用户名: 密码: 验证码:
基于遥感技术的西藏雅江(米林—加查段)泥石流源地特征分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏雅鲁藏布江(米林-加查段)沿线多为高山严寒区,岩石破碎,山体稳定性差,地质构造复杂,地震活动频繁;受季风气候控制,研究区各县段降雨量时空分布不均,冰川、冰湖分布广阔;此外,沿线地表切割强烈,寒冻风化作用强,水土流失严重,加之不合理的人类活动,使该地区的泥石流灾害频繁发生。实地调查研究区沿线共发育有泥石流沟241条,其中暴雨型泥石流188条,冰川型泥石流共53条,冰川型泥石流占泥石流沟总数的22%。
     通过本文的研究,利用遥感影像与DEM相结合处理分析,总结归纳该区域独有的泥石流灾害、源地物源及冰川、冰湖信息遥感解译特征,进而分析沿线泥石流源地信息分布特征,为泥石流的发展趋势评价提供有用的信息,同时也为西藏山区线性工程的预选线及日后线性工程的改扩建工程具有及大的帮助作用,文章主要得到的结论:
     1、对研究区沿线泥石流源地物源特征的遥感调查与分析,主要在RapidEye遥感影像数据的基础上把源地物源分为四类进行解译:一类是沟道堆积物,多为第四系松散及古冰川堆积物;第二类是滑坡、崩坡积物体,对这类物源提供泥石流活动的松散物质方量;第三类是森林线与冰蚀线之间的残坡积物,大部分为寒冻弱风化物质;第四类是冰蚀线以上残坡积物,多为寒冻强风化物质。此外,从RapidEye图像还可以清晰的识别泥石流沟道地形特征以及泥石流扇形地形态、面积等特征。
     2、对研究区沿线泥石流源地冰川、冰湖特征的遥感调查与分析,主要在Landast-7 ETM+多光谱影像数据的基础上,通过光谱波段比值法、主成分分析法、光谱角制图法、非监督分类与监督分类法等五种经典方法的对比验证最后选取一种效果较好的方法对冰川、冰湖信息进行提取。结果表明,监督分类提取的冰川信息图像清晰、层次分明、分类边界清楚、满足冰川地貌解译的要求。
     3、通过本文基于遥感手段开展了米林至加查段沿线泥石流源地物源及冰川水文信息特征的提取研究与分析的基础上表明:林芝至加查段沿线泥石流源地物源分布具有不均匀性,源地冰川分布具有不平衡性,沿线泥石流源地的物源在冰川融水及冰川型泥石流过后更加发育,积累的松散物质更加丰富,使泥石流源地物源进一步复活并产生大量新物源,从而使沿线泥石流发生频率增高,规模增大。
Tibet Brahmaputra (Nyingchi - Add check section), mostly along the cold mountain areas, rock crushing, the mountain poor stability, complex geological structure, seismic activity; by the monsoon climate control, study area, spatial and temporal distribution of rainfall is uneven county section, glaciers, ice Lake broad distribution; In addition, cutting the surface along a strong, strong frost weathering, soil erosion, coupled with irrational human activities, so that the frequent occurrence of debris flow area. Fieldwork in the study area are developed along the debris flow were 241, of which 188 storm debris flow, debris flow on a total of 53 glaciers, glacial debris flow accounted for 22% of the total number of debris flow.
     Through this study, the use of remote sensing image processing and analysis combined with the DEM, summarized the debris flow hazards unique to the region, the source surface features source and glaciers, glacial lakes interpretation of remote sensing characteristics of the information, and then analyzes the information along the debris flow source distribution, Trends for the evaluation of debris flow provide useful information, but also works for the Tibetan mountains linear linear pre-line and future projects and the renovation and expansion project with the help of a large role, this paper concluded:
     1. The source of the study area along the debris flow source characteristic surface features and analysis of remote sensing survey, mainly in the RapidEye high-resolution remote sensing data based on the source surface features to interpret the source is divided into four categories: one is the channel deposits, Mostly loose and ancient glacial Quaternary deposits; second is the landslide, avalanche slope plot objects to provide this type of source material side of loose debris flow volume; The third line of the forest line and between glacial Residual slope sediments, most chilling weakly weathered material; The fourth category is the residual slope above the glacial sediments, mostly frost weathered material. In addition, from RapidEye image of debris flow can be clearly identified and the debris flow fan channel topography to shape, size and other features.
     2. The study area along the debris flow source glaciers, glacial lakes investigation and analysis of remote sensing feature, mainly in the Landast-7 ETM + multispectral image data, based on the ratio method by spectral bands, principal component analysis, spectral angle mapping method, Unsupervised classification and supervised classification methods such as comparison of the five classical methods verify the final selection of a better way of glaciers, glacial lakes information extraction. The results showed that the glacier supervised classification of information extracted image is clear, structured, clear classification of the border, to meet the requirements of glacial landform interpretation.
     3. Carried out by means of this remote sensing investigation section Nyingchi to add surface features along the debris flow source of information sources and glacier hydrology study and analysis of feature extraction based on the show: check section Nyingchi to add surface features along the debris flow source with a uniform source distribution Nature, source uneven distribution of glaciers, the source of the material along the debris flow source in the glacial melt water and glacial debris flow after more development, more abundant accumulation of loose material, debris flow source to source further revival of surface features and produce a lot of new material Source, so that the increased frequency of landslides along the scale increases.
引文
[1]甄春相.遥感技术在铁路勘测中的作用[J].铁路航测,2000(4):23-25.
    [2]张永生.遥感图像信息系统[M].北京:科学出版社,2000.
    [3]张占忠.遥感技术在铁路勘察选线中的应用[J].铁道勘察,2005(1):44-46.
    [4]袁金国.遥感图像数字处理[M].北京:中国环境科学出版社,2006.2.
    [5]李德仁,刘良明,胡孝沁.1996-2000年中国摄影测量与遥感进展[A].第十二届全国遥感技术学术交流论文集[C],成都,2000.
    [6]张明华,薛重生.基于GIS、RS的西藏墨脱高等级公路工程地质勘察[J].干旱区地理,2004,27(3):409-413.
    [7]张明华.西藏墨脱高等级公路工程地质遥感勘察及GIS应用[J].中南公路工程,2005,30(3):43-47.
    [8]谭衙霖,沈伟,杨松林等.摄影测量与遥感在我国铁路建设中的应用综述[J].铁道工程学报,2007,1(1):13-19.
    [9]卓宝熙.遥感技术在工程勘测中的应用[J].工程勘察,2004(3):43-45.
    [10]卓宝熙.工程地质遥感判释与应用[M].北京:中国铁道出版社.2002,422-513.
    [11]卓宝熙.遥感技术在铁路建设中的实践与认识[M].北京:中国铁道出版社,2005,37- 55.
    [12]唐川,张军,万石云,等.基于高分辨率遥感影像的城市泥石流灾害损失评估[J].地理科学, 2006,26(3): 358-368.
    [13] Lina CW, Shieh C L,Yuan B D·Impact ofChi-Chi earthquakeon the occurrence of landslides anddebrisflows:examplefromtheChenyulanRiverwatershed,Nantou,Taiwan.EngineeringGe-ology[J]. 71(2003)49~61.
    [14]唐川,丁军,梁京涛.汶川震区北川县城泥石流源地特征的遥感动态分析[J].工程地质学,2010,18(1):1-7.
    [15]王学平.遥感图像几何校正原理及效果分析[J].计算机应用与软件,2008年9月,第25卷第9期
    [16]李为乐.遥感与GIS技术在山区铁路工程地质勘察中的应用研究[D].成都:成都理工大学,2008.
    [17]邓辉.高精度卫星遥感技术在地质灾害调查与评价中的应用[D].成都理工大学毕业论文,2007.
    [18]党安荣,王晓栋,陈晓峰,张建宝.ERDAS IMAGINE遥感图像处理方法[M].北京:清华大学出版社.2003
    [19]吴积善.泥石流及其综合治理[M].北京:科学出版社,1993.
    [20]刘希林,莫多闻.泥石流风险评价[M].成都:四川科技出版社,2002.1-8.
    [21]刘希林,莫多闻.泥石流易损度评价[J].地理研究,2002,21(5):569-577.
    [22]杜榕桓,康志成,陈循谦等.云南小江泥石流综合考察于防治规划研究[M].重庆:科学文献出版.
    [23]唐邦兴.中国泥石流灾害[M].商务印书馆,2002.
    [24]谢洪,钟敦伦.城镇泥石流减灾系统工程刍议[J].水土保持学报,2000,14(5):136-141.
    [25]王恭先,徐峻龄,刘光代,李传珠.滑坡学与滑坡防治技术[M].中国铁道出版社,2004.
    [26]叶米里扬诺娃.滑坡作用的基本规律[M].重庆出版社,1984.
    [27]苏爱军.滑坡稳定性评价原理与方法——条分发的改进[M].中国地质大学出版社,2008.
    [28]卓宝熙.工程地质遥感判释与应用[M].中国铁道出版社,2002.231-336.
    [29]胡厚田.崩塌与落石[M].中国铁道出版社,1989.1-35.
    [30]黄润秋,裴向军,董秀军,刘卫华等.雅砻江锦屏二级水电站边坡危岩体调查、险情排查及处理对策研究.成都理工大学,2006.
    [31]罗德福,毛济周等主编.川藏公路南线(西藏境内)山地灾害及防治对策[M].科学出版社,1995.72-75.
    [32]黄儒钦.水力学教程[M].成都:西南交通大学出版社,1993:44-45.
    [33]徐弘.泥石流松散固体物质临界集聚量估算模型研究[J].西南交通大学学报,1995;30(2):212-217.
    [34]徐弘.川西红层泥石流流域产沙评价模型研究[J].西南交通大学学报,1995;30(6):620-626.
    [35]吕儒仁,唐邦兴,朱平一.西藏泥石流与环境[M].成都科技大学出版社, 1999.
    [36]李邦良.琼西北地区冰川地貌陆地卫星TM图像解译[J].国土资源遥感,1998,(3):90-94.
    [37]李邦良,李志中,韩同林.内蒙古东部大陆冰川地貌卫星图像解译[J].地质力学学报,1999,5 (3):89-95.
    [38]王建.卫星遥感雪盖制图方法对比与分析[J].遥感技术与应用,1999,14(4):29-36.
    [39]李震,孙文新,曾群柱.综RS与GIS方法提取青藏高原冰川变化信息——以布喀塔格峰为例[J].地理学报,1999,54 (3):263-268.
    [40]鲁安新,姚檀栋,刘时银,等.青藏高原各拉丹东地区冰川变化的遥感监测[J].冰川冻土,2002,24(5):559-562.
    [41]张世强,卢健,刘时银.利用高光谱图像提取青藏高原喀喇昆仑山区现代冰川边界[J].武汉大学学报(信息科学版), 2001,26(5):435-440.
    [42]晋锐,车涛,李新,等.基于遥感和GIS的西藏朋曲流域冰川变化研究[J].冰川冻土,2004,26(3):261-266.
    [43]刘时银,上官冬辉,丁永建,等.基于RS与GIS的冰川变化研究——青藏高原北侧新青峰与马兰冰帽变化的再评估[J].冰川冻土,2004,26(3):244-252.
    [44]张明华.基于ETM+影像的西藏南迦巴瓦峰地区海洋性冰川信息提取[J].冰川冻土,2005,27(2):226-232.
    [45]张廷斌,唐菊兴,黄丁发.矿化蚀变信息提取的TM/ETM+遥感影像模式[J]遥感信息,2009(2):46-51.
    [46]张洪亮,倪绍祥,张军.国外遥感图像的地形归一化方法研究进展[J]遥感信息,2001(3):23-25.
    [47]仲振维,叶庆华.纳木那尼峰地区冰川信息的综合提取方法[J]冰川冻土,2009,31(4):716-724.
    [48]刘燕君.遥感图象中矿产信息的再现及其意义[J].科学通报,1983(16):995-997.
    [49]赵元洪,张福祥,陈南峰.波段比值的主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,9(3):12-16.
    [50]平仲良.从陆地卫星TM数据提取胶东某地区某种类型金矿的围岩蚀变信息[J].国土资源遥感,1993,18(4):42-45.
    [51]陈赶良,杨柏林.黔桂地区微细侵染型金矿蚀变信息提取机理[J].环境遥感,1996,11(2):88-93.
    [52]张世强,卢健,刘时银.利用高光谱图像提取青藏高原喀喇昆仑山区现代冰川边界[J].武汉大学学报(信息科学版), 2001,26(5):435-440.
    [53]陈本清,徐涵秋.遥感技术在森林火灾信息提取中的应用[J]福州大学学报(自然科学版),2001,29(2):23-26.
    [54]rostaAP,MooreJ.McM.Geologicalmappingusinglandsatthematicimageryinalmeriaprovince,southeastspain[J].IternationalJournalofRemoteSensing,1989,10(3):505-514.
    [55]Loughlin[LoughlinW.P.Principalcomponentanalysisforalterationmapping[J].PhotogrammetricEngineeringandRemoteSensing,1991(57):1163-1169.
    [56]赵元洪,张福祥,陈南峰.波段比值的主成份复合在热液蚀变信息提取中的应用[J].国土资源遥感,1991,9(3):12-1.
    [57]马建文,张齐道.利用TM数据提取含金蚀变带的方法研究—以冀北东卯地区为例[J].国土资源遥感,1994,(2)41-45.
    [58]张满郎.金矿蚀变信息提取中的主成份分析[J].遥感技术与应用,1996,11(3):1-5.
    [59]张玉君,杨建民.基岩裸露区蚀变岩遥感信息的提取方法[J].国土资源遥感,1998,36(2):46-52
    [60]王随霞,张行南等.基于MODIS数据的黄河水体提取方法研究[J].人民黄河.2007,29(3):27-28.
    [61]王旭红,贾百俊等.基于SAM遥感影像的分类技术研究[J].西北大学学报(自然科学版.2008,38(4):668-672.
    [62]陈姝,居为民.遥感图像分类方法及研究进展[J].河北农业科学,2009,13(1)143-146.
    [63]李海洋.遥感图象分类方法综述[J].林业科技情报.2008,40(1):4-5.
    [64]何瑞银,沈明霞,从静华.植被信息提取过程中ETM+遥感影像的分类方法[J].江苏农业学报,2008,24(1):29-32.
    [65]张家诚等.我国气候变迁的初步探讨[J].科学通报,1974,19(4):168-175.
    [66]程尊兰,田金昌等.西藏江河堵溃灾害及成灾环境分析[J] .灾害学,2009,24(1):26-30.
    [67]程尊兰,朱平一等.藏东南冰湖溃决泥石流灾害及其发展趋势[J].冰川冻土.2008,30(6):954-959.
    [68]唐川,梁京涛.汶川震区北川暴雨泥石流特征研究[J].工程地质学报,2008,16(6),751-758.
    [69] Ching-Weei Lin, Chjeng-Lun Shieh, Bee-Deh Yuan,et al. Impact of Chi—Chi earthquake on the occurrence of landslides and debris flows:example from the Chenyulan River watershed,Nantou,Taiwan[J].Engineering Geology,2003,(71):49-61.
    [70]朱静,唐川.云南省泥石流灾害危险度分区研究[J].中国地质灾害与防治学报,1996,7(2):86-93
    [71]秦晓敏.基于GIS的滑坡地质灾害危险性评价研究—以巩留县为例[D].新疆:新疆大学,2007.
    [72]李志林,朱庆.数字高程模型[M].2000,武汉:武汉测绘科技大学出版社.
    [73] Barling,R.D.,Moore,I.D.,Grayson,R.B.,Aquasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content[J].Water Resource Research,1994,30:1029-1044.
    [74]张彩霞.基于DEM的地形湿度指数提取与应用研究[D].陕西:西北农林科技大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700