用户名: 密码: 验证码:
保护性耕作对旱作麦田CO_2排放通量的影响及其水热关系分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田土壤既是CO_2的重要排放源又是CO_2的吸收汇,在温室气体减排方面起着非常重要的作用,保护性耕作能够有效降低土壤CO_2的排放,增强土壤碳汇的作用。为了探讨保护性耕作对土壤CO_2排放通量的影响,本试验以旱地冬小麦为研究对象,共设了翻耕(T)、翻耕+秸秆还田(TS)、旋耕(RT)、旋耕+秸秆还田(RTS)、免耕(NT)、免耕+秸秆覆盖(NTS)6种处理,系统研究了保护性耕作对土壤CO_2排放通量、土壤微生物量碳、氮以及小麦产量的影响,进一步分析了CO_2排放通量与土壤水、热的相互关系。主要结论如下:
     1.土壤呼吸通量有明显的日变化规律,各天气状况下呼吸通量表现为:晴天>多云>阴天。晴天土壤呼吸峰值出现在13:00左右,多云和阴天稍晚一些,大约出现在14:00-15:00之间,各天气土壤呼吸最低值均出现在凌晨5:00左右。
     2.土壤呼吸通量在整个小麦生育期随着温度的升高而升高,表现为夏季高冬季低的规律。在整个变化过程中共出现三个峰值,分别是小麦播种期、拔节期和灌浆期,土壤呼吸通量最低值出现在越冬期。
     3.少耕和免耕能有效降低土壤呼吸通量,并以免耕效果更为显著;秸秆还田表现为增加土壤呼吸的作用。整个小麦生育期,不同耕作处理下土壤呼吸通量的顺序为:TS>T>RTS>RT>NTS>NT。
     4.各耕作措施下土壤呼吸通量与各层地温均呈极显著正相关关系,翻耕方式与15cm土壤温度相关性最好,旋耕方式与5cm相关性最好,免耕方式与各层土壤温度相关性差别不大。各层土壤温度与土壤呼吸通量的拟合二次方程优于指数方程。
     5.免耕、秸秆覆盖有很好的保水蓄水作用,并且表层保水作用优于深层。土壤水分含量与土壤呼吸通量之间没有显著相关性,未表现出明显规律性。
     6.整个小麦生育期,各处理土壤微生物量碳均呈单峰变化曲线,播种期土壤微生物量碳含量最小,扬花期最大。免耕和少耕能显著增加土壤表层微生物量碳。0-10cm土层,NTS、RTS、NT、RT、TS分别较T处理土壤微生物量碳增加37.3%、33.15%、19.8%、8.74%和7.65%;10-20cm土层,TS、RTS、RT、NTS、NT分别较T微生物量碳的增减为7.62%、4.92%、-1.84%、-14.5%、-17.9%。
     7.各耕作措施下0-10cm土层土壤微生物量氮均显著高于10-20cm土层土壤微生物量氮。0-10cm土层中,保护性耕作能有效增加土壤微生物量氮含量,并以免耕和免耕覆盖效果较优。NTS、NT、RTS、RT、TS分别较T处理增加54.8%、32.4%、20.8%、13.9%、7.8%。10-20cm土层各处理土壤微生物量氮差异较小。
     8.免耕方式能明显增加小麦穗粒数和千粒重;旋耕有利于有效穗的形成,增加小麦千粒重。秸秆还田有利于有效穗的形成,但穗粒数和千粒重与无秸秆处理的差别不大。免耕在耕作年限较短情况下明显降低小麦的理论产量和实际产量。
The soil of farmland is both an important source of CO_2 emission and the sink of CO_2, it plays a very important role in reducing the greenhouse gas emissions. The conservation tillage can reduce CO_2 emissions of soil, and enhance to sink of carbon in soil. To investigate the conservation tillage practices on soil CO_2 emission flux, the experiment, with winter wheat as the research object, sets 6 treatments: tillage (T), tillage + straw (TS), rotary tillage (RT), rotary tillage + straw (RTS), no-tillage (NT), tillage + straw (NTS) , this experiment studies the influence on soil CO_2 emission rates, soil microbial biomass carbon, nitrogen, wheat yield of different tillage, and analyzes the relation of soil temperature and moisture on CO_2 emission flux . After study, the main conclusions are as follows:
     1. Soil respiration flux has obvious day change; the emission flux is the highest when it’s sunny, second when there are many clouds, and minimum when cloudy. The soil respiration flux showed a single peak trend under every weather conditions. The peak appears at around 13:00 on sunny days, a little bit later when cloudy between 14:00-15:00, and the minimum value of soil respiration occurs at 05:00 am.
     2. Soil respiration flux shows a regular performance in the entire wheat growth period : high in summer and low in winter. Throughout the whole changing process there are three peaks, they are wheat sowing period, jointing period and filling period. And the lowest value appears in winter period.
     3. Minimum tillage and zero tillage can reduce soil respiration flux, and a more significant effect with the second one, besides, straws can increase the soil respiration. In the entire wheat growth period, soil respiration flux performs in the following order: TS> T> RTS> RT> NTS> NT.
     4. Throughout the entire growth period of wheat, the soil temperature show first descend and then increase; the minimum value appears in winter period, the highest in the sowing period. Within different tillage, the respiration flux of soil and soil temperature are highly positive correlation, T and NT have the best correlation with 15cm’s soil temperature, and RT has the best correlation with cm’s soil temperature. The ffititting equation of temperatures and soil respiration flux is the quadratic equation better than the index.
     5. With the increase of depth of soil, the soil water content firstly increases and then decreases, and stays stable after the 40cm depth. Zero tillage and straw mulch have a good effect of water storage and the ability of water storage in the surface is superior to the deep slayer. Soil water content and soil respiration flux are not significantly correlated and no obvious regularity.
     6. Within the entire wheat growth period, soil microbial biomass carbon in each treatment shows a single peak curve, at the sowing period, soil microbial biomass carbon has the minimum content, maximum when flowering period. Zero tillage and minimum tillage can significantly increase the microbial biomass carbon on the soil surface. At 0-10cm soil layer, NTS, RTS, NT, RT and TS compared with T the microbial biomass carbon increased 37.3%,33.15%, 19.8%, 8.74% and 7.65%. At 10-20cm soil layer, TS, RTS, RT, NTS and NT showed respectively increase or decrease rate is 7.62%, 4.92%, -1.84%, -14.5%, -17.9%.
     7. At 0-10cm soil layer, soil microbial biomass N is significantly higher than that of 10-20cm. In 0-10cm soil layer, conservative tillage can increase effectively soil microbial biomass nitrogen content, and better effect for NT and NTS. Compared with T the NTS, NT, RTS, RT and TS, respectively increased 54.8%, 32.4%, 20.8%, 13.9%, 7.8%. At 10-20cm soil layer there is smaller differences in microbial biomass.
     8. Zero-tillage is not conducive to the formation of effective panicles of wheat, but can increase the quantity of grain and grain’s weight; Rotary tillage can increase the formation of effective panicles and the weight of wheat, but grain number is not very different from traditional farming. Straw is conducive to the formation of the effective panicles, but not conducive to increase the number of grain and the weight of grain. Zero tillage can significantly decrease the yield of wheat, when the years of zero-tillage is too short.
引文
鲍士旦. 2000.土壤农化分析.中国农业出版社,
    常旭虹. 2004.保护性耕作技术的效益和应用前景分析[J].耕作与栽培, 1:1-4
    陈全胜,李凌浩,韩兴国,等. 2003.水热条件对锡林河流域典型草原退化群落土壤呼吸的影响[J].植物生态学报, 27(2):202-209
    陈全胜,李凌浩,韩兴国,等. 2004.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系[J].生态学报, 24(4):831-836
    陈述悦,李俊,陆佩玲,等.2004.华北平原麦田土壤呼吸特征[J].应用生态学报, 15(9)B:1552-1560
    陈佐忠,黄德华.1989.自然条件下大针茅草原几种主要植物氮、磷、钾、铁的季节动态[J]. 植物生态学与地植物学学报, 13:325-331
    戴万宏,王益权,黄耀. 2004.农业生态系统中土壤二氧化碳排放的研究[J].西北农林科技大学学报, 32(12):1-7
    丁庆堂.1986.不同耕法对草甸黑土肥力的影响[J].土壤通报, 17(7):61—64
    范丙全,刘巧玲.2005.保护性耕作与秸秆还田对土壤微生物及其溶磷特性的影响[J].中国生态农业学报, 3(3):130-132
    方华军,杨学明,张晓平. 2003.农田土壤有机碳动态研究进展[J].土壤通报, 34(6):562-568
    逄蕾,黄高宝.2006.不同耕作措施对早地土壤有机碳转化的影响.水土保持学报, 20:llO—113
    高程达,孙向阳,曹吉鑫,等. 2008.土壤二氧化碳通量原位测定方法及装置[J].北京林业大学学报, 2:102-105
    高美英,刘和,冀常军.2000.覆盖对果国土壤氨化细菌数量年变化的影响[J].土壤通报, 3l(16):273-274
    高明,周保同,魏朝富,等.2004.不同耕作方式对稻田土壤动物、微生物及酶活性的影响研究[J].应用生态学报, 15(7):1181-1 775
    高云超,朱文珊,陈文新.1994.秸秆覆盖免耕土壤微生物生物量与养分转化的研究[J].中国农业大学学报, 27(6):41-49
    高云超,朱文珊,陈文新.2001.秸秆覆盖免耕土壤细菌和真菌生物量与活性的研究[J].生态学杂志, 20(2):30-36
    关松荫. 1986.土壤酶学研究方法.北京:农业出版社, 220—249
    贾树龙,孟春香,任图生,等.2004.耕作及残茬管理对作物产量及土壤性状的影响[J].河北农业科学, 12(4):37~42
    江晓东,迟淑筠,等. 2009.少免耕模式对土壤呼吸的影响.水土保持学报, 23(2): 253-256
    姜勇,庄秋丽,梁文举. 2007.农田生态系统土壤有机碳库及其影响因子.生态学杂志[J], 26(2):278- 285
    康红,朱保安,洪利辉,等.2001.免耕覆盖对早她土壤肥力和小麦产量的影响[J].陕西农业科学, 9:1~3
    寇太记,朱建国,谢祖彬,等. 2008.大气CO2体积分数升高环境温度与土壤水分对农田土壤呼吸的影响[J].生态环境, 17(3):950-956
    林葆,抹继雄,李家康. 1996.长期施肥的作物产量争土壤肥力变化.北京:中国农业科技出版社, l-179
    李立科.1999.小麦留茬少耕秸秆全程覆盖新技术[J].陕西农业科学, 4: 40~4l
    李琳,张海林,陈阜,等. 2007.不同耕作措施下冬小麦生长季农田二氧化碳排放通量及其与土壤温度的关系.应用生态学报, 18(12): 2765-2770
    李小燕,龚家栋.2001.人工集水面降雨径流观测试验研究[J].水土保持学报, 15(1):2-4
    李新举,张志国,邓基先.1998.免耕对土壤生态环境的影响[J].山东农业大学学报, 29 (4):520-526
    李新举,张志国. 1999.秸秆覆盖对土壤水分蒸发及土壤盐分的影响[J],土壤通报, 30(6):257-258
    李素娟,李琳,陈阜,张海林. 2007.保护性耕作对华北平原冬小麦水分利用的影响[J].华北农学报, 22: 115-120
    李玉宁,王关玉,李伟.2002.土壤呼吸作用和全球碳循环[J].地学前缘, 4:351-357
    李志杰,谢承陶,林治安,等.2000.有机培肥的土壤环境效应与农业持续发展[J].中国青年农业科学学术年报, 246-249
    刘建军,王得祥,雷瑞德,等. 2003.秦岭天然油松、锐齿栎林地土壤呼吸与C02释放[J].林业科学, 39(2):8-13
    刘绍辉,方精云. 1997.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报, 17(5):469—476
    刘世平,庄恒扬,陆建飞.1998.免耕法对土壤结构影响的研究[J].土壤学报, 35(1):33-37
    吕家珑,张一平,王旭东,等.2001.长期单施化肥对土壤性状及作物产量的影响[J].应用生态学报, 12(4):569-572
    马秀梅,朱波,韩广轩,等. 2004.土壤呼吸研究进展[J].地球科学进展, 19: 491—495
    孟凡乔,吴文良.1999.高产农田生态系统土壤有机碳的输出规律及其影响因素[J].中国农业大学学报, 4(增刊): 39-44
    孟凡乔,关桂红,张庆忠,等. 2006.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律[J].环境科学学报, 26(6): 992-999
    孟磊,丁维新,蔡祖聪. 2008.长期施肥潮土土壤呼吸的温度和水分效应[J].生态环境, 17(2): 693-698
    钱国平,邱宁宁.2003.小麦、油菜田稻草覆盖抗旱保墒节水培肥技术[J].中国农技推广, 3: 53
    强学彩,袁红莉,高旺盛. 2004.秸秆还田两对土壤CO2释放和土壤微生物量的影响[J].应用生态学报, 15(3): 469-472
    邵景安,唐晓红,魏朝富,等. 2007.保护性耕作对稻田土壤有机质的影响[J].生态学报, 27(11): 4434-4442
    沈裕琥,黄相国,王海庆.1998.秸秆覆盖的农田效应[J].干旱地区农业研究, 16(1):45-50
    申元村,洪清华.2003.黄土高原土壤侵蚀有效防治战略[J].中国水土保持科学, 1(2): 22-27
    宋秋华,李凤民,刘洪升.2003.黄土地区地膜覆盖对麦田微生物体氮的影响[J].应用生态学报, 14(9):1512—1516
    孙进,王义炳.2001.稻草覆盖对旱地小麦产量与土壤环境的影响[J].农业工程学报, 17 (6):53-55
    孙利军,张仁陟,黄高宝. 2007.保护性耕作对黄土高原旱地地表土壤理化性状的影响[J]. 干旱地区农业研究, 25(6): 207-210
    孙文娟,黄耀,陈书涛,等. 2004.作物生长和氮含量对土壤2作物系统CO2排放的影响[J] . 环境科学, 25(3): 1-6
    隋淑霞,宇文剑飞,周景奎,等. 2002.保护性耕作对农作物生育及产量的影响分析[J].农村牧区机械化, 4: 61-64
    汤永禄,黄钢.2003.免耕露播稻草覆盖栽培小麦的生物学效应分析[J].西南农业学报, 16(2):37-41
    王昌全,魏成明,李廷强,等.2001.不同免耕方式对作物产量和土壤理化性状的影响[J].四川农业大学学报, 19(2):158-161
    王殿武,褚达华.1992.少、免耕对旱地土壤物理性质的影响[J].河北农业大学学报, 21(2): 28~33
    王殿武,文宏达.1994.半干旱高寒区保护性耕作法对士壤孔隙状况和微形态结构特征的影响[J].河北农业大学学报, 17:1-6
    汪可欣,王丽学,吴琼等. 2009.保护性耕作措施对夏玉米产量和水分利用效率的影响[J]. 节水灌溉, 1: 31-35
    王明星著.2001.中国稻田甲烷排放,北京科学出版社
    王晓燕. 2000.旱地机械化保护性耕作径流与土壤水分平衡模型[D].北京:中国农业大学, 42-43.
    王玉辉,周广胜.2000.两种土壤类型对羊草生物学特征的影响[J].草地学报, 8(3):220-225
    王芸,李增嘉,韩宾,等. 2007.保护性耕作对土壤微生物量及活性的影响[J].生态学报, 27(8): 3384-3390
    王芸,韩宾,史忠强,等. 2006.保护性耕作对土壤微生物特性及酶活性的影响[J].水土保持学报, 20(4): 120-124
    王跃思,刘广仁,王迎红,等.2003.一台气相色谱仪同时测定陆地生态系统CO2、CH4和N20排放[J].环境污染治理技术与设备, 4(10):84-91
    魏朝富.1990.垄作免耕下稻田土壤团聚体和水热状况变化的研究[J].土壤学报, 27(2):172-178
    吴发启,赵晓光,刘秉政,等.1999.黄土高原南部缓坡耕地降雨与侵蚀的关系[J].水土保持研究, 6(2): 53-60
    伍芬琳,李琳,张海林,陈阜. 2007.保护性耕作对农田生态系统净碳释放量的影响[J].生态学杂志, 26(12): 2035-2039
    徐阳春,沈其荣,雷宝坤.2000.水旱轮作下长期免耕和施用有机肥对土壤某些肥力性状的影响[J].应用生态学报, ll(4):849-952
    许迪. 1999.耕作方式对土壤水动态变化及夏玉米产量的影响[J].农业工程学报, 15(3):101-106
    徐增祥,任元.1999.成都平原稻草覆盖麦田免耕栽培的效应[J].作物杂志, 6:23-24
    闫海丽,张淑香.2006.冷凉地区不同耕作措施对土壤环境和作物生长发育的影响[J].中国土壤与肥料, 4:16-19
    严洁,邓良基,黄剑. 2005.保护性耕作对土壤理化性质和作物产量的影响[J].中国农机化, 2: 31-34
    杨景成,韩兴国,黄建辉,等. 2003.土壤有机质对农田管理措施的动态响应[J].生态学报, 23(4) : 787- 796
    杨学明,张晓平,方华军.2004.北美保护性耕作及对中国的意义[J].应用生态学报, 15 (2):335-340
    杨平,杜宝华.1996.国外土壤二氧化碳释放问题的研究动态[J].中国农业气相,17(1):48-50
    袁家福. 1996.麦田秸秆覆盖效应及增产作用. [甘肃农业大学硕].甘肃:甘肃农业大学
    张爱君,张明普.2001.长期施用有机和无机肥料对黄潮土有机质含量及组成的影响[J].江苏农业研究, 22(33):30-33
    张电学,韩志卿,李东坡,等.2005.不同促腐条件下秸秆还田对土壤微生物量碳、氮、磷动态变化的影响[J].应用生态学报, 16(10):1903-1908
    张海林.200l.华北平原麦玉二熟区覆盖免耕土壤-作物系统农田耗水与调控. [中国农业大学博士学位论文].北京,中国农业大学
    张海林,陈阜,秦耀东,等.2002.覆盖免耕夏玉米耗水特性的研究[J].农业工程学报, 8(2):36~40
    张厚碹,李玉娥.1996.减缓农业生产中温室气体排放的对策及其经济可行性初探[J].中国农业气象, 17(5):7~11
    张金波,宋长春,杨文燕. 2005.不同土地利用下土壤呼吸温度敏感性差异及影响因素分析[J].环境科学学报, 25(11) : 1537~1542
    张庆忠,吴文忠,王明新,等. 2005.秸秆还田和施氮对农田土壤呼吸的影响[J].生态学报, 25(11): 2883-2887
    张宇,张海林,等. 2009.耕作措施对华北农田CO2排放影响及水热关系分析[J].农业工程学报, 25(4): 47-52
    赵聚宝,梅旭荣,薛军红,等. 1996.秸秆覆盖对早地作物水分利用率的影响[J],中国农业科学, 29(2):59-66
    赵君范,黄高宝,等. 2007.保护性耕作对地表径流及土壤侵蚀的影响[J].水土保持通报, 27(6): 16-19
    赵四申,段汝浩,宁吉洲,等.2002.玉米秸秆整株深埋还田技术研究[J].农业工程学报, 18(2);58—6l
    赵小蓉,赵燮京,陈先藻. 2009.保护性耕作对土壤水分和小麦产量的影响[J].农业工程学报, 25: 6-10
    周凌云,徐梦雄. 1997.秸秆覆盖对麦田耗水量与水分利用率的影响[J],土壤通报, 28(5):205—206
    周兴祥.2001.一年两熟地区机械化保护性耕作体系试验与分析.[中国农业大学博士学位论文].北京:中国农业大学
    周晓飞,张国庆. 2007.不同耕作模式下农田土壤呼吸变化初步研究[J].安徽农学通报, 13(8): 64-65
    朱海平,姚槐应,张勇勇,等.2003.不同培肥措施对土壤微生物生态特征的影响[J].土壤通报, 34(2):1 40-142
    朱文珊. 1988.秸秆覆盖免耕法的节水培肥增产效益及应用前景[J],干旱地区农业研究, 4:12-17
    朱自玺. 2000.秸秆覆盖麦田水分动态及水分利用效率研究[J].生态农业研究, 8(1):34-37
    Andrews J A, Matamala R, Westover K M, et a1. 2000.Temperature effects on the diversity of soil heterotrophs and the d13C of soil-respired C02[J].Soil Biol.Biochem,32:699-706
    Bergstrom D W, Monreal C M, Tomlin A D, et al. 2000.Interpretation of soil enzyme activities in a comparison of tillage practices along a topographic and textural gradient[J].Canadian Journal of Soil Science, 80:71-79
    Blevins R L.1983. Change in soil properties after 10 years continuous non-tilled and conventionally tilled corn.Soil and Tilled research, (3):135-146
    Bonde T A, Schnurer J, Rosswall T, et al. 1988. Microbial biomass as a fraction of potentially mineralizable N in soils from long-term field experiments [J]. Soil Biol. Biochem, 20(4): 447- 4521
    Bruce R R. 1990. Tillage and crop rotation effect on characteristics of sands surface soil [J]. Soil Sci. Soc. Am J, 54(6):1744-1747
    Comish P S, Lymbery J R.1987. Reduced early growth of direct drilled wheat in southern New South Wales:causes and consequences [J].Australian Journal of Experimental Agriculture, 27:869-880
    David C.2002. On—farm assessment of soil quality in California’s Central Valley[J]. Sustainable Agriculture Research and Education Program, 14(2):15-24
    Davidson E A, Belk E and Boone R D.1998. Soil water and temperature as independent or confounded factors controlling soil respiration in a temperature mixed hardwood forest[J].Global Change Biology, 4(2):217-227
    Dennis D B, Bruce B H, Tilden P.1988. Meyers Measuring Biosphere-Atmosphere Exchanges of Biologically Related Gases with Micrometeorological Methods[J].Ecology, 69(5): 1331-1340
    Hammel J E. 1995. Long-term tillage and crop rotation effects on winter wheat production in northern Idaho[J]. Agron, 87:16-22.
    Hendrix P R, Han C Y, Groffman P M.1998. Soil respiration in conventional and no-tillage Agro ecosystems under different winter cover crop rotations[J].Soil and Tillage Research, 12:l35—148
    Holt J A . 1990. Soil respiration in the seasonally dry tropics near Townsville , North Queensland[J].Aust.J.Soil Res, 28:737-745
    Kucera C L, Kirkham D R.1971. Soil respiration studies in Tall grass Prairie in Missouri[J].Ecology, 52:912-915
    Lal R.1989. Conservation tillage for sustainable agriculture:tropics VS temperate environments[J].Advances in Agronomy, 42:186-197
    Lal R. 2004. Soil carbon sequestration impact s on global climate change and food security [J]. Science, 304: 1623-1627
    llstedt U, Nordgren A, Maimer A.2000. Optimum soil water for soil respiration before and after amendment with glucose in humid tropical acrisols and a boreal mor layer[J].Soil Biology and Biochemistry, 32:1591-1599
    Luo Y, Wan S, Hui D, Wallace L.2001.Acclimatization of soil respiration to warming in a tall grass prairie,Nature,413:622—625Marta B, Jolankai M, Gyuricza C, et al. 2003. Results and consideration in conservation tillage in Hungary [C]. ISTROC, 159-164
    McCarty G W, Shelton D R, Sadeghi A M. 1999. Influence of air porosity on distribution of gases in soil under assay for identification[J],Bi01.Fertil.Soils, 30:173-178
    Millington R.J.1959. Gas diffusion in porous media[J].Science, 130:100-102
    Nina B.2000. Biotic and a biotic factors controlling soil respiration rates in piceabies stands[J].Soil Biology Biochemistry, 32:1625—1635
    Paustian K, Six J and Elliott E T,et a1.2000,Management options for reducing C02 emissions from agricultural soils.Biogeochemistry, 48:147-163
    Popp M P,Keisling T C,McNew R W,et a1.2002. Planting Data,Cultivar,and Tillage System Effects on Dryland Soybean Production[J].Agron. J, 94:81-88
    Puri G, Ashman M R. 1992. Relationship between soil microbial biomass and gross N mineralization. Soil Biol. Biochem, 30: 251-256
    Raich J W, Potter C S.1995. Global patterns of carbon dioxide emissions from soils[J].Global biogeoehem.Cycles, 9(1):23-36
    Reinbott T M, Conley S P, Blevins D G.2004. No-tillage corn and grain sorghum response to cover crop and nitrogen fertilization[J].Agron J, 96:l158-1163
    Schnure J, Rosswall T. 1987. Mineralization of nitrogen from15N labeled fungi, soil microbial biomass and roots and its uptake by barely plant[J]. Plant and Soil, 102: 71- 78
    Schimel D S, Braswell B H, Holland M,et a1.1994. Climatic edaphic and biotic controls over storage and turnover of carbon in soils[J].Global Boigeochem.Cycles, 8(3):279-293
    Sesio R A.1992. Temperate forest ecosystems in the global carbon cycle.Ambio, 21:274—277
    Singh J S and Gupta S R.1997. Plant decomposition and soil respiration in terrestrial ecosystems.Bot.Rev.43:449—529
    Tracy P W.1990. Carbon nitrogen phosphorus and sulfur mineralization in plow and no-till cultivation, Soil Sci Soc Am J, 54(2):457—461
    Unger P W. 2003. Meditertanean Conservationer Agriculture:Paradigm for cropping system [J]. ISTROC,Australian, 774-779
    Wang Z M, Zhu P L, Huang D L. 2003. Straw carbon decomposition in situ field and characteristics of soil biomass carbon turnover [J]. Acata Pedologica Sinica, 40(3): 446 - 453
    West T O. 2002b. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis [J]. Soil Science Society of America Journal, 66: 1930- 1946
    Zak D R, Holmes W E, MacDonald N W, et a1.1999. Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization[J].Soil Science Society of America Journal, 63:575-584

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700