用户名: 密码: 验证码:
PST/BA/AA可再分散乳胶粉的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机的迫近和保护环境意识的不断提高,建筑节能问题也越来越受到重视。外墙外保温是现阶段我国建筑墙体节能技术中普遍采用的方法,目前市场上的外墙外保温系统大多采用膨胀聚苯板薄抹灰外墙外保温系统,而在该系统中外墙外保温砂浆是不可缺少的材料。外墙外保温砂浆系采用水泥、河砂或人工砂、进口聚合物粉末均匀配制而成,在外墙外保温体系中起到粘结聚苯板和墙体的作用,该砂浆具有粘结强度高,施工现场操作方便等特点。本实验的主要目的就是研究开发生产一种能够替代进口的可再分散乳胶粉。现在国产的可再分散聚合物乳胶粉主要是醋酸乙烯-乙烯(EVA)系列,其耐水性和耐碱性的不足,这限制其使用使用范围;也有采用常规的苯丙乳液制备胶粉,尽管其耐水性和粘结性较EVA乳液好,但因使用了乳化剂,使其生产成本较高,影响了其推广应用。
     基于此,本文选用耐水性和耐碱性良好的苯乙烯(ST)和丙烯酸丁酯(BA)为主要共聚单体,并加入少量的亲水性功能单体丙烯酸(AA),在没有乳化剂的情况下制备乳液,再用喷雾干燥的方法制成胶粉。结果表明此胶粉的再分散液效果好,达到了应用于外墙外保温砂浆的要求。同时,在实验中利用PST/BA/AA接枝天然纳米管制备了纳米复合材料,认为其能提高乳胶粉的耐热性能。
     本文首先用无皂乳液聚合的方法制备了PST/BA/AA,探讨了油相水相比例、亲水性单体AA百分比、软单体BA百分比和保温时间等因素对乳液转化率、粘度和固含量的影响。结果表明:对于油相和水相的比例,当其为30∶100~40∶100时,乳液的转化率、粘度和固含量达到最大,分别为98%,0.17Pa·s和32%;对于亲水性单体AA,当其为13%时,乳液的转化率、粘度和固含量达到最大,分别为93%、0.2Pa·s和34%;对于软单体BA比例,当其为75%时,乳液的粘度和固含量达到最大,分别为0.2Pa·s和30.5%;对于保温时间,当其为2h时,乳液的固含量达到最大为31%。进而,最优其工艺条件为:油相和水相的比例为40∶100,13%的AA,75%的BA和2h保温时间。
     采用红外光谱和TEM对乳液的结构和形貌进行分析测试。结果表明:经过提纯后的乳液为PST/BA/AA的共聚物,而不是PBA、PAA和PST的共混物;PST/BA/AA无皂乳液聚合制得的乳胶粒子尺寸约是0.2μm。
     为了制得乳胶粉,对PST/BA/AA无皂乳液进行了喷雾干燥。喷雾干燥的工艺参数为:进口温度为200℃、出口温度85℃,进料800ml/h、通针频率60秒/次。制得的胶粉能在水中形成良好的再分散乳液。激光粒度分析仪的测试结果表明,其粒径分布区间为0~0.4μm,90%的粒径尺寸为0.30μm。
     为了提高乳胶粉的耐热性能,实验以无皂乳液聚合的方法制备了天然纳米管接枝聚合PST/BA/AA纳米复合材料。为了使天然纳米管参与聚合反应,先对其进了氨基化和双键化的表面改性。通过红外光谱图、~1H NMR光谱、TEM、比表面积仪和TGA等测试手段对氨基化、双键化和聚合化的天然纳米管进行了表征。结果表明:天然纳米管接枝上了氨基、双键和PST/BA/AA,其接枝率分别为7.2%、16.5%和41.8%。另外,乳化剂实验表明,聚合化后的天然纳米管能在油包水体系中形成乳浊液,可以作为无机乳化剂。
Along with coming of energy crisis and the increasing awareness of environmental protection, the construction energy conservation is taken more and more seriously. The outsite wall insulation is the widely used method of the construction wall energy saving at the present stage of our country, universally acknowledged one of which in the market is Exteral Thermal Insulation Composite Systems based on expanded polystyrene (ETICS). The Exteral Thermal Insulation mortar is used as bonding the expanded polystyrene board and wall., which is consist of cement, river or artificial sand, and imported polymer powder. It has certain advantages, such as high cohesional strength and convenience of operational construction. The goal of the experiment is to research and develop redispersible polymer powder that can be substituted for the imported one. Now the majority of redispersible polymer powder in the domestic market are series of polyvinyl acetate-ethylene (EVA), the drawback of which is weak water and alkaline resistance that more and more limits its further application. The water resistance and Cohesiveness of conventional Polystyrene/acrylate emulsion is better than EVA, however, it is expensive to be as mortar additive due to emulsifier additive.
     Based on this, selecting Styrene (ST) and Butyl Acrylate (BA) as major monomers which has favorable water and alkaline resistance, Acrylic Acid (AA) as function monomer, it prepared soap-free emulsion. Using spray drying, finally, it obtained the redispersible polymer powder. The result indicats that the powder can be well dispersible in water, which meets the requirements of application in the Exteral Thermal Insulation mortar. At the same time, it prepared the natural nanotubes grafted PST/BA/AA nanocomposite, and considered that the nanocomposite can enhance the thermal performance of redispersible polymer powder.
     Firstly, it prepared PST/BA/AA by soap-free emulsion polymerization and discussed the influence factors such as proportion of oil phase to water phase, percentage of AA and BA and heat preservation hour. The results are as follows. When the proportion of oil phase to water phase was a range of 30:100 to 40:100, the conversion rate, the viscosity and the solid content of PST/BA/AA were maximum, respectively 98%, 0.17Pa·s and 32%. When the percentage of AA was 13%, the conversion rate, the viscosity and the solid content of PST/BA/AA were maximum, respectively 93%, 0.2Pa·s and 34%. When proportion of soft monomer BA was 75%, the emulsion's viscosity and solid content were max, respectively 0.2Pa·s and 30.5%. When the heat preservation hour was 2h, the solid content of PST/BA/AA emulsion was 31%, which was max. Thus the optimality condition is 40:100 of proportion of oil phase to water phase, 13% of AA percentage, 75% of BA percentage, and 2h of heat preservation.
     The infrared spectrum and TEM have been employed to analyze the structure and morphology of the emulsion. The result indicates that the emulsion is PST/BA/AA, not the blend of PST, PBA and PAA, and the particle size of emulsion approximately is 0.2μm.
     In oder to obtain the redispersible polymer powder, it spray dried the PST/BA/AA emulsion. The parameter of spray drying is 200℃inlet temperature, 80℃outlet temperature, 800ml/h and 60s a time of pin unblocking. The powder can reform emulsion when it added to water. After testing by Laser Granularity Analyzer, it shows that the particle distribution of the reformed emulsion is 0-0.4μm, 90% particle sizes of which are 0.34μm .
     Then it also prepared nanocomposite of natural nanotube grfted PST/BA/AA by in situ polymerization. In order to cause natural nanotube to participate in the polyreaction, it has modified the amino and double bond onto nanotube. The performance of natural nanotube after modification by amino, double bond and polymerization were investigated by means of Fourier transform infrared (FT-IR) spectroscopy, ~1H NMR spectrum, transmission electron microscopy (TEM), specific surface area measurements (SSA) and thermogravimetry analysis (TGA). The result indicates that amino, double bond and PST/BA/AA do graft onto the natural nanotube, the grafting ratios of which respectively are 7.2%, 16.5% and 41.8%. Moreover, the emulsifier experiment indicates that after polymerizing, grafted natural nanotube can form emulsion in the water/oil system. Consequently, it can be used as inorganic emulsifier.
引文
[1]毛义华,蔡临申.我国建筑节能的现状及其对策分析[J].技术经济与管理研究,2007,1:58-59.
    [2]张量,马晨.外墙外保温装饰系统(EIFS)的发展与应用[J].建筑节能,2006,5,:40-43.
    [3]涂逢祥.外墙外保温技术[M].北京:中国计划出版社,1999.
    [4]Farhanieh B,Sattari S.Simulation of energy saving in Iranian buildings using integrative modeling for insulation[J].Renewable Energy,2006,31:417-425.
    [5]张黎军.外墙建筑保温技术和外墙保温节能材料[J].上海住宅,2006,3:68-71.
    [6]艾文·霍夫曼.外墙外保温薄抹灰体系的耐久性与新趋势[J].墙材革新与建筑节能,2006,3:29-31.
    [7]方军良,陆文雄.可再分散乳胶粉的制备研究进展[J].上海化工,2002,15:22-24.
    [8]邱聪,董炎明,江建炜等.可再分散聚合物粉末研究的进展[J].化工进展,2004,23(11):1184-1188.
    [9]Matsehke K,Rauterkus K J,Seip D.Process for the preparation of dispersible vinyl acetate/ethylene polymer powder[P].US 3883489,1975.
    [10]Helen P H,Ling M C.Redispersible acrylic polymer powder for cementitious compositions[P].US 5519084,1996.
    [11]Robert K,Harald B.Composition containing a styrene/methacrylate polymer[P].US 5959029,1999.
    [12]武利民.涂料技术基础[M].北京:化学工业出版社,1999.
    [13]解洪梅,丁希良,吴翠红等.可再分散聚合物乳胶粉的制备及应用进展[J].北工新型材料,2004,32(4):47-50.
    [14]张心亚,蓝仁华,陈焕钦.可再分散聚合物乳胶粉与建筑腻子粉[J].混凝土与水泥制品,2003,1:48-50.
    [15]LEO M.1,2 MACIEJ UMINSKI.Water-Redispersible Low-Tg Acrylic Powders for the Modification of Hydraulic Binder Compositions[J].Applied Polymer Science,1999,71:1781-1787.
    [16]远继秋,隋同波,王军等.可再分散乳胶粉的制备及应用进展[J].化学建材,2005,5:41-44.
    [17]Schulze J,Killermann O.Long-term performance of redispersible powders in mortars[J]. Cement and Concrete Research,2001,31:357-362.
    [18]袁才登.乳液胶钻剂[M].北京:化学工业出版社,2003.
    [19]张洋,马榴强.聚合物制备工程[M].北京:中国轻工业出版社,2001.
    [20]Harkins W D.The Physical Chemistry of Surface Films[M].New Yord:Reinhold,1954.
    [21]吴庆云,杨建军,张建安等.无皂型乳液聚合的研究进展[J].精细石油化工进展,2006,7(2):40-44.
    [22]蔡晓音,王真刚.无皂乳液聚合体系稳定性的研究与进展[J].炼油与化工,2005,16(3):10-12.
    [23]Ji Q X,Cheng S Y.Study on soap-free emulsion copolymerization in the presence of latent solvent polymer[J].Materials Science and Engineering,1994,10(2):9-15.
    [24]王金刚,张书香,孙昌梅等.高固含量无皂乳液的制备及应用研究进展[J].济南大学学报:自然科学版,2001,15(4):348-351.
    [25]王玉霞,张芳,王艳君等.无皂乳液聚合的进展[J].化学工业与工程,2003,20(1):15-19.
    [26]Wang C E,Kou J F,Chen C Y.Polymerization of styrene initiated by a novel initiator sodium form aldehyde sulfoxylate and sodium lauryl sulfate[J].European Polymer Journal,2000,36(5):965-974.
    [27]张心亚,孙志娟,黄洪等.无皂乳液聚合技术及应用研究进展[J].中国粘结剂,2005,14(4):43-46.
    [28]麻明友.偶氮二异丁基盐酸脒引发甲基丙烯酸甲酯微球的无皂乳液聚合[J].材料科学与工程学报,2006,24(6):871-873.
    [29]白宝喜,董薇.苯丙系列阳离子无皂乳液的制备[J].化学工程师,2006,125(2):56-57.
    [30]Chllaghan K J,Paine A J,Rud I A.Mixed Initiator Approach to the Surfactant-free Semicontinuous Emulsion Polymerization of Large MMA/BA particles[J].Applied Polymer Science,1995,58(11):2047-2055.
    [31]郝海娟,郝广杰,宋谋道等.MMA/BA/AA/HEMA无皂乳液共聚物的结构与性能[J].高分子材料科学与工程,2001,17(2):76-79.
    [32]易昌凤,高庆,肖桂林等.苯乙烯/羟甲基丙烯酰胺无皂乳液共聚合的研究[J].胶体与聚合物,2005,23(2):6-8.
    [33]邱志国,方治齐,张晓东.高固含量无皂丙烯酸酯乳液的制备[J].涂料工业,2004,34 (1):1-4.
    [34]李吴,杨玉昆.无皂丙烯酸酯乳液压敏胶的制备与性能研究[J].粘结,2005,26(5):1-3.
    [35]杨凌露,丛海林,曹维孝.无皂乳液聚合法制备P(St-MMA-SPMAP)单分散乳胶颗粒[J].高分子学报,2005,2:223-226.
    [36]Ge J J,Hou H,Li Q.Assembly of well-aligned multiwalled carbon nanotubes in confined polyacrylonitrile environments:electrospun composite nanofiber sheets[J].Journal of the American Chemical Society 2004,126:15754-15761.
    [37]Lai M,Li J,Yang J.The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate-co-hydroxyvalerate) composite[J].Polymer International,2004,53:1479-1484.
    [38]Shafer M S P,Windle A H.Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites[J].Advanced Materials,1999,11:937-941.
    [39]王彪,孙广平,孙国恩.聚丙烯/多壁CNTs复合材料的热性能和流变性能[J].高分子学报,2006,3:408-413.
    [40]Beyer G.Short communication:carbon nanotubes as flame retardants for polymers[J].Firemater,2002,26:291-293.
    [41]Kashiwagi T,Du F,Douglas J F.Nanoparticle networks reduce the flammability of polymer nanocomposites[J].Nature Materials,2005,4:928-933.
    [42]Kashiwagi T,Du F,Winey K I.Flammability properties of polymer nanocomposites with single-walled carbon nanotubes:Effects of nanotube dispersion and concentration[J].Polymer,2005,46:471-481.
    [43]Qian D,Dickey E C,Andrews R,et al.Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites[J].Applied Physics Letters,2000,76(20):2868-2870.
    [44]Andrews R,Jacquees D,Rao A M,et al.Nanotube Composite Carbon Filters[J].Applied Physics Letters,1999,75(9):1329-1331.
    [45]Salvetat J P,Briggs G A D,Bonard J M,et al.Elastic and shear moduli of single-walled carbon nanotube ropes[J].Physical Review Letters,1999,82(5):944-947.
    [46]Gong X,Liu J,Baskaran S,et al.Surfactant assisted processing of carbon nanotube/polymer Composites[J].Chemistry of Materials,2000,12(4):1049-1052.
    [47]Lordi V,Yao N.Molecular mechanics of binding in carbon nanotube polymer composites[J]. Journal of Materials Research,2000,15(12):2770-2779.
    [48]Wagner H D,Lourie O,Feldman Y.Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix[J].Applied Physics Letters,1998,72(2):188-190.
    [49]Bower C,Roseb R,Jin L.Deformation of Carbon Nanotubes in Nanotube-Polymer Composites[J].App lied Physics Letters,1999,74(22):3317-3319.
    [50]Ajayan P M,Schadler L S,Giannaris C,et al.Walled Carbon Nanotube-Polymer Composites:Strength and Weakness[J].Advanced Materials,2000,12(10):750-753.
    [51]张文孝,姚学勇,王玉德.喷雾干燥现状及展望[J].食品机械,2004,12(6):33-35.
    [52]《化工设备设计全书》编委会.干燥设备[M].第1版.北京:化学工业出版社,2002.
    [53]Masters K.Spray Drying Handbook(fifthed)[M].NewYork:1991.
    [54]马晶晶,于才渊,晏双华.改性AVE乳液制备可再分散乳胶粉[J].干燥技术与设备,2007,52:85-88.
    [55]邱聪.可再分散乳胶粉的制备及其改性效率研究[J].新型建筑材料,2006,3:27-31.
    [56]荆秀娟,李万捷,闰济民等.可再分散性乳胶粉性能影响因素探讨[J].太原理工大学学报,2007,28(2):139-141.
    [57]杜涛,裴梅山.不同保护胶体下制备可再分散聚合物粉末的研究[J].化学建材,2006,22(5):25-26.
    [58]韩金顺.一种速溶速分散的乳胶粉及其制造方法[P].CN 1458183,2003.
    [59]虞明东,王俊九.可再分散乳胶粉[P].CN 1709958,2005.
    [60]丁武.乙烯-醋酸乙烯酯聚合EVA可再分散乳液粉及其制备方法[P].CN 19038 94,2007.
    [61]李树志.一种三元共聚的可再分散乳胶粉及其制造方法[P].CN 1587313,2005.
    [62]张心亚,谢德龙,蓝仁华等.含硅氧烷水溶性聚合物乳液和可再分散乳胶粉及制备方法[P].CN 1903898,2006.
    [63]王建军.醋酸乙烯酯乳液的改性研究[J].粘接,1999,3:16-17.
    [64]Aslamazova T,Bogdanova S.Polymer-monomer and polymer-polymer interactions and their effect on the stability of emulsifier-free acrylate latexs[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,104:147-155.
    [65]Chllaghan K J,Panea J,Ruda A.Mixed Initiator Approach to the Surfactant-free Semicontinuous Emulsion Polymerization of Large MMA /BA particles[J].Journal of Applied Polymer Science,1995,58(11):2047-2055.
    [66]Ceska G W.The Effect of carboxylic monomers on surfactant-free emulsion copolymerization[J].Journal of Applied Polymer Science,1974,18:427-437.
    [67]Chen S,Lee S T.Kinetic and mechanismof emulsifier-tree emulsion polymer polymerization[J].Macromolecule,1991,24:3340-3357.
    [68]易昌凤,高庆,肖桂林.苯乙烯/羟甲基丙烯酰胺无皂乳液共聚合的研究[J].胶体与聚合物,2005,23(2):6-8.
    [69]邱志国,方治齐,张晓东.高固含量无皂丙烯酸酯乳液的制备[J].涂料工业,2004,34(1):1-4.
    [70]Yin N,Chen K.Ultrasonically initiated emulsifier-free emulsion copolymerization of n-butyl acrylate and acrylamide.Part Ⅰ:Polymerization mechanism[J].Polymer,2004,45:3587-3594.
    [71]Fitch R M.The homogeneous nucleation of polymer colloids[J].British Polymer Journal.1973,5(3):467-483.
    [72]Goodall A R,Wilkinson M C,Hearn J.Mechanism of emulsion polymerization of styrene in soap-free systems[J].Polymer Science-Polymer Chemistry Edition,1977,15:2193-2218.
    [73]Bradury J H.,Melbille H W.Proceedings of the Royal Society of London.Series A[M].London:1954.
    [74]林先核.丙-叔-醋共聚乳液的研制与应用[J].化学与黏合,2005,27(1):48-50.
    [75]Iijima S.Helicalmicrotubules of graphitic carbon[J].Nature,1991,354:56-58.
    [76]P.M.,Stephan O,Colliex C.Aligned carbon nanotubes formed by cutting a polymer resin-nanotube composite[J].Science,1994,265:1212-1214.
    [77]曹明礼,曹明贤.非金属纳米矿物材料[M].北京:化学工业出版社,2006.
    [78]Hofmann U.On the Chemistry of Clay[J].Angewandte Chemie International Edition,1968,7(9):681-692.
    [79]Barrientos-Ramirez S,Ramos-Fernandez E V,Silvestre-Albero J,et al.Use of nanotubes of natural halloysite as catalyst support in the atom transfer radical polymerization of methyl methacrylate[J].Microporous and Mesoporous Materials,2009,120:132-140.
    [80]Zhang L,Wang T M,Liu P.Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization[J].Applied Surface Science,2008,255:2091-2097.
    [81]Du M L,Guo B C,Lei Y D,et al.Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites:Interracial interaction and performance[J].Polymer,2008,49(22):4871-4876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700