用户名: 密码: 验证码:
新型摩擦偶合器设计与有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械设备尤其是煤矿机械设备经常在带载荷状况下启动和运转,因此,传动装置须具有“软启动”的工作特性。机械设备的“软启动”特性是指设备在重载工况下能够可控地逐步克服整个系统的惯性而平稳地启动,它不仅能够大幅度减轻传动系统所受到的启动冲击,同时还能减小电动机的启动电流、电动机的热冲击负荷及对电网的影响。此外,还可以选用容量相对较小的电动机,因而也能减少不必要的设备投资和节约能源。山东科技大学与泰安润泽机电设备有限公司联合开发了一款新型带反馈控制的摩擦偶合器。此产品与原有的摩擦偶合器相比,具有以下突出特点:用输出轴转速反馈控制输出力矩,过载系数随输出轴转速成平方关系增加,软启动效果好,起动平稳;机械正常运转时不存在滑差,机械效率高,保证了主从动设备的高效传动。反馈式摩擦偶合器是一种兼容性好的软启动装置,不仅结构简单,使用和维修方便,而且价格低廉,性能可靠,重量轻体积小。
     本文首先研究了反馈控制摩擦偶合原理,根据此原理对一款90KW新型摩擦偶合器进行了结构设计。对主动级和反馈级摩擦方案进行了设计计算,设计出了主要零部件的结构,并使用Pro/E软件对其进行三维建模。接着建立了摩擦偶合器带载起动的动力学微分方程,对其带载起动过程进行了简要分析。新型摩擦偶合器输入轴等部件的整体结构比较复杂,难以用传统的力学方法进行分析。本文采用国际上流行的有限元分析软件HyperMesh和ANSYS对输入轴进行有限元分析,校核该零件的强度和刚度,并对输入轴进行了模态分析,以了解其固有振动特性。最后,使用OptiStruct软件对输入轴进行优化设计,有效减小了该部件的重量,节省了材料,从而使得该设计方案具有较好的可行性和实用性,并对其他的同类产品具有很好的指导意义。本文的创新点主要有:提出了新型摩擦偶合器的反馈控制摩擦偶合原理;建立了摩擦偶合器的带载起动的动力学分析方程;使用优化设计方法对新型摩擦偶合器关键部件进行优化设计。
Mechanical equipment, particularly coal mining machinery equipment often start and operate with the load, therefore, it need to have a "soft start" of the operating characteristics. The "soft start"' feature of equipment is that the device which can be controlled to gradually overcome the inertia of the system starts smoothly under the overload condition. It is not only can greatly reduce the transmission system impact of the start, but also greatly reducing the motor starting current and the thermal shock load on the motor and the impact on the electricity net. In addition, you can also use relatively smaller capacity motor, which can reduce unnecessary investment in equipment and save a lot of energy. Shandong University of Science and Technology and Ruize Electrical Equipment Co., Ltd. have jointly developed a new type of friction coupling. Compared with the original friction coupling, this product has its own salient features:With the output shaft speed feedback control the output torque; overload coefficient increases with the output shaft speed'square, effective soft-start; the process of start is very smooth; when the machinery is rotating in the normal state, there is no sliding; mechanical efficiency is high, to ensure that master and slave device has a highly efficient transmission. New type friction coupling device is a good compatibility of soft start equipment. It is not only simple, easy to use and maintenance, but also has low cost, reliable performance, and small size.
     This paper develops friction coupling's principle of feedback control. According to the principle, design a new 90KW friction coupling's structure. Calculate the active and the feedback friction program. Design the structure of the key components and use the Pro/E software to draw theirs three-dimensional models. Then create the dynamic differential equations that friction coupling starts with load. Analyze the starting process with load briefly. The overall structure of the friction coupling' input shaft is more complex, and is difficult to use traditional mechanical methods to analysis. In this paper, finite element analysis software ANSYS and HyperMesh which are very popular in the international are used to analyze the input shaft, and check the strength and stiffness of this part. Analyze the modal of the input shaft to understand the inherent vibration characteristics. Last, use OptiStruct to optimize the input shaft, it can effectively reduce the weight of the part, and save a lot of material. Thus enabling the design has good feasibility and practicality, and is a very good guide to other similar products. The main innovation of the paper are:Feedback control principle of the new friction coupling is proposed; Establishing the dynamic analysis equations of the friction coupling starting with load; Optimize the key components of the new friction coupling.
引文
1.丁齐旭.用于重载机械设备中的一种离心式可调软启动离合器[J].煤矿机电,2010,3:53-55.
    2.张以都.国内外重载机械设备软启动技术的研究[J].煤炭科学技术,2001,29(9):23-27.
    3.刘正坤,藏晶.浅谈煤矿机械设备软启动技术[J].煤矿机械,2007,28(12):3-6.
    4.高立君.减速大功率减速器软启动系统的研究[D].郑州:郑州机械研究所,2003,2-6.
    5.钟康民,宋强,郭培全.基于斜楔增力的离心式内孔夹具[J].新技术新工艺,1999,5:17-18.
    6.李全德.离心离合器和离心夹具技术体系构建与创新设计[D].苏州:苏州大学,2008,3-4.
    7.董国震.增力离心离合器研究[J].机械设计,2000,8:36-38.
    8.机械设计手册编委会.机械设计手册(新版)第3卷[M].北京:机械工业出版社,2004,225-226.
    9.高志雄,何竞飞.机械速度波动仿真的方法[J].机械工程与自动化,2007,3:4344.
    10.孙恒,陈作模,葛文杰.机械原理[M].北京:高等教育出版社,2006,155-158.
    11.曾攀.有限元基础教程[M].北京:高等教育出版社,2009,9.
    12.(美)Daryl L.Logan著,伍义生,吴永礼等译.有限元方法基础教程(第三版)[M].北
    京:电子工业出版社,2003,1-9.
    13.(美)莫维尼(Moaveni,S)著,欧阳宇等译.ANSYS理论与应用[M].北京:电子工业出版社,2003,4-5.
    14.周智慧.立体停车库钢架结构CAE分析及其优化设计[D].苏州:苏州大学,2005,6-8.
    15.Hrennikoff. A Solution of Problems in Elasticity by the Frame Work Method [J]. Journal of Applied Mechanics,1941,8(4):169-175.
    16.McHenry, D. A Lattice Analogy for the Solution of Plane Stress Problems [J], Journal of Institution of Civil Engineers,1943,21:59-82.
    17.Turner, M. J., Clough, R. W., Martin, H. C. Stiffness and Deflection Analysis of Complex Structures [J]. Journal of Aeronautical Science,1956,23(9):805-824.
    18.Clough, R. W. The Finite Element Method in Plane Stress Analysis[J]. Proceedings, American Society of Civil Engineers,2nd Conference on Electronic Computation, Pittsburgh,1960,2:345-378.
    19.Melosh, R. W. A Stiffness Matrix for the Analysis of Thin Plates in Bending [J]. Journal of Aerospace Science,1961,28(1):34-42.
    20.Melosh, R.J. Structural Analysis of Solids [J]. Journal of the Structural Division, Proceedings of the American Society of Civil Engineers,1963,2:205-223.
    21.Szabo, B. A., and Lee, G. C. Derivation of Stiffness Matrices for Problems in Plane Elasticity by Galerkin's Method [J]. International Journal of Numerical Methods in Engineering,1969,1:301-311.
    22.曾青.大型袋式除尘器局部结构安全分析与优化研究[D].武汉:华中科技大学,2006,4-7.
    23.尚晓江,邱峰,赵海峰等.ANSYS结构有限元高级分析方法与范例应用[M].北京:水利水电出版社,2005,4-6.
    24.杨桂通.弹塑性力学引论[M].北京:清华大学出版社,2004,35-47.
    25.高勇丽.羟基磷灰石材料用于骨缺损植入时应力分析的数值模拟研究[D].天津:天津大学,2005,11-15.
    26.于开平,周传月,谭惠丰等.HyperMesh从入门到精通[M].北京:科学出版社,2005,7-12.
    27.叶勤.轻型载货汽车车架有限元分析与优化[D].武汉:武汉理工大学,2007,11-14.
    28.张胜兰,郑冬黎,郝琪等.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社,2007,4.
    29.石作维.机械结构拓扑优化及其在重型卡车平衡轴支架改进设计中的应用[D].合肥:合肥工业大学,2009,18-20.
    30.张方瑞.ANSYS8.0应用基础与实例教程[M].北京:电子工业出版社,2006,2-3.
    31.李博.基于HyperWorks的某雷达零部件n的拓扑优化设计[D].合肥:合肥工业大学,2009,37-38.
    32.潘健.三轴转台结构静动态分析与动力学仿真[D].上海:上海交通大学,2009,29-30.
    33.李静.混合梁斜拉桥静力分析和局部应力分析[D].成都:西南交通大学,2010,54-55.
    34.李正网.基于ANSYS的重型货车车架结构分析和优化研究[D].重庆:重庆交通大学,2009,21-23.
    35.冯强.基于平头塔式起重机起重臂动态性能的多目标优化[D].成都:西南交通大学, 2008,29.
    36.何柳.基于ANSYS扶梯钢架结构参数化力学分析系统开发[D].沈阳:东北大学,2008,22.
    37.纪国伟.无心外圆磨床结构动态分析与优化设计研究[D].大连:大连理工大学,9-12.
    38.陈立周.机械优化设计方法(第三版)[M].北京:冶金工业出版社,2005,19-20.
    39.曾力.基于HyperWorks的卡车车身有限元分析及改进研究[D].成都:西南交通大学,2010,30-33.
    40.胡桃华.全液压履带装载机车架结构有限元分析及优化设计[D].上海:同济大学,2009,51-54.
    41.H. Thomas, M. Zhou, U. Schramm. Issues of commercial optimization software development [J]. Struct Multidisc Optim,2002,23:97-110.
    42.柳生,侯亮,潘勇军.基于拓扑优化的机床立柱筋板改进[J].机械设计与研究,2010,26(1):87-91.
    43.高振玲,藏继嵩.基于Optistruct的车架拓扑优化研究[J].煤矿机械,2010,31(05):34-36.
    44.周鹤.轿车手制动臂总成轻量化设计及非线性分析[D].武汉:武汉理工大学,2010,8-12.
    45.R. J. Yang and A. I. Chahande. Automotive application of topology optimization [J]. structural Optimization,1995,9:245-249.
    46.卢利平.载货汽车车架拓扑优化设计及有限元分析[D].合肥:合肥工业大学,2009,10-14.
    47.E-Kita and H-Tanie. Topology and Shape optimization of continumm structures using GA and BEM [J]. Structural optimization,1999,17:130-139.
    48.Sigmund. O. Materials with prescribed constitutive parameters:an inverse homogenization problems [J]. Int. J. Solids Structures,1994,17(33):2313-2329.
    49.李楚琳,张胜兰,冯樱等.HyperWorks分析应用实例[M].北京:机械工业出版社,2008,210-213.
    50.(日)小栗富士雄,小栗达男,陈祝同,刘惠臣译.机械设计禁忌手册[M].北京:机械工业出版社,2002,1-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700