用户名: 密码: 验证码:
固废稳定化与材料老化新型一体反应器的设计与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着城市污水处理的普及,污泥处理量日益增长,利用高效机械化反应器进行快速堆肥具有堆肥效率高,可控性强的优点,因此成为污泥堆肥处置技术中的研究热点。本课题组致力于污泥的资源化利用及环境友好材料的开发研究多年,在本研究中,创新性的提出了在污泥堆肥的条件下进行可堆肥可降解材料老化试验的思路。为实现这个目标,自行设计了一套新型固废稳定化和材料老化一体反应器系统,并用以研究添加PAAS后污水污泥的好/厌氧堆肥效果,同时对可堆肥材料在堆肥条件下的老化试验进行了初探。
     本研究主要采用福州市祥坂污水处理厂的污水污泥开展了如下研究:
     首先,设计了新型固废稳定化和材料老化一体反应器系统。从污泥特性研究出发,详述了反应器主反应罐系统、保温控温系统、搅拌系统、通风控氧系统、材料加速老化样品承载系统等的设计计算和图纸绘画。其中“鼓风加热—聚氨酯发泡保温—温感反馈控制”三位一体的独特保温控温系统为最大创新之处,已申请两项专利(一种污泥好厌氧堆肥综合反应器:实用新型专利号:ZL200920138759.0;一种利用污泥堆肥法加速塑料薄膜性能老化的加速反应器:发明专利申请号:2009101119619)。
     其次,利用该新型反应器进行了污泥添加PAAS的好氧堆肥实验。实验发现,反应器在一定的控制参数之下,好氧堆肥实验顺利,各指标变化规律性极强,堆体温度上升迅速,并可在55℃以上保持5d以上,仅需13d即完成一个堆肥周期,有机质降解率可达30%左右,最终种子发芽指数高于0.9,堆肥产品质量良好且稳定。
     其三,利用该新型反应器进行了污泥添加PAAS的厌氧堆肥实验。实验发现,加入活性干酵母粉加速发酵后,控制系统运行参数和物料配比,反应器运行良好,能在21d内完成快速完成一个厌氧堆肥周期,发酵效果好,各指标变化规律性强。
     其四,利用该新型反应器及其老化承载系统对光钙型可降解塑料在堆肥条件下的降解规律进行初探。实验发现,PE/CaO复合材料具有很好的可堆肥性能,在堆肥条件下,复合材料的CaO颗粒能吸收堆肥环境中的H2O和C02而生成相应的产物Ca(OH)2或CaCO3,使得颗粒产生涨大与脱落,从而使PE/CaO复合材料的表面产生很多的孔洞,而这些孔洞不仅增大了材料与环境的接触面积,同时更为降解细菌进入材料内部提供了通道,大大加速了材料的降解过程。
     最后,我们对新型反应器添加了PAAS的堆肥产品的吸水保水性能进行了研究。研究发现,添加了PAAS的堆肥产品,其吸水倍率可达到5.97mL/g,远大于未添加PAAS普通堆肥。将添加PAAS的堆肥产品按农田施用比例1:0.20与旱地田土(吸水倍率仅为0.51mL/g)混合后,其混合样的吸水倍率仍然可达3.38mL/g,比起普通堆肥与田土的混合样要好的多。添加了PAAS的堆肥产品及其与田土的混合样品,其保水能力在各个温度条件下都远远要优于田土、普通堆肥产品。添加了PAAS的堆肥产品及其与田土的混合样,在较高温度条件下均具有极好的保水性能。且随着温度的降低,其保水时间也会不断加长。所求出来的动力学预测方程来预算添加了PAAS的堆肥产品及其与田土的混合样的保水反应过程,其结果与实验数据能较好的吻合。
     在这一系列的研究中,反应器的设计合理,将其应用于污水厂污泥添加PAAS的好氧堆肥、厌氧堆肥,以及对光钙型可降解塑料在堆肥条件下的降解情况的研究都表现出了很好的运行性能。对新型反应器所堆制的肥料进行的吸水保水性能测试,显示出了比普通堆肥产品优越得多的吸水保水性能,并对其进行了动力学研究,求得了与实验数据有较好吻合的保水预测方程。本研究对于城市污泥的高值化利用具有一定的参考价值。由于时间的紧张,不足之外在于对于可堆肥材料在堆肥条件下的降解情况研究的还不是非常深透,未来的研究将把重心放在多种可堆肥材料在反应器堆肥条件下的降解规律的研究,将其做到普适化、标准化;而反应器快速堆肥方面的研究,我们可以对其进行工业化应用探讨,此研究目前正在开展。
In recent years, with the popularity of urban sewage treatment and increasing amout of sludge treatment, adopting mechanized and high-efficient reactor for rapid composting has become the research hotspot due to its high compost efficiency as well as easy controlling. The research group has been committed to sludge resource utilization of sludge as a resource for many years, in our research we have creatively brought forward the idea of doing aging experiments with degradable and composting. To achieve this goal, we design a suit of new reactor system which can both carry on both solid waste stabilization and material aging so as to study the effect of waste water and sludge aerobic and anaerobic composting after adding PASS and we did primary research on the composting materials aging test under the condition of being able to compost.
     This research used the sewage sludge from FuZhou Xiang ban waster water treatment plant to carry out the following research:
     First, we design a suit of new reactor system which can both carry on both solid waste stabilization and material aging. Beginning with the sludge characteristics, we demonstrate the design, calculating process and painting for following things in detail: system of the main reaction tank, insulation and controlling temperature, churning system, air-circulation and oxygen controlling system, supporting system of the material accelerating aging. Among them, the most creative point is the trinity unique temperature controlling and insulation system entitled "the trinity system of Blasting to heat-Polyurethane foaming to insulate-Temperature sensation to control". Till now we have applied two patents of this reactor.(one is for comprehensive reactor of sludge aerobic and anaerobic composting; utility model patent no.:ZL200920138759.0; the other is for the accelerating reactor for plastic film aging in the way of sludge composting; patent application number no.:2009101119619).
     Then, we use this new reactor to conduct experiment of aerobic sludge composting under the condition of adding PASS to sludge. It was found that aerobic composting experiment gone well with the reactor under a certain control parameters,, all indicators presented changes by strong regularity, pile body temperature rises rapidly, and could maintain above 55℃for more than 5d, and a cycle of composting could be done in just 13d, degradation rate of organic matter was up to 30%, the final seed germination index was higher than 0.9 and compost products had a good and stable quality.
     Thirdly, we used the new reactor to carry out anaerobic sludge composting experiment after adding PAAS to the sludge. It was found that after adding active dry yeast powder to accelerate fermentation and controlling systems' operating parameters and material ratio, the reactor run well, and we also found it could not only complete a quick cycle of anaerobic composting in the 20d, but also showed good effect of fermentation with all indicators changing by strong regularity.
     Fourth, we primarily studied the light-Ca-type degradable plastic'degradation regularity under the conditions of composting which was done by using the new reactor and aging system. It was found that, PE/CaO composite material showed very good characteristic of composting, under the composting conditions, CaO particles of the composite materials can absorb H2O and CO2 in the environment, which generated the corresponding products Ca(OH)2 or CaCO3, and this led to the particles swelling and then falling off, so a lot of holes located the PE/CaO composite materials surface evolved. Due to these holes, not only the contact area between materials with the environment increased, but also provides more degradation bacteria with channels to enter the inside of material and greatly accelerated the material degradation process as well.
     Finally, water-absorbent properties of composting products on the basis of adding PASS to the new reactor were studied. The study found that adding PAAS to compost product made the water absorbent reach 5.97mL/g, which was much larger than ordinary compost without adding PAAS. According to the proportion of composting products with adding PASS to the dry farmland (water absorbency of only 0.51mL/g), we mixed them and found the mixture's water absorbent could still achieve 3.38mL/g, which is far better than the mixture of ordinary compost and land.PAAS added compost products and the mixture of such products with land both showed good water-retention capacity in relatively high temperature. With decrease in the temperature, the water-retention time correspondingly extended. Using the dynamics prediction equation to predict water-retention process of the mixture of PASS added composting products with land; we found the results could match the experimental results.
     In this series of studies, the reactor design was reasonable, and it presented good operating property when being applied to aerobic and anaerobic composting of PAAS added sludge from waster water treatment plant as well as the light-Ca type biodegradable plastics degrading under the condition of composting. Results of the water-absorbent and water-retention properties testing of fertilizers produced by this new type of reactor showed that they were superior than ordinary compost product by a large margin in water-absorbent properties, and we carried out its kinetic studies, then obtained the water retention prediction equation in good agreement with the experimental data of. This study of high-value utilization of urban sludge had a certain reference value. Due to the time the tension, we did not study the composting material degradation under the conditions of composting the study deeply. Future research will focus on researching the degradation regularity of various composting materials in the reactor under the conditions of the composting and have such process universal and standardization; as for rapid composting reactor research, we can explore their industrial application, and this research is currently being undertaken.
引文
[1]Dick R I. Sludge treatment utilization and disposal [J]. WCPF,1978,15(2):171-176
    [2]周立祥,郑绍建.污泥农牧地应用中病原物的存活及其控制措施[J].农业环境保护,1995,14(3):128-131
    [3]乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响[J].土壤,2002,(2):79-85
    [4]莫测辉,蔡全英,吴启堂.城市污泥中有机污染物的研究进展[J].农业环境保护,2001,20(4):273-276
    [5]沈伟民.从看待德国至今走过的道路来展望中国污泥处理和处置的未来(污泥处理与处置论文精选)IFAT China.IFAT China 2006,上海国际展览中心,2006:1/7
    [6]徐强,张春敏,赵丽君.污泥处理处置技术及装置[M].北京:化学工业出版社,2003:1-11
    [7]杭世珺,刘旭东,梁鹏.污泥处理处置的认识误区与控制对策[J].中国给水排水,2004(20):89-92
    [8]赵丽君,张大群,陈宝柱.污泥处理与处置技术的进展[J].中国给排水,2001,17(6):23-25
    [9]姚刚.德国的城市污泥利用和处置的发展(污泥处理与处置论文精选)IFAT China.IFAT China2006,上海国际展览中心,2006:5/9
    [10]黄凌军,杜红,鲁承虎,黄国民.欧洲污泥干化焚烧处理技术的应用与发展趋势[J].给水排水,2003,29(11):19-22
    [11]程五良.城市污水厂污泥处理与土地利用研究.[同济大学工学博士学位论文].200-10301:18,105
    [12]Slii W, Norton J M, Miller B E, et al. Effects of aeration and moisture during windrow composting on the nitrogen fertilization values of dairy waste composts [J]. Applied Soil Ecology,1999,11:17
    [13]何晶晶,顾国维,李笃中,等.城市污泥处理与利用[M].北京:科学出版社,2003:52
    [14]伊军,谭学军.污水污泥处理处置与资源化利用[M].北京:化学工业出版社,2005:58-63
    [15]Lindeberg J D. Windrow Composting Site Design. Proc. Annu. Meet. -Air Waste Manage. Assoc. 1994,87 (12),94-100
    [16]Stentiford E I, Pereira J T, and Mara D D. Low cost compositing:research monographs in tropical public health engineering [J]. Department of civil engineering, University of Leeds, March, 1996:39-46
    [17]Kuhlman L R. Windrow Composting of Agricultural and Municipal Wastes [J]. Resources, Conservation and Recycling,1990(4):151-160
    [18]赵书勤,吴星武等.城市污水污泥堆肥化技术的研究进展[J].四川环境,2003,22(6):9-13;
    [19]余群,董红敏,张肇鲲.国内外堆肥技术研究进展[J].安徽农业大学学报,2003,30(1):109-112
    [20]Epstein E, Wilson G B, Burge W D et al. A forced aeration systems for composting wastewater sludge [J]. Journal WPCF,1976,48(4):668-694
    [21]康建雄,谢建麟.新型塔式垃圾动态堆肥系统的中试研究(上)[J].武汉城市建设学院学报,1996,13(4):13-15
    [22]邹新禧.超强吸水剂(第二版)[M].北京:化学工业出版社,2001.12:577-578
    [23]曲贵伟,依艳丽.聚丙烯酸铵对重金属离子的吸附效应及在土壤修复上的应用[J].安徽农业科学,2006,34(20):5331-5333
    [24]张智,罗金华.卧式好氧堆肥装置的通风量研究[J].中国给水排水,2004,20(4):50-52
    [25]USEPA. Composting facility design [A]. In Composting of Municipal Waste water Sludge [C]. 1985
    [26]魏源送,王敏健等.堆肥技术及进展[J].环境科学进展,1999,7(3):11-15
    [27]陈南羽.浅谈开发SAP功能材料[J].辽宁化工,1998,27(4):206-207
    [28]Fanta G F, Doame W M. U.S.Patent.1972, (36):69-103
    [29]孙福强.高吸水性树脂对土壤的水肥性质及土壤结构的影响研究.[广东工业大学工学硕士学位论文].20030428:2
    [30]孙福强,崔英德.高吸水性树脂的保肥作用研究[J].化工技术与开发,2004,33(6):11-14;
    [31]杜建军,王新爱,廖宗文,等.不同肥料对高吸水性树脂吸水倍率的影响及养分吸持研究[J].水土保持学报,2005,19(4):27-29
    [32]詹发禄,柳明珠,郭明雨,等.具有缓释肥功能超强吸水树脂研究[J].兰州大学学报(自然科学版),2003,39(6):62-65
    [33]卢巧晖.污泥混合聚丙烯酸钠的堆肥工艺研究[D].福建师范大学硕士学位论文,2007:89-93
    [34]Mohee R, Unmar G D, Mudhoo A, et al. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions [J]. Waste Management,2008,28:1624-1629
    [35]Bellia G, Tosin M, Floridi G, Degli-lnnocenti F. Activated vermiculite, a solid bed for testing biodegradability under composting conditions [J]. Polymer Degradation and Stability,1999,66: 65-79;
    [36]Avella M, Bonadies E, Martuscelli E, Rimedio R. European current standardization for plastic packaging recoverable through composting and biodegradation [J]. Polymer Testing,2001, 20:517-521
    [37]Sawada H. The Status of the Biodegradable Plastics Industry in Japan [J]. ASC Symposium Series, 2001, (7):56
    [38]Lorcks J. Properties and applications of compostable starch-based plastic material [J]. Polymer Degradation and Stability,1998,59:245-249
    [39]. Gaspar M, Benko Zs, Dogossy G, Reczey K, Czigany T. Reducing water absorption in compostable starch-based plastics [J]. Polymer Degradation and Stability,2005,90:563-569
    [40]朱军峰,张光华,李俊国,王卓妮.热塑性淀粉的制备及其塑料膜性能研究[J].塑料,2006,33(5):28-36
    [41]陆夏莲,葛祥才,孟跃中.聚碳酸亚丙酯/淀粉在城市垃圾中生物降解性能研究[J].中山大学学报(白然科学版),2005,44(4):37-39
    [42]周学永,尹业平,吕早生.碳酸钙和淀粉对聚乙烯薄膜降解性能影响研究[J].化学工程师,2006,(3):9-11
    [43]彭毓华.微生物对淀粉塑料薄膜降解能力的研究[J].农业工程学报,1996,(2):147-151
    [44]吴竹华,汤庚国等.非洲菊无土高效栽培研究进展[J].江苏林业科技,1998,(2)
    [45]陈玲,赵建夫,李宇庆,等.城市污水厂污泥快速好氧堆肥技术研究[J].环境科学,2005,26(5):192-195
    [46]罗维,陈同斌,高定,等.混合堆肥过程中挥发性固体含量的层次效应及动态变化[J].环境科学,2004,25(3):155-159
    [47]毕明树主编.工程热力学[M].北京:化学工业出版社,2001,20-26
    [48]Haug k T. The Practical Hand book of ComPost Engineering [M].Lewis Publishers,1993
    [49]李季,彭生平主编.堆肥工程实用手册[M].北京:化学工业出版社,2005,1-81
    [50]戴芳,曾光明,袁兴中,等.新型堆肥装置设计及应用研究[J].环境污染治理技术与设备,2005,6(2):24-28
    [511席北斗,刘鸿亮,孟伟,等.翻转式堆肥反应装置设计研究[J].环境污染治理技术与设备,2003.4(9):85-88
    [52]蔡健成.等:堆肥工程与堆肥工厂队[M].北京:机械工业出版社,1990,7-43
    [53]魏源送,李承强,樊耀波,等.堆肥系统的通风设计[J].环境污染治理技术与设备,2000, 1(3):1-9
    [54]赵镇南.传热学[M].北京:高等教育出版社,2002,495
    [55]CooPerhand L. The Art and Science of Composting [EB/OL]. Center for Integrated Agricultural Systems March 29,2002
    [56]Singh R P, Agrawal M. Potential benefits and risks of land application of sewage sludge [J]. Waste Management,2008 (28):347-358
    [57]Bright D A, Healey N. Contaminant risk f rom biosolids land application:contemporary organic contaninant levels in digested sewage sludge I'rom live t reatment plants in greater Vancouver [J]. British Columbia Environmental Pollution,2003,126:39-49
    [58]Oleszczuk P. The toxicity of composts from sewage sludges evaluated by the direct contact tests phytotoxkit and ostracodtoxkit [J]. Waste Management,2008,28(9):1645-1653
    [59]胡海滨.污泥添加聚丙烯酸钠(PAAS)的堆肥处置研究及工程设计[D].福建师范大学,2008,(5)
    [60]许效天,杨跃伟,孟俊峰.城市污水污泥堆肥控制因素和腐熟度评价[J].环境科学与管理,2008,33(10):191-194.
    [61]陈玲,赵建夫,李宇庆,等.城市污水厂污泥快速好氧堆肥技术研究[J].环境科学,2005,26(5):192-195.
    [62]许民,杨建国,李宇庆,等.污泥堆肥影响因素及辅料的探讨[J].环境保护科学,2004,30(125):34-40.
    [63]Nogueiia W A. Temperature and pH control in composting of coffee and agricultural wastes [J]. Water Science and Technology,1999,40 (1):113-119
    [64]李承强,魏源送,樊耀波,等.不同填充料污泥好氧堆肥的性质变化及腐熟度[J].环境科学,2001,22(3):60-65.
    [65]Iglesias Jimenez E, Perez Garcia V. Composting of domestic refuse and sewage sludge.1. Evolution of temperature, pH, C/N ratio and cation exchange capacity [J]. Resource, Conservation and Recycling,1991, (6):45-60
    [66]Tiquia S M, Tam N F. Elimination of phytotoxity during co-composting of spent pig-manure sawdust litter and pig sludge [J]. Bioresource Technology,1998, (65):43-49
    [67]柳丽芬,张兴文.秸秆与污泥混合堆肥研究[J].大连理工大学学报,2003,43(6):753-75
    [68]Pavlostathis S G, Gosset J M. Preliminary conversion mechanisms in anaerobic digestion of biological sludge [J]. Journal of Environmental Engineering ASCE,1988,114(3):515-529
    [69]Pavlostathis S G, Gosset J M.Akinetic model for anaerobic digestion of biologicals ludge [J]. Biotechnology and Bioengineering,1986,28:1919-1930
    [70]John A, Eastman, John F, et al. Solubilization of particulate organic carbon daring the acid phrase of anaerobit digestion [J]. Journal WPCF,1981,53(3):352-365
    [71]易晓娥.城市污水厂污泥农用资源化研究[D].福建师范大学,2005,(4)
    [72]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998
    [73]施跃锦,李非里,张嗣炯.城市污水污泥的厌氧消化与厌氧堆肥[J].浙江工业大学学报,2002,30(4):377-381.
    [74]陈庆华.光钙型环境友好塑料的配方设计和产品标准初探[J].塑料加工,2004,39(4):38-46.
    [75]陈庆华.无机粉体改性塑料环境友好材料的环境协调性研究[J].塑胶工业,2004,(6):38-42.
    [76]游瑞云,林琅,肖荔人,等.氧化钙对PE薄膜可环境消纳性能的影响[J].中国塑料,2007,21(1):86-90.
    [77]杨军,宋怡玲,秦小燕.聚乙烯塑料的生物降解研究[J].环境科学,2007,28(5):1165-1168.
    [78]丁文川,郝以琼,李宏.污泥堆肥温度对微生物降解有机质的影响[J].重庆建筑大学学报,1999,21(6):20-23.
    [79]许民,杨建国,李宇庆,等.污泥堆肥影响因素及辅料的探讨[J].环境保护科学,2004,30(125):34-40.
    [80]Lnannotti D A, Grebus M E,Toth B L. Oxygen respiratory to assess stability and maturity of composted municipal solid waste [J]. Environ Qual,1994, (22):1177-1183.
    [81]井上光弘,野村安治,等.掺砂保水剂的吸水能力和保水能力的评价[J].水土保持科技情报,1994,(3):22-24.
    [82]Silberbush M, Adar E, De M Y. Use of all Hydropholie Polymer to improve water storage and availability to crop sgrown in sand dunes[J].Agricultural Water Management,1993(23):303-313.
    [83]乌兰.高吸水性树脂在农业上的应用与前景展望[J].中国水土保持,2006(4):45-47.
    [84]王正辉,廖宗文.高吸水保水剂的合成及在农业上的应用[J].广东化工,2005(1):70-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700