 22-27.
    [37] Xudong P, Yusui M, Weiming Z, et al. An Approximate Method for Determining Performance of a Mechanical Face Seal with Circular Deep Grooves[Z]. http://www.paper.edu.cn.
    [38]沈纯厚.轻烃高速泵用机械密封的改进[J].水泵技术. 1997, (2): 44-47.
    [39]齐文浩,于武.解决液态轻烃泵轴封泄漏的有效措施[J].机械. 1998, 25(2): 42-44.
    [40]邢景棠,周盛,催尔杰.流固耦合力学概述[J].力学进展. 1997, 27(1): 19-38.
    [41]曾强.压气机转子叶片流固耦合计算及软件集成技术研究[D].南京:南京航空航天大学, 2006.
    [42]李娜.基于CBS有限元的流热固耦合计算方法研究[D].南京航空航天大学, 2006.
    [43] Baheti S K, Kirk R G. Analysis of high pressure liquid seal ring distortion and stability using finite element methods[J]. Journal of Tribology. 1999, 121(4): 921-926.
    [44] Philip J, Guichelaar M W, Chao W O. Experimental Verifications of Thermalelastic Mechanical Seal Face Deflection by Local Wear Measurements[J]. Lubrication Engineering. 2000, 56(1): 26-32.
    [45] Tournerie B, Danos J C, Frene J. Three-Dimensional Modeling of THD Lubrication in Face Seals[J]. Journal of Tribology. 2001, 123(1): 196-204.
    [46] Thomas S, Brunetiere N, Tournerie B. Thermoelastohydrodynamic Behavior of Mechanical Gas Face Seals Operating at High Pressure[J]. Journal of Tribology. 2007, 129(3): 841-850.
    [47] Brunetiere N, Tournerie B, Frene J. TEHD Lubrication of Mechanical Face Seals in Stable Tracking Mode:Part 1—Numerical Model and Experiments[J]. Journal of Tribology. 2003, 125(3): 608-616.
    [48] Brunetiere N, Tournerie B, Frene J. TEHD Lubrication of Mechanical Face Seals in Stable Tracking Mode:Part 2—Parametric Study[J]. Journal of Tribology. 2003, 125(3): 617-627.
    [49]张书贵.机械密封变形的研究[D].东营:中国石油大学, 1990.
    [50]张书贵,顾永泉.机械密封环的温度场及变形[J].流体机械. 1993, 21(2): 5-10.
    [51]洪先志.机械密封端面力变形的研究[D].成都:四川大学, 2002.
    [52]苏先顺,王勇.秦山核电二期工程主泵轴密封及保障其完整性而采取的措施[J].核动力工程. 2003, 24(z1): 180-184.
    [53]黄成铭.秦山核电二期工程反应堆冷却剂泵[J].核动力工程. 2003, 24(2Z1): 173-176.
    [54]臧希年.核电厂系统及设备[M].北京:清华大学出版社, 2003.
    [55] Galenne E, Pierre-Danos I. Thermo-Elasto-Hydro-Dynamic Modeling of Hydrostatic Seals in Reactor Coolant Pumps[J]. Tribology Transactions. 2007, 50(2): 466-476.
    [56]王勤湖,曹智鹏,安建军,等.温控法避免核主泵被迫停泵的理论初探及应用[C].南京: 2006.
    [57] Brunetiere N, Apostolescu A. A Simple Approach to the ThermoElastoHydroDynamic Behavior of Mechanical Face Seals[J]. Tribology Transactions. 2009, 52(1): 243-255.
    [58]戴维奇.液体静压式收敛间隙密封流场特性研究[D].北京化工大学, 2008.
    [59] Tuncer C, Jian P S, Fassi K, et al.工程计算流体力学[M].符松译.清华大学出版社, 2009.
    [60]吴望一.流体力学[M].北京:北京大学出版社, 1982.
    [61] Schlichting H.边界层理论[M].徐燕侯译.北京:科学出版社, 1988.
    [62]孙祥海.流体力学[M].上海:上海交通大学出版社, 2000.
    [63]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社, 2008.
    [64] Brunetiere N, Tournerie B. Finite Element Solution of Inertia Influenced Flow in Thin Fluid Films[J]. Journal of Tribology. 2007, 129(4): 876-886.
    [65]杨沛然,郭峰,王静,等.反常弹性流体动力润滑现象的热粘度楔润滑机理研究[J].青岛理工大学学报. 2006, 27(6): 1-7.
    [66] Kaneta M, Nishikawa H, Kameishi K, et al. Effects of Elastic Moduli of Contact Surfaces in Elastohydrodynamic Lubrication[J]. Journal of Tribology. 1992, 114(1): 75-80.
    [67]张永学,李振林.流体机械内部流动数值模拟方法综述[J].流体机械. 2006, 34(7): 34-38.
    [68]李人宪.有限体积法基础[M].北京:国防工业出版社, 2005.
    [69]张涵信,贺立新,张来平.流体力学有限元和有限体积算法的联系:第十二届全国计算流体力学会议论文[C].西安: 2004,1-8.
    [70]王勖成.有限单元法[M].北京:清华大学出版社, 2003.
    [71]李椿萱.流体力学中的有限元法[J].力学进展. 1983, 13(1): 35-49.
    [72] Zienkiewicz O C, Tayler R L.有限元法—流体动力学[M].符松,刘扬扬译.北京:清华大学出版社,2008.
    [73]章本照.流体力学中的有限元方法[M].北京:机械工业出版社, 1986.
    [74]王建军,陆明万,张雄.流体力学Petro-Galerkin有限元法研究进展[J].计算力学学报. 1998, 15(4): 495-502.
    [75] Donea J. A Taylor-Galerkin Method for Convective Transport Problems[J]. International Journal for Numerical Methods in Engineering. 1984, 20(1): 101-119.
    [76] Zienkiewicz O C, Szmelter J, Peraire J. Compressible and Incompressible flow; An Algorithm for all Seasons [J]. Computer Methods in Applied Mechanics and Engineering. 1990, 78 (1): 105-121.
    [77] Zienkiewicz O C. Achievements and Some Unsolved Problems of the Finite Element Method[J]. International Journal for Numerical Methods in Engineering. 2000, 47(1): 9-28.
    [78] Zienkiewicz O C, Tayler R L.有限元方法—基本原理[M].曾攀译.北京:清华大学出版社, 2008.
    [79]顾永泉.机械密封的空化和空化边界确定[J].流体机械. 1998, 26(12):16-20.
    [80]易大义,陈道琦.数值分析引论[M].杭州:浙江大学出版社, 1998.
    [81]赵中.激光加工多孔端面液体密封的数值分析[D].杭州:浙江工业大学, 2009.
    [82]王勤湖,李社坤,卢文跃,等.压水堆核电站一回路工况变化对主泵主要机械性能的影响[J].核动力工程. 2005, 26(6Z1): 103-108.
    [83] Zhang J, Yuan S. A Numerical Simulation of 3-D Inner Flow in Up-Stream Pumping Mechanical Seal[J]. Journal of Hydrodynamics. 2006, 18(5): 572-577.
    [84] Person V, Tournerie B, Frene J. A Numerical Study of the Stable Dynamic Behavior of Radial Face Seals With Grooved Faces[J]. Journal of Tribology. 1997, 119(2): 507-513.
    [85] Pugh M. Westinghouse Reactor Coolant Pump Seal Performance Improvement Guide:Supplement to EPRI Main Coolant Pump Seal Maintenance Guide[Z]. EPRI, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700