用户名: 密码: 验证码:
珠海淇澳岛寒害致死海桑林迹地恢复初期植被特征及其影响因子的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过对淇澳岛寒害致死海桑林迹地恢复初期植被与土壤的调查以及温室潮汐模拟试验的开展,研究寒害后海桑林迹地的植被特征、海桑林迹地恢复初期植被分布的主要影响因子以及不同植被类型人工恢复的效果,通过野外调查和温室模拟实验得出如下结论:
     (1)寒害发生1.5年后,寒害致死海桑林迹地自然植被以老鼠簕和互花米草为主,并伴生有少量桐花树、三叶鱼藤、短叶茳芏、芦苇等湿地植物。海桑林迹地可分为老鼠簕+互花米草群落、互花米草群落、老鼠簕单优群落、老鼠簕稀疏群落和裸滩5种植被类型。灾后,互花米草和老鼠簕迅速占据淇澳岛海桑林迹地。
     (2)灾后湿地植物在裸滩定居生长的先后顺序为:老鼠簕和桐花树、芦苇、互花米草。老鼠簕和桐花树密度不断增加,若无人为干扰,灾后海桑林迹地低程滩涂具有裸滩发展成为老鼠簕稀疏群落、老鼠簕稀疏群落发展成为老鼠簕单优群落的可能性。
     (3)海桑林迹地各类型植被样地表层(30 cm)土壤含盐量低,养分含量丰富,适宜海滨湿地植物生长。灾前林下生长有老鼠簕的海桑林迹地,寒害后形成老鼠簕单优群落;灾前林下有极少植物生长或无植物生长的海桑林迹地,灾后形成老鼠簕+互花米草群落、互花米草群落、老鼠簕稀疏群落和低程裸滩。海桑林迹地各主要植被类型随滩涂高程呈地带性分布,按滩涂高程:互花米草+老鼠簕群落(196.03 cm)>互花米草群落(193.35 cm)>老鼠簕单优群落(177.38 cm)>老鼠簕稀疏群落(152.58 cm)>光滩(145.15 cm)。灾前海桑林下植被和滩涂高程是影响灾后海桑林迹地植被类型分布的主要因素。
     (4)海桑林迹地人工恢复,与无瓣海桑相比,互花米草群落中不宜种植秋茄,老鼠簕群落中不宜种植木榄。人工恢复2年,老鼠簕群落无瓣海桑+海桑恢复,可形成无瓣海桑+海桑-老鼠簕复层林结构,恢复效果最好。与互花米草群落相比,老鼠簕群落相对有利于红树植物的保存与初期生长。互花米草群落和老鼠簕群落的改造可选用速生红树植物无瓣海桑和海桑。
     (5)老鼠簕种子对模拟潮汐淹水具有广泛的适应性,淹水时间<15 h·d~(-1)适宜老鼠簕种子的萌发,长时间淹水(≥15 h·d~(-1))会推迟老鼠簕种子萌发的时间,并使发芽率和成苗率降低。淹水0-3h·d~(-1),老鼠簕总叶绿素含量、根、茎、地上部分和总生物量积累均显著大于其他处理,淹水时间≥18 h·d~(-1),老鼠簕幼苗总生物量、叶面积、叶绿素含量显著降低,根冠比开始上升。在模拟盐度为2‰的正规半日潮没顶淹浸培养条件下,淹水0-3 h·d~(-1)是老鼠簕幼苗生长的最佳淹水时间,18 h·d~(-1)是老鼠簕幼苗生长的一个临界淹水时间,淹水时间≥18 h·d~(-1)老鼠簕幼苗生长显著受到抑制。
     (6)在全竞争环境下,当淹水时间≥18 h·d~(-1),老鼠簕单丛分蘖数和地径增量开始出现负增长,高增量、根干重、茎干重、叶干重和总干重均出现骤降,老鼠簕的生长严重受到影响;当淹水时间≥15 h·d~(-1),互花米草单丛分蘖数开始出现负增长,高增量、根干重、茎干重、叶干重和总干重均出现骤降;在模拟盐度为10‰的正规半日潮淹浸培养条件下,淹水18 h·d~(-1)和15 h·d~(-1)分别是老鼠簕和互花米草的一个淹水临界时间。在老鼠簕和互花米草的全竞争环境下,淹水时间<9 h·d~(-1),相对有利于互花米草的生长,当淹水时间9≤t<18 h·d~(-1),相对有利于老鼠簕的生长。与互花米草相比,老鼠簕具有较强耐水淹的特性。
In this study, in order to ascertain the vegetation characteristics, the main factors of vegetation distribution on the mudflats, and effects of vegetations on the growth of mangroves planted, vegetation and soil were investigated in the chilling injury areas of Sonneratia caseolaris plantation, and simulated tide-inundate tests had been done in the greenhouse. Conclusions could be concluded as follows:
     (1)Nature vegetation in the chilling injury areas of S. caseolaris plantation were chiefly Acanthus ilicifolius and Spartina alterniflora, with a few other plants associated, such as Aegiceras corniculatum, Derris trifoliate, Cyperus malaccensis, and Phragmites communis 1.5 years after the chilling injury. Vegetation on the chilling injury areas could be divided into five types according to its characteristics, they were A. ilicifolius + S. alterniflora community, the consociation S. alterniflora community, the consociation A. ilicifolius community, A. ilicifolius sparse community and bare flat. A. ilicifolius and S. alterniflora could occupy the mudflats rapidly after the chilling injury.
     (2)The re-establish of wetland plants in the S. caseolaris plantation after the chilling injury was in chronological as the following order, A. ilicifolius and A. corniculatum, P. communis, S. alterniflora, and the density of A. ilicifolius and A. corniculatum was increased. Bare flat bad the possibility of evolving to A. ilicifolius sparse community, and A. ilicifolius sparse community bad the possibility of evolving to the consociation A. ilicifolius community if there had no human activity.
     (3)The surface soil (30 cm) of each vegetation plot was low in salts,rich in nutrient,and it was suitable for the growth of wetland plants in the mudflats. There would be the consociation A. ilicifolius communities in the S. caseolaris plantation if A. ilicifolius had been grown under the S. caseolaris forest before the chilling injury, and there would be A. ilicifolius + S. alterniflora community, the consociation S. alterniflora community, A. ilicifolius sparse community or low elevation bare flat if there had no or few plants. The distribution of main types of vegetation was zonality according to the elevation of beach, sort by elevation: A. ilicifolius + S. alterniflora community(196.03 cm) > the consociation S. alterniflora community(193.35 cm)>the consociation A. ilicifolius community(177.38 cm)>A. ilicifolius sparse community(152.58 cm) > bare flat(145.15 cm). Nature vegetation under the S. caseolaris forest before the chilling injury and elevation of beach were the main factors that influenced the ecesis and growth of A. ilicifolius and S. alterniflora in the mudflats of S. caseolaris plantation after the chilling injury.
     (4)In comparison with S. caseolaris, the consociation S. alterniflora community was not conducive to planting Kandelia candel and the consociation A. ilicifolius community was not conducive to planting Bruguiera gymnorrioza. It had been evolving to a multi-storied plantation 2 years later after S. apetala and S. caseolaris planted in the A. ilicifolius community, and it’s the best of the four recovery methods. The consociation A. ilicifolius community had been relatively beneficial to the Survival and growth of mangrove plants compared to the consociation S. alterniflora community, S. apetala and S. caseolaris could be planted in order to restructuring A. ilicifolius and S. alterniflora community.
     (5)The results showed the seed germination of A. ilicifolius was delayed and its germination rate was reduced under more than 15h·d~(-1) waterlogging treatments. The waterlogging time of less than 15h·d~(-1) was suitable for seed germination of A. ilicifolius. The chlorophyll content, dry weight of root, stem, shoots and the total biomass under 0~3 h·d~(-1) waterlogging treatment was significantly higher than the other treatments. In contrast, the total biomass, leaf area and chlorophyll content under more than 18 h·d~(-1) waterlogging treatment decreased remarkably and the root shoot ratio of the treated seedlings increased gradually. Our results indicated that A. ilicifolius grew best under 0-3h·d~(-1) waterlogging treatment in the artificial cultivation (the artificial seawater salinity was 2‰). The 18 h·d~(-1) was the critical waterlogging time of A. ilicifolius. The growth of A. ilicifolius was inhibited significantly under more than 18 h·d~(-1) waterlogging treatment.
     (6)Wetland plants A. ilicifolius and S. alterniflora were planted in a full competition condition. The tiller of each thicket and basal diameter of A. ilicifolius appears negative growth with no less than 18h·d~(-1) waterlogging treatments, meanwhile the height growth, dry weight of root, stem, leaf and the whole plant of A. ilicifolius decreased remarkably. The tiller of each thicket a of S. alterniflora appears negative growth with no less than 15 h·d~(-1) waterlogging treatments, meanwhile the height growth, the dry weight of root, stem, leaf and the whole plant of A. ilicifolius decreased remarkably. Under the cultivation with artificial seawater salinity of 2‰, the 18 h·d~(-1) was the critical waterlogging time of A. ilicifolius, and the 15 h·d~(-1) was the critical waterlogging time of S. alterniflora. it was conducive to the growth of S. alterniflora when waterlogging time less than 9 h·d~(-1), while it was conducive to the growth of when the waterlogging time 9≤t<18 h·d~(-1). In comparison with S. alterniflora, A. ilicifolius had a higher tolerance of waterlogging.
引文
[1]吴晓芙译(克雷格·S·坎贝尔,迈克尔·H·奥格登著).湿地与景观[M].北京:中国林业出版社, 2005:19-30
    [2]赵学敏.湿地:人与自然和谐共存的家园[M].北京,中国林业出版社, 2005
    [3]崔保山,刘兴土.湿地恢复研究综述[J].地球科学进展, 1999, 14(4): 358-364
    [4]彭少麟主编.热带亚热带恢复生态学研究与实践[M].北京,科学出版社, 2003:1-60
    [5]林鹏.红树林[M].北京:海洋出版社, 1984
    [6]何明海,范航清.我国红树林保护与管理的现状[A].见范航清,梁士楚主编,中国红树林研究与管理[C].北京:科学出版社,1995:173-181.
    [7] Peter K, Eric C F B,Sanga S. Man in the Mangroves[M].Tokyo:United Nations University Press.1985:130-l32.
    [8] Lewis, Roy R. Ecological engineering for successful management and restoration of mangrove forests[J]. Ecological Engineering,2005,24(4):403-418.
    [9]郑德璋,李玫,郑松发,等.中国红树林恢复和发展研究进展[J].广东林业科技, 2003,19(1):10-14.
    [10] C. D. Fied. Charter For Mangrove[Z],UN,1991.
    [11] Hsiang L L. Mangrove conservation in Singapore:A physical or a psychological impossibility?[J]. Biodiversity and Conservation,2000,9(3):309-332.
    [12] Reddi E U B, Raman A V, Satyanarayana B, et a1. Degradation of Mangrove Ecosystem Due to Hinterland Farm Practices:A Case for Coringa,East Coast of India [J].Journal of Nanjing Forestry University(Natural Sciences Edition),2003,27(2):1-6.
    [13] Winning, Geoff, Saintilan, et a1. Vegetation changes in Hexham Swamp, Hunter River, New South Wales, since the construction of floodgates in 1971[J].Cunninghamia, 2009,11(2):185-194.
    [14]范航清编.红树林——海岸环保卫士[M].南宁:广西科学技术出版社,2000.145-148.
    [15]张乔民,隋淑珍.中国红树林湿地资源及其保护[J].自然资源学报,2001,16(1):28-36.
    [16]李玫,廖宝文,管伟,等.广东省红树林寒害的调查[J].防护林科技,2009,2:29-31.
    [17]张乔民,隋淑珍,张叶春,等.红树林宜林海洋环境指标研究[J].生态学报, 2001,21(9):1427-1437.
    [18] Markley J L, McMillan C, and Thompson J G A. Latitudinal differentiation in response to chillingtemperatures among populations of three mangroves, Avicennia germinans, Laguncularia racemosa, and Rhizophora mangle, from the western tropical Atlantic and Pacific Panama[J]. Can. J. Bot.,1982,60(82):2704-2715.
    [19]林鹏,沈瑞池,卢昌义.六种红树植物的抗寒特性研究[J].厦门大学学报(自然科学版),1994,33(2):249-252.
    [20]周一鸣,卢昌义.低温处理下原产地与引种的海莲叶细胞亚显微结构比较[J].厦门大学学报(自然科学版),2001,40(5):1170-1174.
    [21]高秀梅,韩维栋,张秀枝.海桑及无瓣海桑引种驯化中的适应性研究[J].安徽农业大学学报,1998,25(4):413-416.
    [22]张乔民,郑德璋.红树林生长带与潮汐水位关系的研究[J].生态学报,1997,17(3):258-265.
    [23]郑松发,郑德璋,廖宝文.红树植物对缺氧生境适应能力的数量化研究[J].林业科学研究,1991,4(2):l53-159.
    [24]廖宝文,邱凤英,谭凤仪,等.红树植物秋茄幼苗对模拟潮汐淹浸时间的适应性研究[J].华南农业大学学报,2009,30(3):49-54.
    [25]陈鹭真,王文卿,林鹏.潮汐淹水时间对秋茄幼苗生长的影响[J].海洋学报,2005,27(2):142-147.
    [26]廖宝文,邱凤英,管伟,等.尖瓣海莲幼苗对模拟潮汐淹浸时间的适应性研究[J].林业科学研究,2009,22(1):42-47.
    [27]郑松发,陈玉军,陈文沛,等.华南沿海基围渔塘内无瓣海桑Sonneratia apetala的生长效应[J].生态科学,2004,23(4):320-322.
    [28]廖宝文,郑德璋,郑松发,等.红树植物桐花树育苗造林技术的研究[J].林业科学研究,1998,11(5):474-480.
    [29]陈鹭真,杨志伟,王文卿,等.厦门地区秋茄幼苗生长的宜林临界线探讨[J].应用生态学报,2006,17(2):177-181.
    [30]廖宝文,郑德璋,郑松发,等.红树植物秋茄造林技术的研究[J].林业科学研究,1996,9(6):586-592.
    [31]赖廷和,何斌源.木榄幼苗对淹水胁迫的生长和生理反应[J].生态学杂志,2007,26(5):650-656.
    [32]何斌源,赖廷和.广西沿海红海榄造林的宜林临界线[J].应用生态学报,2007,18(8):1702-1708.
    [33]何斌源,赖廷和,陈剑锋,等.两种红树植物白骨壤(Avicennia marina)和桐花树(Aegiceras corniculatum)的耐淹性[J].生态学报,2007,27(3):1131-1138.
    [34] Mostafa M, AboEl-Nil. Growth and establishment of mangrove (Avicennia marina) on the coastlines ofKuwait[J]. Wetlands Ecology and Management,2001,9(5):421-428.
    [35] Zhu J K.Salt and drought stress signal transduction in plants[J].Ann Rev Plant Biol,2002,53:247-273.
    [36]叶勇,卢昌义,胡宏友,等.三种泌盐红树植物对盐胁迫的耐受性比较[J].生态学报,2004,24(11):2444-2450.
    [37]郑文教,林鹏.盐度对红树植物海莲幼苗的生长和某些生理生态特性的影响[J].应用生态学报, 1992,3(1):9-14.
    [38]陈长平,王文卿,林鹏.盐度对无瓣海桑幼苗的生长和某些生理生态特性的影响[J].植物学通报,2000,17(5):457-461.
    [39]诸姮,胡宏友,卢昌义.盐度对药用红树植物老鼠簕种子萌发和幼苗生长的影响[J].厦门大学学报(自然科学版),2008,47(1):131-135.
    [40]缪绅裕,陈粤英,王厚麟.盐度和光因子对大亚湾木榄种胚萌根的影响[J].广州师院学报(自然科学版),2000,21(5):4-7.
    [41] Roxas P G, Gorospe J G. Coastal habitat restoration and hydrodynamics in Panguil Bay, Philippines[J]. Water Dynamics,2007,898:211-216.
    [42] Piou C, Feller I C, Berger U, et a1. Zonation patterns of Belizean offshore mangrove forests 41 years after a catastrophic hurricane[J]. Biotropica,2006,38(3):365-374.
    [43]陈玉军,昝启杰.台风对红树林损害及预防的研究[J].林业科学研究, 2000,13(5):524-529.
    [44]蓝福生,李瑞棠.广西海滩红树林与土壤的关系[J].广西植物,1994,14(1):54-59.
    [45] Cann J H,Scardigno M F,Jago J B. Mangroves as an agent of rapid coastal change in a tidal-dominated environment,Gulf St Vincent,South Australia:implications for coastal management[J]. Australian Journal of Earth Sciences,2009,56(7):927-938.
    [46]郑松发,郑德璋,廖宝文,等.红树植物半人工小群落的生态学研究-直接引进的乔木树种群对原灌木群落及其种群的扰动效应[J].林业科学研究,1996,9(3):246-254.
    [47]郑松发,郑德璋,廖宝文,等.红树植物半人工小群落的生态学研究—不间伐的灌木环境对乔木种群的适宜度及群落改造决策[J].林业科学研究,1998,11(3) :289-294.
    [48]张银龙和林鹏.九龙江河口秋茄林及白骨壤红树林土壤特性研究[J].河南农业大学学报,1998,32(4):325-330.
    [49]韩维栋,凌大炯,李燕,等.人工无瓣海桑林的土壤动态研究[J].南京林业大学学报(自然科学版),2003,27(2):49-54.
    [50]林鹏.中国红树林生态系[M].北京:科学出版社,1997(中文版):1-33.
    [51]陈玉军,郑德璋,廖宝文,等.人工红树林土壤有机质及酸度的初步研究[J].林业科学研究,2000,13(5):524-529.
    [52]曹知勉,叶勇,卢昌义,等.红树林恢复对海岸湿地土壤影响的初步研究[J].生态科学,2004,23(2):100-113.
    [53] Perry C T,Berkeley A. Intertidal substrate modification as a result of mangrove planting:Impacts of introduced mangrove species on sediment microfacies characteristics[J]. Estuarine Coastal and Shelf Science,2009,81(2):225-237.
    [54]曹长青,叶勇,邹俊毅,等.九龙江口秋茄红树林恢复对底质磷的影响[J].台湾海峡,2008,27(2):208-213.
    [55]王树功,黎夏,周永章,等.珠江口淇澳岛红树林湿地变化及调控对策研究[J].湿地科学,2005,3(1):13-20.
    [56]彭逸生,王晓兰,陈桂珠,杨雄邦.珠海淇澳岛冬季的鸟类群落[J].生态学杂志,2008,27(3):391-396.
    [57]周凡,邝栋明,简永强,等.珠海市淇澳岛红树林群落组成初步研究[J].生态科学,2003,22(3):237-241.
    [58]李博.生态学[M].北京:高等教育出版社,2000:118-122.
    [59] LY/T 1225-1999,森林土壤颗粒组成(机械组成)的测定[S].
    [60] LY/T 1237-1999,森林土壤有机质的测定及碳氮比的计算[S].
    [61] LY/T 1228-1999,森林土壤全氮的测定[S].
    [62] LY/T 1232-1999,森林土壤全磷的测定[S].
    [63] LY/T 1234-1999,森林土壤全钾的测定[S].
    [64] LY/T 1229-1999,森林土壤水解性氮的测定[S].
    [65] LY/T 1233-1999,森林土壤有效磷的测定[S].
    [66] LY/T 1236-1999,森林土壤速效钾的测定[S].
    [67] LY/T 1251-1999,森林土壤水溶性盐分分析[S].
    [68]廖宝文.深圳湾红树林恢复技术的研究[D].北京:中国林业科学研究院,2003.
    [69]陈福明,陈顺伟.混合液法测定叶绿素含量的研究[J].林业科技通讯,1984,2:4-8.
    [70]李合生.植物生理生化实验原理与技术[M].北京:高等教育出版社,2000:121-123.
    [71]王晶英,敖红,张杰,等.植物生理生化实验技术与原理[M].哈尔滨:东北林业出版社, 2003:135-136.
    [72] Stewert R C, Bewley J D. Lipid peroxidation associated with accelerated aging of soybean axes[J].Plant Physiology, 1980, 65:245-248.
    [73]郝建军,康宗利,于洋.植物生理学实验技术[M].北京:化学工业出版社, 2006:68-159.
    [74] Sherman R E, Fahey T J, Battles J J. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest[J]. Journal of Ecology, 2000, 88:165-178.
    [75] Juncosa A M, Tomlinson P B. A historical and taxonomic synopsis of Rhizophoraceae and Anisophyllcaceae[J]. Annals of the Missouri Garden, 1988, 75:1278-1295.
    [76] Ball M C. Interactive effects of salinity and irradiance on growth:implications for mangrove forest structure along salinity gradients[J]. Trees, 2002, 16:126-139.
    [77] Krauss K W, Allen J A. Factors influencing the regeneration of the mangrve Bruguiera gymnorrhiza (L)Lamk. on a tropical Pacific island[J]. Forest Ecology and Management, 2003, 176:49-60.
    [78]管伟,廖宝文,邱凤英,等.利用无瓣海桑控制入侵种互花米草的初步研究[J].林业科学研究, 2008,22(4):603-607.
    [79]陈玉军,郑松发,廖宝文,等,管伟.红树植物控制互花米草技术[J].林业实用技术,2009,12:35-36.
    [80]李玫,廖宝文,管伟,等.广东省红树林寒害的调查[J].防护林科技,2009,2:29-3.
    [81]胡艳波,惠刚盈.优化林分空间结构的森林经营方法探讨[J].林业科学研究,2006,19(1):1-8.
    [82]金久宏.萧山区森林结构优化分析[J],林业科技情报.2009,41(1):3-5.
    [83] Lin P. 1988. Mangrove vegetation[M]. Beijing: Ocean Press.
    [84] Curran M, James P, Allaway W G. The measurement of gas spaces in the roots of aquatic plants—Archimedes revistited[J]. Aqua. Bot, 1996, 54: 255-261.
    [85]叶勇,卢昌义,郑逢中,等.模拟海平面上升对红树植物秋茄的影响[J].生态学报,2004,24(10):2238-2244.
    [86]叶勇,卢昌义,谭凤仪.木榄和秋茄对水渍的生长与生理反应的比较研究[J].生态学报,2001,21(10):1654-1661.
    [87]陈鹭真,林鹏,王文卿.红树植物淹水胁迫响应研究进展[J].生态学报,2006,26(2):586-593.
    [88]林松.盐渍和水渍对拉贡木生长及生理的影响[D].厦门:厦门大学, 2009.
    [89]廖宝文,邱凤英,张留恩,等.红树植物白骨壤小苗对模拟潮汐淹浸时间的生长适应性[J].环境科学, 2010,31(5):1345-1351.
    [90] Jackson M B, Armstrong W. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil-flooding and submergence[J]. Plant Biol, 1:274-287.
    [91] Kozlowski T T. 1984. Plant responses to flooding of soil[J].BioScience, 34:162-167.
    [92] Tang Z C, Kozlowski T T. 1982. Some physiological and morphological responses of Quercus macrocarpa seedlings to flooding[J]. Can J For Res, 12:196-202.
    [93]陈德海,徐虹,连玉武.现代植物生物学实验[M].北京:科学出版社,2005.
    [94] Wang B, Song F B. 2006. Responses and adaptation on the Saline-alkali stress of Oats[J].Environment, 15(3):625-629.
    [95]杜秀梅,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    [96]古志钦,张利权.互花米草对持续淹水胁迫的生理响应[J].环境科学学报,2009,29 (4):876–881.
    [97]陈玉军,郑松发,廖宝文,等.珠海市淇澳岛红树林引种扩种问题的探讨[J].广东林业科技,2002,18(2):31-36.
    [98]唐国玲,沈禄恒,翁伟花,等.无瓣海桑对互花米草的生态控制效果[J].华南农业大学学报,2007,28(1):10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700