用户名: 密码: 验证码:
Fe-Mn-C合金的试验与分子动力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fe-Mn-C合金由于其较高的强度和塑性以及较好的耐磨性,在许多行业中有着重要的应用,然而,迄今为止,对Fe-Mn-C合金的结构与性能的宏观和微观机理研究尚没有统一的结论。本文从实验和计算模拟对其进行了研究。由于模拟体系与实验材料存在差异,在实验方面,对Fe-Mn-C合金中的高锰钢为研究对象,利用透射电镜,原子力显微镜等测试方法,对不同形变量的高锰钢组织演变的晶体学机制及磨损规律进行了分析。在模拟计算方面,采用“Material Studio”材料计算中的CASTEP子模块程序,以Fe-Mn-C系合金为研究对象,对随着Mn,C含量的变化,Fe-Mn-C系合金性能的变化规律进行了理论预测,为该合金的进一步研究提供理论依据。研究结果表明:
     1)在较小形变量情况下,组织中开始出现很多平直的变形带以及孪生变形,位错组态表现为平直的条带;随着形变量的增加,组织中孪晶的数量明显增多,当形变量达到一定程度后,组织中孪晶的数量增加速率开始下降,孪晶内出现少量的次生孪晶。
     2)形变量小于20%时,经冷轧的高锰钢随着形变量的增加,其耐磨性能也随之增加,这是因为深度冷轧的高锰钢表面形成的高密度位错及孪晶组织能有效阻止磨损表面的脆性剥落,同时,高锰钢良好的心部韧性也将减少其磨损过程中的疲劳剥落;形变量大于20%时,随着形变量的增加,耐磨性降低,这是由于随着形变量增加高锰钢表面在形成高密度位错及孪晶组织的同时,使裂纹逐渐形成和扩展,这在一定程度上会使其耐磨性下降。
     3)随着Mn含量增加,弹性系数C1 1增大, C1 2和C 44减小,体弹性模量B和剪切弹性模量G随着C,Mn含量的增加都有所增加。Fe-Mn-C合金的层错能较低,并且随着Mn含量的增加层错能增加。
Fe-Mn-C Alloys played an important role in many industries,but have not yet reached unified conclusion until now about the research of Macro and microcosmic mechanism.The paper studies it from calculation and experiments.It is different between simulation system and experimental materials.At the experimenntal level, wear behaviors of the high manganese steel under the condition of different rolling reduction rates.observed by TEM, AFM and other general test methods. At the simulation level, Using CASTEP calculation program, studying the performances of different C, Mn contents in Fe-Mn-C austenitic alloys were theoretically forecasted.The research work made it possible for further study as theoretical basis. The research indicates:
     1) The straight distortion belts as well as the twin distortion start to present at the small deformation, and the dislocation configuration exhibits for the straight banding. Along with deformation quantity's augmentation, the twin crystals quantity increases and the twin crystals density increases obviously. After the reduction quantity achieves the certain extent, twin crystals quantity increasing rate tends to slow down, and a few secondary twin crystals present in the twin crystals.
     2) Wear resistance increased with the reduction rates increasing when deformation is less than twenty percent.The reasons are high manganese steel by severe cold-rolling form a high density of dislocation and the twins.They can effectively prevent the surface of brittle spalling caused by abrasive wear.At the same time,good toughness in center of High-manganese steel will reduce the fatigue spalling in the process of abrasive. Because of Crack expansion, wear resistance reduced with the reduction rates increasing when reduction is more than twenty percent.
     3) With the Mn content increasing, the C1 1 and Elastic moduli increased, but C1 2 and C 44decreased. B and G increased with the C Mn content increasing Fe-Mn-C alloy have low stacking fault energy, and they increased with the Mn content increasing.
引文
[1] MAHALLAWI E. Evaluation of effect of chromium on wear performance of high manganese steel[J]. Materials Science and Technology .November 2001:1385-1390.
    [2]王军,孙铁.提高奥氏体耐磨钢耐磨性的几种方法[J].新疆钢铁,2001:78-80.
    [3]仝健民.耐磨钢研究进展[J].水利电力机械,2003(2):29-33.
    [4]张增志.耐磨高锰钢[M].北京:冶金工业出版社,2002:54-63.
    [5]张敏.加工硬化对1.14C-12.72Mn钢铁路辙叉表面剥落的影响[J].特殊钢,2005:26-32.
    [6]孙海旺.高锰钢中奥氏体的加工硬化机理[J].铸造设备研究,2003(2):39-40.
    [7] ALDER P H. Strain harding of hadfield manganese steel[J]. MetallTrans.1986:1725-1730.
    [8]王豫,斯松华.高锰钢硬化规律和机理研究[J].钢铁,2001,36(10):54-56.
    [9]王兆昌.奥氏体锰钢的综合加工硬化机理[J].钢铁研究学报,1994(1):67-68.
    [10]黄克智,肖纪美.材料的损伤断裂机理和宏微观力学理论[M].北京:清华大学出版社,1999. 36-61.
    [11] ZHANG Y W, WANG T C. The effect of the thermal activation of crack processes at an atomistic crack tip[J]. Appl Phys, 1995, 28:748-750.
    [12] ZHANG Y W, WANG T C,TANG Q. Molecular dynamics simulation of crack tip processes in copper[J]. Acta Mechanica Sinica, 1995, 10: 11-13.
    [13]温诗韵.纳米摩擦学进展[M].北京:清华大学出版社,1996:72-88.
    [14]韩雪松,王树新等.基于辛算法的纳米加工工程的分子动力学仿真研究[J].机械工程学报,2005,41(4):15-23.
    [15]罗熙淳,梁迎春等.单晶铝纳米切削过程分子动力学模拟研究[J].中国机械工程,2000,11(8):23-30.
    [16]唐玉兰,梁迎春等.基于分子动力学单晶硅纳米切削机理研究[J].微细加工技术,2003(2):76-80.
    [17] MACHOVA A,KROUPA F. Atomistic modeling of contributionof dislocations to crack opening displacement[J].Materials Science and Engineering, 1997, A234-236:185-188.
    [18] KHANTHA M, Vitek V. Dislocation screening and the brittle-to-ductile transition[J].Phys Rev Letters, 1994, 73(5):684-685.
    [19] CHEUNG K S, ARGON A S. Activation analysis of dislocation nucleation from crack tip inα-Fe [J]. ApplPhys, 1991, 69:2086-2088.
    [20] KITAGAWA H, NAKATANI A. Study on computation modeling for materials with crystalline structure[J]. Proceeding of JSME, A, 1993, 59: 256-557.
    [21] RICE J R. Dislocation nucleation from a crack tip: An analysis based on the peierls concept[J].J Mech Phys Solids, 1992, 40(2):239-271.
    [22]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995:291-368.
    [23]何奖爱,王玉纬.材料磨损与耐磨材料[M].沈阳:东北大学出版社,2001:22-33.
    [24]王仲珏,孙萍.高锰钢水韧处理效果的控制[J].金属热处理学报,2006(1):34-39.
    [25]吕宇鹏,李士同.高锰钢奥氏体组织与性能的价电子与价电子结构分析[J].钢铁研究学报,1999(1):21-24.
    [26]李德臣.高锰钢与超高锰钢铸件生产技术要点[J].铸造技术,2005(12):83-88.
    [27] ALDER P H. Strain hardening of had field manganese steel[J]. MetallTrans. 1986(17): 1725-1730.
    [28] ROUGHAVAN K S. Nature of the work-hardening behavior in harden field manganese Steel[J]. TransAIME. 2000: 1569-1573.
    [29] DROBNJAK D J, PARR J G. Deformation substructure and strain hardening characteristics of metastable Fe-Mn[J]. Austenite MetallTrans, 1970(1): 759-764.
    [30] ZUM GAHR K H. Formation of wear debris by the abrasion of ductile metals. Wear, 1982, 74(2): 353-359
    [31]张福成.介稳奥氏体锰钢磨料磨损与拉伸变形及其组织变化[D].哈尔滨:哈尔滨工业大学,1992:12-20.
    [32]朱瑞富.变质系列锰钢耐磨机理的研究[D].哈尔滨工业大学,1994:10-15.
    [33] Hall J H. Studies of had field’s manganese steel with the high-power microscope[J] Steels TransAIME, 1989,84:382.
    [34] DROBNJAK D J, PARR J G. Deformation substructure and strain hardening characteristics of metastable Fe-Mn[J]. Austenite MetallTrans, 1970(1): 759-764.
    [35]白利锋.分子动力学模拟Cu纳米粒子的热力学性质和碰撞合并过程[D].兰州:兰州大学,2005:36-40.
    [36]文玉华,朱如曾等.分子动力学模拟的主要技术[J].力学进展,2003 (2):65-70.
    [37]殷开梁.分子动力学模拟的若干基础应用和理论[D].浙江:浙江大学,2006:7-10.
    [38]杨春.热现象的分子动力学模拟[D].北京:清华大学,1998:30-36.
    [39]周耐根.薄膜晶体缺陷形成与控制的分子动力学模拟研究[D].南昌:南昌大学,2005:12-54.
    [40]谭宁.界面微尺度热现象的分子动力学模拟[D].重庆:重庆大学,2003:5-9.
    [41]王莹.计算机模拟中并行计算的研究[D].北京:北京化工大学,2001:8-12.
    [42] ZHANG Y W, WANG T C, TANG Q. Simulation of nucle-ation and emission of dislocations by molecular dynamics method[J]. J Appl Phys, 1995, 77:23-93.
    [43] CHEUNG K S, ARGON A S. Activation analysis of dislocation nucleation from crack tip inα-Fe [J]. ApplPhys, 1991, 69:2086-2088.
    [44] MEHL M J. Structural properties of ordered high melting temperature intermetallic alloys from first principles total energy calculations. Phys Rev B, 1990, 41:10311-10323.
    [45] OZOLINS V, ASTA M. Large vibrational effects upon calulated phase bundaries in Al-Se Phys Lett. 2001, 86:448-451.
    [46] ASTA M, OZOLINS V. Structural vibrational and thermodynamic properties of Al-Se alloys and intermetallic compounds, Phys Rev B, 1995, 52: 188-209.
    [47] PERDEW J P, CHEVARY J A. Atoms molecules solids and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B, 1992, 46:6671-6687.
    [48]吕梦雅.压力下硅、锗及其合金结构与电子性质的计算机模拟[D].秦皇岛:燕山大学,,2005:5-10.
    [49]韩永剑. Al-Zn-Mg合金电子理论研究[D],广西大学,2004:7-15.
    [50]付瑞东.高锰奥氏体钢低温沿晶脆性的产生原因及抑制方法的研究[D].秦皇岛:燕山大学,2003:23-40.
    [51]胡彦军,彭平等. 3d过度金属在NiAl中的占位的第一原理计算[J],中国有色金属学报,2004,14(12): 2103-2106.
    [52]金志浩,姜振益等. SiC多型体几何结构与电子结构研究[J],物理学报,2002,51(7): 1586-1589.
    [53]陈世朴,王永瑞.金属电子显微分析[M].北京:机械工业出版社,1982:20-21.
    [54]周玉.材料分析方法[M].北京:机械工业出版社,2004:90-108.
    [55]黄孝瑛.电子衍射分析方法[M].北京:北京冶金研究所出版社,1976:208-209.
    [56]刘文西,黄孝瑛等.材料结构电子显微分析[M].天津:天津大学出版社1991:512-513
    [57] GRUJICIC M, ZHOU X W. Analysis of Fe-Ni-Cr-N austenite using embedded-atom method[J]. CALPHAD, 1993, 17:383-413.
    [58]戎咏华,孟庆平等. Fe-Mn合金层错能得嵌入原子法计算[J].上海交通大学学报,2003,37(2):172-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700