用户名: 密码: 验证码:
甘蓝型油菜千粒重及相关性状QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
千粒重及相关性状是重要的产量性状,对油菜产量的形成具有重要意义。本研究利用人工合成超大籽粒材料云南061009-1与两小籽粒材料07-5189与06-1007分别构建F2分离群体:F2A, F2B。对两F2分离群体进行表现鉴定、分子标记分析,进而定位控制千粒重、角果长、单位长度籽粒数三性状的QTL位点。主要结果如下:
     1、大粒材料云南061009-1与小粒亲本07-5189及06-1007之间表现出极显著差异,适合于分离群体构建。
     2、F2A与F2B群体表型数据进行统计分析并经正态检验,发现千粒重、角果长、单位长度籽粒数三性状在两群体中均符合正态分布,三性状均为多基因控制的数量性状,F2A与F2B群体适合于QTL分析。
     3、F2A群体图谱包含93对SSR标记和128对AFLP标记,共有23个连锁群,全长2165.2 cM,标记间平均距离为10.62cM。以SSR标记作为铆钉标记,将F2A群体图谱与甘蓝型油菜通用图谱进行初步对应。
     4、以127对SSR标记,52对AFLP标记,24对IP标记在F2B群体中的基因型数据构建包含23个连锁群全长1755.25cM的连锁图谱,标记间平均距离为9.73cM。利用共同的SSR标记,将F2B图谱与甘蓝型油菜通用图谱进行初步对应。
     5、采用复合区间作图法,利用Win QTL Cartographer v2.5软件,分别在两群体中对千粒重、角果长、单位长度籽粒数进行QTL扫描。在F2A群体中检测到9个QTLs,在F2B群体中检测到7个QTLs, QTLs之间存在QTL簇现象,但未发现一因多效情况。
     6、F2A群体QTL定位结果与F2B群体QTL定位结果进行比对,发现F2A群体中qaSW19-2、qaSW19-3与F2B群体中qbSW19位于两图谱的相同标记区间BnGMS405-BnGMS371内。
The 1000-seed weight and its related traits are important yield traits in Brassica napus which play important roles in seed yield. In this study we use a synthetic material Yunnan061009-1 the 1000-seed weight of which is super large and two small seed materials 07-5189 and 06-1007 to construct F2 segregating populations. Scan the QTLs associate with 3 traits,1000-seed, pod length and seed number per unit length. The main results are showed as follow:
     1. Compare the parents of two population, it showed that 1000-seed weight, pod length, seed number per unit length are significant different between the large seed material Yunnan061009-1 and two small seed material 07-5189 and Hui 5900.
     2. Through the phenotype data of F2A and F2B population and normal distribution test of all traits, it showed that 1000-seed weight, pod length, seed number per unit length are normally distribution.,so three traits are all quantitative trait, and F2A and F2B population is suitable for QTL analysis.
     3. The genetic linkage map of F2A, was constructed with 93 simple sequence repeat (SSR) markers and 135 Amplified fragment length polymorphism (AFLP) markers, which span 1755.25 cM and the average interval distance is 9.50 cM. It has 23 linkage groups. Based on the SSR markers information, we align the map of F2A to the reference maps.
     4. A linkage map with 127 simple sequence repeat (SSR) markers,52 amplified fragment length polymorphism (AFLP) markers and 24 intron polymorphism (IP) was contructed. It spans 1755.25 cM and has 23 linkage groups.The average interval distance of the linkage group is 9.50 cM. Based on the SSR markers information, we align the map of F2B to the reference maps.
     5. By composite interval mapping method in Win QTL Cartographer v2.5 software, a total of 9 QTLs in F2A,7 QTLs in F2B associate with 1000-seed weight, pod length and seed number per unit lengthwere found. There is QTLs cluster, but no more effects gene in the result.
     6. The QTLs qaSW19-2 and qaSW19-3 of F2A population and the QTL qbSW19 are in the same marker interval of BnGMS405-BnGMS371.
引文
1.陈光辉,周清明,王建龙,杨冬萍.两系杂交水稻千粒重的遗传研究.热带作物学报,2007,28(4):57-60
    2.陈伟.用分子标记剖析油菜重要农艺性状的遗传基础.[博士学位论文].武汉:华中农业大学图书馆,2007
    3.邓秀兰.油菜籽粒增重过程研究.江苏农业科学,1983,10:18-21
    4.杜春芳,李朋波,李润植.植物数量性状变异的分子基础与QTL克隆研究进展.西北植物学报,2005,25(12):2575-2580
    5.傅廷栋.中国油菜生产和品种改良的现状与前景.安徽农学通报,2000,6(1):2-8
    6.傅廷栋.油菜遗传改良与机械化.农业机械与装备,2008,149:10-11
    7.傅寿仲.油菜的形态与生理.南京:江苏科技出版社,1983,107
    8.郭国珍.影响油菜千拉重的几个因素.瑚北省广济县农业局,1982:13-14
    9. 高用明.复杂上位性及其与环境互作的QTL定位方法和杂种优势预测研究.[博士学位论文],杭州:浙江大学图书馆,2001
    10.惠飞虎,石剑飞,孙家刚,冷锁虎,唐瑶,左青松.油菜库容变化对粒重的影响.江苏农业学报,2006,22(2):109-112
    11.李宏,邱芬奇,李友莲.植物数量性状基因座(QTL)的作图与克隆.科技情报开发与经济,2008,18(2):145-146
    12.李汝玉.简单序列重复(SSR)及其在农作物研究中的应用.山东农业科学,2009,4:45-49
    13.李媛媛.利用功能分子标记分析甘蓝型油菜产量相关性状QTLs及其杂种优势遗传基础.[博士学位论文],武汉:华中农业大学图书馆,2007
    14.李兆波,吴禹,王岩,汪由,王光霞.SNP标记技术及其在农作物育种中的应用.辽宁农业职业技术学院学报,2010,12(3):8-9
    15.梁成强,程辉,罗祥生,冉忠萍,程应霞,朱德焰.甘蓝型优质油菜籽粒含油量和千粒质量相关性分析.天津农业科学,2007,13(4):20-22
    16.刘长国,罗军,杨公出.D N A标记技术研究进展.黄牛杂志,2001,27(6):41-45
    17.刘定富,刘后利.甘蓝型油菜数量性状遗传变异的研究.遗传学报,1987,14(1):31-36
    18.刘列钊,林呐,堪利,唐章林,张学昆,李加纳.甘蓝型油菜5个重要性状QTL分析.农业生物技术学报,2006,14(5):747-751
    19.冷锁虎,朱耕如,邓秀兰.油菜籽粒干物质来源的研究.作物学报,1992,18:250-256
    20.龙艳.人工合成特长角甘蓝型油菜产量相关性状的遗传分析和基因定位.[硕士学位论文],武汉:华中农业大学图书馆,2003:4-31
    21.孔繁玲.数量遗传学.中国农业大学出版社,2006
    22.戚存扣,盖钧镒.甘蓝型油菜主要农艺品质性状遗传体系和杂种优势改良研究.南京农业大学,2001
    23.戚存扣.油菜千粒重性状主位点组遗传分析.江苏农业学报,2005,21(1):1-5
    24.沈金雄.甘蓝型油菜杂种优势及其遗传分析.[博士学位论文],武汉:华中农业大学图书馆,2003
    25.师家勤.甘蓝型油菜产量性状及其杂种优势遗传基础的全基因组解析.[博士学位论文],武汉:华中农业大学图书馆,2009
    26.田翠,张涛,蒋开锋,杨莉,郑家奎等.水稻QTL定位研究进展基因组学与应用生物学.2009,28(3):557-562
    27.王艳惠,牛应泽,人工合成甘蓝型油菜特长角性状的遗传分析.遗传,2006,28:1273-1279
    28.魏蒙关.玉米两个F2:3相关群体秸秆产量和品质性状QTL分析及遗传相关研究.[博士学位论文],郑州:河南农业大学图书馆,2009
    29.杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33(4):523-530
    30.姚金保,王书文,姚国才,杨学明.普通小麦千粒重的配合力与遗传模型分析.南京农专学报,2003,19(1),52-54
    31.易斌,陈伟,马朝芝,傅廷栋,涂金星.甘蓝型油菜产量及相关性状的QTL分析.作物学报,2006,32(5):676-682
    32.于永涛,张吉民,石云素,宋燕春,王天宇,黎裕.利用不同群体对玉米株高和叶片夹角的QTL分析.玉米科学,2006,14(2):88-92
    33.张书芬,傅廷栋,朱家成,王建平,文雁成,马朝芝.甘蓝型油菜产量及其构成因素的QTL定位与分析.作物学报,2006,32(8):135-114
    34.朱军.运用混和线性模型定位复杂数量性状基因的方法.浙江大学学报(工学版),1999
    35. Adamskia N M, Anastasioub E, Erikssona S, O'Neillc C M, Lenharda M. Local maternal control of seed size by KLUH/CYP78A5-dependent growth signaling. Proc Natl Acad Sci USA,106:115-120
    36. Anne F, Clint N, Amy F. fw2.2:A quantitative trait locus key to the evolution of tomato fruit size. Science,2000,289(7):83-88
    37. Ayahiko S, Deletion in a gene associated with grain size increased yields during rice domestication. Nature genetics,2008,40(8):1023-1028
    38. Botstein D. Construction of a genetic linkage map in man using restriction fragment lensth polymorphisms. Am J Hum Genet,1980,32,314-331
    39. Brandle J E, Mcvetty P B E. Heterosis and combining ability in hybrids derived from oilseed rape cultivars and inbred lines. Crop Sciences,1989,29:1191-1195
    40. Fan C C, Cai G Q, Qin J, Li Q Y, Yang M G, Wu J Z, Fu T D, Liu K D, Zhou Y M, Mapping of quantitative trait loci and development of allele-specific markers for seed weight in Brassica napus. Theor Appl Genet,2010,121(7):1289-1301
    41. Conner P J, Brown S K, Weeden N F. Molecular-markers analysis of quantitative trait for growth and development in juvenile apple trees. Theor Appl Genet,1998,96: 1027-1035
    42. Gabrielle B, Denoroy P, Gosse G. A model of leaf area development and senescence of winter oilseed rape. Field Crops Res,1998,57:209-222
    43. Galton F. Regression towards mediocrity in hereditary stature. J of Anthropological Institute,1885,15:246-263
    44. Grant I, Beversdorf W D. Heterosis and combining ability estimates in spring rape (Brassica napus) [J]. Can J Genet Cytol,1985,27
    45. Hua J P, Xing Y Z, Xu C G, Sun X L, Yu S B, Zhang Q F. Genetic dissection of an elite rice hybrid revealed that heterozygotes are not always advantageous for performance. Genetics,2002,162:1885-1895
    46. Hye R K, Su R C, Jina B, Chang P H, Seo Y L, Md J H, Dan V N, Mina J, Beom S P, Jea W B, Ian B, Yong P L. Sequenced BAC anchored reference genetic map that reconciles the ten individual chromosomes of Brassica rapa. BMC Genomics,2009, 10:432-447
    47. Li Z K, Pinson S R M, Park W D. Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics,1997,145:453-465
    48. Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics,1993,135: 205-211
    49. Jiang C, Zeng Z B. Multiple trait analysis of genetic mapping for quantitative trait loci.Genetics,1995,140:1111-1127
    50. Kemal G M. QTL mapping and analysis of QTL X Nitrogen interactions for Some Yield components in Brassiea napus. Turk J Agric,2003,27:71-76
    51. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antoni B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuta A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L.300 kilo base interval genetic map of rice including 883 expressed sequences. Nature Genet,1994,8: 365-376
    52. Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199
    53. Lemieux B. Overview of DNA chip technology. Mol Breed,1998,4:277-289
    54. Li G, Quires C F. Scquence-related amplified polymorphism(SNAP), a new maker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica.Theor Appl Genet,2001,10:455-461
    55. Lincoln S, Daly M, Lander E. Constructing genetic maps with Mapmaker/Exp 3.0. Whitehead Institute Technical Report, Cambridge, MA, USA,1992
    56. Litt M, Luty J A. Hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle action gene. Am J Hum Genet,1989, 44:399-401
    57. Lionneton E, Aubert G, Ochatt S, Merah O. Genetic analysis of Agronomic and quality traits in mustard (Brassica juncea). Theor Appl Genet,2004,109:792-799
    58. Mather K. Biometrical genetics. London:Methuen and Co,1949
    59. Mccouch S R. Microsatellite marker development, mapping and applications in rice genetics and breeding. Plant Molecular Biology,1997,35:89-97
    60. Messmer M M, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B. Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet,2000,100:419-431
    61. Mihaljevic R, Utz H F, Melchinger A E. Congruency of quantitative trait loci detected for agronomic traits in testcrosses of five populations of European maize. Crop Sci, 2004,44:114-124.
    62. Morgan C L, Arthur A E, Rawsthorne S. Influence of testa colour and seed size on storage product composition in Brassica juncea. Plant Var Seeds,1998,11:73-81
    63. Nilsson E H. Kreuzungsuntersuchungen an Hafer und Weizen. Lunds Univ,1909, series 2,5(2):1-122
    64. Paivi H, Mikko J S, Elja A, Tapani R, Outi S. Genetics basis of climatic adaptation in scots pine by Bayesian quantitative trait locus analysis. Genetics,2000,156: 1309-1322
    65. Paran I, Michelmore R W. Development of reliable PCR based makers linked to downy mildew resistance genes in lettuce. Theor Appl Genet,1993,85:985-993
    66. Paterson A H, Lander E S, Hewitt J D. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988,335:721-726
    67. Pearson K. Skew variation in homogeneous material. Philos Trans,1895, A:186 343
    68. Pilet M L, Delourme R, Foisset N, Renard M. Identification of QTL involved in field resistance to light leaf spot (Pyrenoiza brassicae) and blackleg resistance (Leptosphaeria maculans) in winter rapeseed (Brassica napus L). Theor Appl Genet, 1998,97:398-406
    69. Quijada P A, Maureira I J, Osbom T C. Confirmation of QTL controlling seed yield in springcanola(Brassicanapus L.) hybrid. Mol breed,2004,13:193-200
    70. Quijada P A, Udall J A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassiea napus L.):1. Identifieation of genomic regions from winter germplasm.Theor Appl Genet,2006, 113:549-561
    71. Rao M S S, Mendham N J, Buzza G C. Effect of the apetalous flower character on radiation distribution in the crop canopy, yield and its components in oilseed rape(Brassica napus). Agric Sci Camb,1991,117:189-196
    72. Song J X, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase, PNAS,2007, 39(5):623-630
    73. Saranga Y, Menz M, Jiang C X, Wright R J, Dan Y K, Paterson A. Genomic dissection of genotype × environment interactions conferring adaptation of cotton to arid conditions. Genome Research,2001,11:1988-1995
    74. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M. Isolation and characterization of microsatellites in Brassica rapa Z. Theor Appl Genet,2002,104:1092-1098
    75. Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield:case studies, shortcomings and perspectives in drought-stressed maize. Annals o f Bot,2002,89:941-963
    76. Udall J A, Quijada P A, Lambert B, Osborn T C. Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.) 2. Identification of alleles from unadapted germplasm. Theor Appl Genet,2006,113: 597-609
    77. U N. Genome analysis in B rassica with species reference to the experimental formati on of B. napus and peculiar mode of fertilization [J]. Jpn J Bot,1935,7:389-452
    78. Venancio S A, Georage L G, James E S, James R S, Kent M E. Identification of QTLs for resistance to sclerotinia sclerotiorum in soybean. Crop Sci,2001,41:180-188
    79. Wang X S, Zhao X Q, Zhu J, Wu W R. Genome-wide investigation of intron length polymorphisms and their potential as molecular markers in Rice (Oryza sativa L.). DNA Research,2000,12
    80. Voorrips R E. Map Chart:Software for the graphical presentation of linkage maps and QTLs. The Journal of Heredity,2002,93 (1):77-78
    81. Williams J G K, Kubelic A R, Livak K J, Rafalsci J A, Tingey S V. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acid Res,1990,18:6531-6535
    82. Xiao J H, Li J M, Yuan L P. Dominance is the major genetic basis of heterosis in rice as revealed by QTL analysis using molecular markers [J]. Genetics,1995,140: 745-754
    83. Cheng X M, Xu J S, Xia S, Gu J X, Yang Y, Fu J, Qian X J, Zhang S C. Development and genetic mapping of microsatellite markers from genome survey sequences in Brassica napus. Theor Appl Genet,2009,118:1121-1131
    84. Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA fingerprinting. Patent Application World intellectual Property Organization, 1993,93:06239
    85. Zeng Z B. Precision mapping of quantitative trait loci. Genetics,1994,136: 1457-1468
    86. Zeng Z B. QTL mapping and the genetic basis of adaptation recent developments. Genetica,2005,123:25-37
    87. Zietkiewicz E, Rafalski A, Labuda D. Genome finger-printing by simple sequence repeat (SSR) anchored polymerase chain reaction amplification. Genomics,1994,20: 176-183
    88. Zhao J, Beeker H C, Zhang D, Zhang Y, Ecke W. Conditional QTL mapping of oil contentin rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet,2006,113:33-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700