用户名: 密码: 验证码:
食用菌渣堆肥过程中氮素转化规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着食用菌需求量的增加,食用菌菌渣的数量也在不断的增加。大量的食用菌菌渣随意丢弃造成了环境污染和资源浪费。以食用菌菌渣生产有机肥既可实现菌渣的资源化利用同时又可避免环境污染。本研究选用食用菌菌渣和牛粪进行好氧堆肥试验,通过考察堆肥周期中各种氮素含量、与氮素转化相关微生物的数量及一些酶活性的变化,来研究食用菌菌渣与牛粪的不同比例及腐熟堆肥和外源固态菌剂的添加对堆肥过程中氮素转化的影响。主要结论如下:
     1.食用菌渣与牛粪比例分别为2:1、1:1和1:2的三个堆肥处理的温度在55℃以上的天数分别是6d、8d和10d,添加腐熟堆肥和纤维素降解菌剂的两个堆肥处理的温度在55℃以上的天数均为8d。5个堆肥处理均达到了无害化标准。食用菌渣与适量牛粪的混合有助于菌渣堆肥的升温,腐熟堆肥和纤维素降解菌剂的添加有助于菌渣堆肥高温期的延长及温度峰值的增加。且5个堆肥处理的pH也符合腐熟堆肥标准。
     2.随着堆肥的进行,各处理中铵态氮含量呈现先增加后减少的趋势,而硝态氮含量的变化趋势与之相反。堆肥中氮素的主要存在形式是有机氮,有机氮变化与总氮变化趋势大致相同。在堆肥结束时,处理1和2的总氮含量低于初始,而添加外源菌剂的处理4和5则高于初始,因此添加腐熟堆肥和纤维素降解菌剂能够减少菌渣堆肥的氮素损失,增加堆肥的有机氮含量,具有氮素的固持作用,从而总氮含量高于其它处理。
     3.堆肥氮素转化微生物中数量最多的是氨化菌。在处理1、4和5中,氨化菌的数量随堆肥周期先增加后减少,与铵态氮变化趋势相同,表明氨化菌是铵态氮的主要产生者。堆肥中亚硝化菌和硝化菌数量总的趋势是随堆肥周期不断地增加,尤其在降温期后呈现大幅度增长:反硝化菌数量变化趋势与硝化菌类似。在硝化菌与反硝化菌的综合作用下硝态氮略有上升。固氮菌的数量在堆肥结束时略低于堆肥初始时,但数量始终高于硝化菌和反硝化菌。另外,堆肥中数量最多的微生物类群是细菌,其次是放线菌,最后是真菌。50℃培养的微生物数量低于30。C培养的微生物数量。堆肥高温期,3个处理的纤维素酶活均下降,在降温期有所回升,在21天时,外加纤维素降解菌的处理5的纤维素酶活最高。而各个处理中的蛋白酶和脲酶的活性在高温期迅速下降,此后则处于稳定状态。
With the increasing requirement of edible mushrooms, the amount of spent mushroom dreg has a significant rise. A mass of spent mushroom dreg littered could not only cause serious environmental pollution, but also lead to a waste of resources. Aerobic composting is an important way to transform spent mushroom dreg to high quality organic fertilizer. This paper focused on aerobic composting using different ratios of edible fungi dreg to cow dung and its nitrogen transforming by measuring the contents of various nitrogen form, the number of nitrogen transformation microbes and the activity of some enzymes. This paper also investigated the nitrogen protection of compostng by adding matured compost and mixed microbial incoculant. The main conclusions are as follows:
     1. The ratio of mushroom dreg to cow dung (by weight) in 3 compost treatments were 2:1,1:1 and 1:2. respectively. Another 2 compost treatments with 2:1 of mushroom dreg/cow dung ratio were added with matured compost and composite cellulose-degrading microbe, respectively. The duration of thermophilic phase (> 55℃) were 6 days in the treatment of mushroom dreg/cow dung ratio 2:1,8 days in the treatment of 1:1 and 10 days in the treatment of 1:2. The results showed that the appropriate amount of cattle dung mixed was benefit to temperature rising of spent mushroom dreg compost. At the same time, the high temperature period was prolonged to 8 days in the treatments with matured compost and composite cellulose-degrading microbe. The pH of all 5 treatments also fit to the matured compost standards. The results demonstrated that the 5 treaments had been composted successfully.
     2. With the process of composting, the amount of NH4-N of all treatments increased firstly and then decreased, while the trend of NO3-N content was opposite. The main form of nitrogen was organic nitrogen, which had a similar trend as total nitrogen. At the end of composting, total nitrogen content in the treatments with additive increased compared to that in the treatment without additive. It implied that the matured compost and composite cellulose-degrading microbe added could reduce nitrogen loss in mushroom dreg composting.
     3. Ammonifier was dominant in nitrogen transformation microbes in the compost. In the 3 treatments, the number of ammonifiers increased greatly firstly and then declined gradually. However, the amount of nitrifying bacteria and nitrite bacteria increased in cooling stage and in maturation stage. The number of denitrifying bacteria also increased in the same stage of composting. The number of azotobacter was more than the amount of nitrifying bacteria and denitrifying bacteria during composting. At the end of composting, the number of azotobacter was slightly less than that at the beginning of composting. In addition, the number comparision of various kinds of microbe in composting was bacteria>actinomycetes>fungi. The activity of cellulose enzyme in 3 composts declined in thermophilic phase and subsequently increased in cooling phase. The activity of cellulose enzyme in the treatment added composite cellulose-degrading microbe was maximum on 21th day. It suggested that cellulose-degrading microbe added started to play a role in the matured stage of compost. The enzyme activities of protease and urease droped rapidly in thermophilic phase and were steady in cooling phase and in matured phase.
引文
[1]李季,彭生平.堆肥工程使用手册[M].化学工业出版社,2005,9,14-65
    [2]Bremner J M.Organic forms of nitrogen[A]. Black C A(eds.).Methods of soil analysis.Agronomy[M]. USA:Am. Soc. of Agron. Inc. Madison, Wis:1965,9
    [3]Hiraku Sasaki, Maruyama, Hanatsu Suzuki, Jun Nonaka, et al.Distribution of Ammonia Assimilating Bacteria In the Composting Process[J]. Compost Science & Utilization,2004, 12(2):108-114
    [4]Sweeten J. M. Composting Manure and sludge. In Proceeding of the National Poultry Waste Management Symposium,1998
    [5]刘有胜.基于PCR-DGGE方法的餐厨垃圾堆肥微生物多样性分析[D].湖南大学,2008
    [6]段丽杰.养殖业家畜粪便减量化处理的研究[D].华北师范大学,2005
    [7]D L Elwell, J H Hong, H M Keener. Composting hog manure/sawdust mixtures using intermittent and continuous aeration:Ammonia emissions[J]. Compost Science&Utilization, 2002,10(2):142-150
    [8]赵秋,鲍艳宇.堆肥过程中氮素损失的控制[J].中国农学通报,2007,23(7):375-378
    [9]F Eiland, M Leth, M Klamer, A-M Lind, et al. C and N turnover and lignocellulose degradation during composting of Miscanthus straw and liquid pig manure[J]. Compost Science & Utilization,2001,9(3):186-197
    [10]Shiw. Norton JM, Miller B E, etal. Effects of aeration and moisture during window composting on the nitrogen fertilization values of dairy waste compost[J]. Applied Soil Ecology,1999,11:17
    [11]Mcgill W B, Leonard J J, Janzen R A, etal. Nitrogen conservation during industrial scale composting[R]. Edmonton Canada:Department of Renewal Resources, University of Alberta,1998
    [12]张相锋,王洪涛,周辉宇等.花卉废物和牛粪联合堆肥中的氮迁移[J].环境科学.2003,24(3):126
    [13]李国学,李玉春,李彦富.固体废弃物堆肥化及堆肥添加剂研究进展[J].农业环境科学学报,2003,22(2):252-256
    [14]黄懿梅,曲东,李国学.调理剂在鸡粪锯末堆肥中的保氮效果[J].环境科学,2003,24(2):156.
    [15]钱承梁,鲁如坤.农田养分再循环研究Ⅳ.防止粪肥氨挥发的研究[J].土壤,1996,28(1):8-13
    [16]Kirchmann H., Witter E.. Ammonia volatilization during aerobic and anaerobic manure decompostion[J]. plant and soil,1989,115(1):35-41
    [17]钟顺清.王周琼,川上敞.草炭对土壤中尿素氮的动态影响[J].于旱区研究,2000,17(20):65-69
    [18]王岩,王文亮,霍晓婷.家畜粪尿的堆肥化处理技术研究II.堆肥材料的发酵特性和氨气挥发[J].河南农业大学学报.2002,36(3):284—287
    [19]马良.邓九兰等.室内氨气污染的净化试验研究[J].中国环境监测,2001,17(4):63-65
    [20]Witter E, Kirchmann H. Peat Zeolite and basalt as adsorbents of ammoniacal nitrogen during manure decomposition[J]. Plant and Soil 1989,115(1)
    [21]Moore P. A., Jr. T. C. Daniel, D. R. Edwards, and D. M. Miller. Effect of chemical amendments on ammonia volatilization from poultry litter[J]. J. Environ. Qual.1995,24: 293-300
    [22]Darees Boucher V, Revel J C, Guiresse M, et al. Reducing ammonia losses by adding FeCl3 during composting of sewage sludge[J]. Water Air & Soil Polution,1999,112(3/4)
    [23]Jeony Y K, Kim J S. Anew method for convervation of nitrogen in a erobic composting processes[J]. Bioresource Technology,2001,79:129
    [24]叶素萍.农牧业固体废弃物堆肥化处理过程中氮素损失调控技术的研究[D].北京:中国农业大学,2000
    [25]钟理.废水中氨的除去及回收利用[J].现代化工,1998,1:33-3
    [26]Jeong Yeon-Koo, Kim Jin-Soo. A new method for conservation of nitro-gen in aerobic composting processes[J]. Bioresource Technology,2001,79 (2):129-133
    [27]Jeong Yeon-Koo, Hwang Sun-Jin. Optimum doses of Mg and P salts forprecipitating ammonia into struvite crystals in aerobic composting[J]. Bioresource Technology,2005,96 (1):1-6
    [28]任丽梅,贺琪,李国学,等.氢氧化镁和磷酸混合添加剂在模拟堆肥中的保氮效果研究及其经济效益分析[J].农业工程学报,2008,24(4):225-228
    [29]Tiwari V N. Composting of dairy farm wastes and evaluation of its manunial value[J]. Proc National Academy of Science, India,1989,59:109
    [30]Tiwari V N. Effect of cattle dung and rock phosphate on composting of woolwaste[J]. Biological Wastes.1989,27:223
    [31]石春芝,蒲一涛,郑宗坤等.垃圾堆肥接种固氮菌对堆肥含氮量的影响[J].应用与环境生物学报,2002,8(4):419-421
    [32]赵京音,姚政.微生物制剂EM控制鸡粪堆置过程恶臭的研究[J].农村生态环境,11(4):54-56
    [33]黄懿梅,曲东,李国学等.两种外源微生物对鸡粪高温堆肥的影响[J].农业环境保护,2002,21(3):208-210
    [34]胡菊.VT菌剂在好氧堆肥中的作用机理及肥效研究[D].北京:中国农业大学,2005.
    [35]栗绍湘,李玉俊等.堆肥过程中的保氮技术[J].环境卫生工程,2001,9(4):185-186.
    [36]李季,彭生平.堆肥工程实用手册[M].北京,化学工业出版社,2005,9
    [37]. Hong J H, Park K J, ChoiW C. Using biofilters to reduce ammonia emissions[J]. Biocycle, 2002,43(11):43
    [38]魏自民,席北斗,赵越.生活垃圾微生物强化堆肥技术[M].北京:环境科学出版社,2008.7
    [39]席北斗,魏自民等.有机固体废弃物管理与资源化技术[M].北京:国防工业出版社,2006.1
    [40]Abdennaceur Hassen, Kaouala Belguith, Naceur Jedidi. Microbial characterization during composting of municipal solid waste[J]. Bioresource Technology,2001,80:217-225
    [41]Beffa T, Blanc M. Lyon P F. et al. Isolation of thermus strains from hot composts 60-80℃ [J]. Appl Environ Microbiol,1996,62:1723-1727
    [42]Waksman S. A., Cordon T. C., Hulpoi N. Influence of temperature upon the microbiological population and ecomposition processes in composts of stable manure[J]. Soil Sci.,1939b, 47:83-114
    [43]Khalil A I. Beheary M S, Salem E M. Monitoring of microbial population and their cellulolytic activities during the composting of municipal solid waste[J]. World Journal of Microbiology and Biotechnology,2001,17:155~161
    [44]王伟东,刘建斌,牛俊玲,吕育财,崔宗均.堆肥化过程中微生物群落的动态及接菌剂的应用效果[J].农业工程学报,2006,22(4):148-152
    [45]Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment a review[J]. Bioresource technology,2000,72:169-183
    [46]马丽红.牛粪高温堆肥化中氮素转化的微生物机理研究[D],陕西,西北农林科技大学,2009
    [47]Tiquia S M, Wan JHC, Tam N F Y. Microbial population dynamics and enzyme activities during composting[J]. Compost Science & utilize,2002,10(2):150-166
    [48]关松荫.土壤酶活性影响因子的研究I.有机肥料对土壤酶活性及氮磷转化的影响[J].土壤学报,1989,23(1),72-76
    [49]Jonathan W, Wong C, Fang Min. Effects of lime addition on sewage sludge composting process[J]. WatRes,2000,34(15):3691-3698
    [50]管道平,胡清秀,冯作山.食用菌菌渣堆肥化促进秸秆菌业良性循环[A],中国农作物研究进展2008:462-464
    [51]K. L. Lau, Y. Y. Tsang, S. W. Chiu. Use of spent mushroom compost to bioremediate PAH-contaminated samples[J]. Chemosphere,2003, (52):1539-1546
    [52]王德汉,项钱彬,陈广银.蘑菇渣资源的生态高值化利用研究进展[J].有色冶金设计与研究,2007,28:262-266
    [53]孙建华,袁玲,张翼.利用食用菌菌渣生产有机肥料的研究[J].中国土壤与肥料,2008,(1):52-55
    [54]冯国杰,成官文,王瑞平.菌渣、鸡粪联合堆肥工艺研究[J].安全与环境学报,2007,7:86-89
    [55]郭夏丽,杨小丽,李顺义,王岩.秸秆降解菌的筛选及菌种组合[J].郑州大学学报2010,31(1):74-77
    [56]Reese, E. T. Enzymatic hydrolysis of the walls of yeasts cells and germinated fungal spores[J]. Biochimica et Biophysica Acta(BBA),1977,499(1):10-23
    [57]刘洁,李宪臻,高培基.纤维素酶活力测定方法评述[J].工业微生物,1994,24(4):27-32
    [58]杨小丽.秸秆降解菌的选育及复配研究[D].郑州大学,2009
    [59]GB79592-87,粪便无害化卫生标准[S].
    [60]王伟东,刘建斌,牛俊玲,吕育财,崔宗均.堆肥化过程中微生物群落的动态及接菌利的应用效果[J],2004,22(4):148-151
    [61]Godden B, Ball AS, Helvenstein P, et al. Towards elucidation of the lignin degradation path way in actinomycetes[J]. Journalof General Microbiology,1992,138:2441-2448
    [62]金志刚,屈计宁.硝化细菌富集技术分沂及方法研究[J].上海环境科学,1998,8:16-19
    [63]马丽红.黄懿梅等.牛粪堆肥化中氮素形态与微生物生理群的动态变化和耦合关系[J].农业环境科学学报,2009,28(12):2674-2679.
    [64]李阜棣,胡正嘉.微生物学[M].北京:中国农业出版社,2000:288-291
    [65]谷洁,李生秀,秦清军,李鸣雷,高华.农业废弃物静态高温堆腐过程中的生物化学变化[J].中国农业科学,2005,38(8):1699-1705

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700