用户名: 密码: 验证码:
夏、秋季黄河口及其邻近海域中小型浮游动物群落生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用2009年夏季(7月)和2010年秋季(9月)两个航次在黄河口及其邻近海域使用浅水Ⅱ型浮游生物网所采集的浮游动物样品,研究了该水域的中小型浮游动物的种类组成、丰度和优势种,分析了该海域中小型浮游动物的群落结构和生物多样性。本研究旨在较全面地了解黄河口及其邻近海域中小型浮游动物群落结构,并探讨了浮游动物群落与环境因子间的关系。
     研究结果显示,黄河口及其邻近海域夏、秋季两个航次共鉴定各类浮游动物60种、浮游幼虫27类,合计种类87种。其中,浮游动物成体分别隶属于原生动物门、刺胞动物门、栉水母动物门、脊索动物门、节肢动物门和毛颚动物门共6个门。甲壳动物和刺胞动物为浮游动物的主要类群,其中浮游甲壳动物的种类数量占到总种类数的一半以上,桡足类为浮游甲壳动物的主要类群。
     调查海域夏季中小型浮游动物的丰度波动范围为1158.3-131223.2 ind/m3,平均丰度为50839.3 ind/m3,呈现出调查海域中部和北部丰度高,近岸和莱州湾内丰度低的趋势。调查海域秋季中小型浮游动物的丰度波动范围为2300.1- 266232.0 ind/m3,平均丰度为37074.3 ind/m3,呈现出调查海域南部和北部高,中间低的趋势。
     夏季,调查海域优势种共9种,分别为强额拟哲水蚤、小拟哲水蚤、双刺纺锤水蚤、短角长腹剑水蚤、拟长腹剑水蚤、近缘大眼剑水蚤、异体住囊虫、桡足类无节幼体和双壳类幼体,小拟哲水蚤为最主要优势种。秋季,调查海域优势种共8种,分别为强额拟哲水蚤、小拟哲水蚤、背针胸刺水蚤、异体住囊虫、桡足类无节幼体、腹足类幼体、双壳类幼体和夜光虫,夜光虫为最主要优势种,其丰度占到秋季调查浮游动物总丰度的61.0%。
     夏季,调查海域的中小型浮游动物可以划分为3个组群,组群GS1位于黄河口北岸沿海,优势种有强额拟哲水蚤、小拟哲水蚤、双刺纺锤水蚤、短角长腹剑水蚤、拟长腹剑水蚤、异体住囊虫、双壳类幼体和拟铃虫;组群GS2位于黄河口向外延伸的区域,优势种有强额拟哲水蚤、小拟哲水蚤、双刺纺锤水蚤、短角长腹剑水蚤、拟长腹剑水蚤、近缘大眼剑水蚤、异体住囊虫、桡足类无节幼体、腹足类幼体和双壳类幼体;组群GS3位于黄河口北岸沿海,此组群包括两个站位,仅在夏季调查中出现,优势种有强额拟哲水蚤、小拟哲水蚤、双刺纺锤水蚤、短角长腹剑水蚤和双壳类幼体。秋季,调查海域中小型浮游动物可以划分为4个组群,组群GA1与夏季调查组群GS1区域相同,优势种包括夜光虫、强额拟哲水蚤、小拟哲水蚤、背针胸刺水蚤、拟长腹剑水蚤、异体住囊虫、双壳类幼体;夏季组群GS2所在海域在秋季分为GA3和GA2两个组群,组群GA2位于黄河口附近,优势种包括夜光虫、小拟哲水蚤、背针胸刺水蚤、短角长腹剑水蚤、强壮箭虫、桡足类无节幼体和双壳类幼体;组群GA3分布在组群GA2外围海域,优势种包括夜光虫、巴拿马网纹虫、小拟哲水蚤、背针胸刺水蚤、强壮箭虫、异体住囊虫、桡足类无节幼体、腹足类幼体、双壳类幼体;组群GA4位于莱州湾内,优势种包括夜光虫、强额拟哲水蚤、背针胸刺水蚤和桡足类无节幼虫。四个群落共有优势种为夜光虫和背针胸刺水蚤。
     夏季,调查海域中小型浮游动物的香农-威纳指数平均值为2.72,均匀度平均值为0.55,香农-威纳指数和均匀度呈现出调查区域中心低向周围逐渐升高的趋势;丰富度平均值为2.97,呈现由近岸向外海逐渐升高的趋势。秋季调查海区的中小型浮游动物香农-威纳指数平均值为2.49,均匀度平均值为0.51,其数值在黄河口附近和调查区域东北部较高;丰富度平均值为2.80,其数值在调查区域南部和东北部较高。
Zooplankton community structure and its influencing factors were studied by means of multi-variable and bio-environmental analysis based on the samples collected in the Yellow River estuary and its adjacent area during two survey cruises conducted separately in summer (Jul. 2009) and autumn (Sep.2010) The research can provide important fundamental information for the long-term monitoring of zooplankton ecology in the study area.
     A total of 60 zooplankton taxa and 27 pelagic larvae were identified during two surveys, and they belonge to Protozoa, Cnidaria, Ctenophora, Chordata, Arthropoda and Chaetognatha. Crustacea and Cnidaria were the most abundant two components of the zooplankton. The species number of pelagic crustacean represented above 50% of total species richness and copepods were the most dominant crustacean in the study area.
     During summer, the abundance of zooplankton is from 1158.3 -131223.2 ind/m3, the mean abundance value of zooplankton is 50839.3 ind/m3. The abundance in the middle and northern survey area is higher than that in inshore of Yellow River Estuary and in Laizhou Bay. In autumn, the abundance of zooplankton is from 2300.1-266232.0 ind/m3, the main abundance of zooplankton is 37074.3 ind/m3 .The abundance in southern and northern area is higher than that in the middle area.
     In summer survey, there are 9 dominant species in the survey area, they are Paracalanus crassirostris, Paracalaus parvus, Acartia bifilosa, Oithona brevicornis, Oithona similis, Corycaeus affinis, Oikopleura dioica, Nauplius larvae and Brivial larvae, Paracalanus parvus is the most dominant specie in summer. In autumn survey, there are 8 dominant species in the survey area, they are Paracalanus crassirostris, Paracalanus parvus, Centropages dorsispinatus, Oikopleura dioica, Nauplius larvae, Gastropod post larve, Brival larvae and Noctiluca scintillans, Noctiluca scintillans is the most dominant specie in autumn, and its abundance is more than 61.0% of mean abundance of all meso- and micro-zooplankton.
     In summer, based on the abundance of each species in each station, 3 groups are distinguished by the CLUSTER analysis using PRIMER 6.1 software. Group GS1 is located at the inshore of the north shore of the Yellow River estuary, the dominant species are Paracalanus crassirostris, Paracalanus pavus, Acartia bifilosa, Oithona brevicornis, Oithona similis, Oikopleura dioica, Brivial larvae and Tintinnopsis spp; Group GS2 is located out of the Yellow River estuary, the dominant species contents Paracalanus crassirostris, Paracalanus parvus, Acartia bifilosa, Oithona brevicornis, Oithona similis, Corycaeus affinis, Oikopleura dioica, Nauplius larvae, Gastropod post larvae and Brivial larvae; Group GS3 is located at the inshore of the south shore of the Yellow River estuary, the dominant species in this group are Paracalanus crassirostris, Paracalanus parvus, Acartia bifilosa, Oithona brevicornis and Brivial larvae, the GS3 contents 2 stations is exist only in the summer survey but not in autumn. In autumn, there are 4 groups in the survey area. Group GA1 is at the same location as GS1, the dominant species in this group are Noctiluca scintillans, Favella panamensis, Paracalanus parvus, Centropages dorsispinatus, Sagitta crassa, Oikopleura dioica, Nauplius larvae, Gastropod post lava and Brivial larvae; The summer group GS2 is distinguished into two groups GA3 and GA2 in autumn, GA2 is adjacent to the Yellow River estuary, the dominant species are Noctiluca scintillans, Paracalanus parvus, Centropages dorsispinatus, Oithona brevicornis, Sagitta crassa, Nauplius larvae and Brivial larvae; GA3 is at the periphery of GA2, it dominant species contents Noctiluca scintillans, Paracalanus crassirostris, Paracalanus parvus, Centropages dorsispinatus, Oithona similis, Oikopleura dioica and Brivial larvae; Group GA4 is located in the Laizhou Bay, the dominant species are Nocatiluca scientillans, Paracalanus crassirostris, Centropages dorsispinatus, Oithona brevicornis and Nauplius larvae. The common dominant species in all of the 4 groups are Noctiluca scientilla and Centropages dorsispinatus.
     In summer, the mean Shannon-Weaner Diversity and Pielou′s evenness are 2.72 and 0.55, which are higher in the ground than in the center, the mean Margalef species richness is 2.97, which is higher in the inshore than in the offshore. In autumn, the mean Shannon-Weaner Diversity and Pielou′s evenness are 2.49 and 0.51, which are higher at the Yellow River estuary and the northeast of the survey area, the mean Margalef species richness is 2.80, which is higher at the southern and the northern east area.
引文
[1]Sieburth J M, Smetaee k V, Lenz J. Pelagic ecosystem structure: heterotrophic compartments of the plankton and their relationship to plankton size fraction. Limnology and Oceanography, 1978, 23(6):1256-1263.
    [2]Pinel-Alloul B. Spatial heterogeneity as a multiscale characteristic of zooplankton community. Hydrobiologia, 1995, 300/301:1-42.
    [3]Zhou M, Nordhausen W, Huntley M E.ADCP measurements of the distribution and abundance of euphausiids near the Antarctic Peninsula in winter. Deep Sea Research Part I: Oceanographic Research Papers, 1994, 41(9):1425-1445.
    [4]Wiafe G, Frid C L J. Short-term temporal varitation in coastal zooplankton communities: the relative importance of physical and biological mechanisms. Journal of Plankton Research, 1996, 18(8):1485-1501.
    [5]Folt C, Schulze P C, Baumgartner K. Characterizing a zooplankton neighborhood: small-scale patterns of association and abundance. Freshwater Biology, 1993, 30(2):289-300.
    [6]Buskey E J, Peterson J O, Ambler JW. The swarming behavior of the copepod Diothona oculata: in situ and laboratory strudies. Limnology and Oceanography, 1996, 41(3):513-521.
    [7]Tiselius P. An in situ video camera for plankton studies: design and preliminary observations. Marine Ecology Proggress Series, 1998, 64:293-299.
    [8]Kleiven O T, Larsson P, Hobak A. Direct distributional response in Daphnia pulex to a predator kairomone. Journal of Plankton Research, 1996, 18(8):1341-1348.
    [9]Van Duren L A, Videler J J. Swimming behavior of developmental stages of the calanoid copepod Temora longicornis at different food concentrations. Marine Ecology Progress Series, 1995, 126:153-161.
    [10]Ohman M D. The demo graphic benefits of diel vertical migration by zooplankton. Ecological Monographs, 1990, 60(3):257-281.
    [11]Enright J T. Diurnal vertical migration: A ddaptive significance and timing. Part I. Selective advantage: a metabolic model. Limnology and Oceanography, 1977, 22(5):856-872.
    [12]Mclaren I A. Effect of temperature on growth of zooplankton and the adaptive value ofvertical migration. Journal of the Fisheries Research Board of Canada, 1963, 20:685-727.
    [13]Fancett M S, Kimmerrer W J. Vertical migration of the demersal copepod Psevdodiaptomus as a means of predator avoidance. Journal of Experimental Marine Biology and Ecology, 1985, 88(1):31-43.
    [14]Zaret T M, Suffern J S. Vertical migration in zooplankton as a predator avoidance mechanism. Limnology and Oceanography, 1976, 21(6):804-813.
    [15]Hays G C. Diel vertical migration behaviour of Calanus hyperboreus at temperate latitudes. Marine Ecology Progress Series, 1995, 127(1-3): 301-304.
    [16]Ohman M D, Frost B W, Cohen E B. Reverse diel vertical migration: An escape from invertebrate predators. Science (Washington), 1983, 220(4604):1404-1406.
    [17]Hays G C, Kennedy H, Frost B W. Individual variability in diel vertical migration of a marine copepod: Why some individuals remain at depth when others migrate. Limnology and Oceanography, 2001, 46(8):2050-2054.
    [18]Hays G C, Proctor C A, John A W G, Warner A J. Interspecific differences in the diel vertical migration of marine copepods: The implications of size, color, and morphology. Limnology and Oceanography, 1994, 39(7):1621-1629.
    [19]Hays G C, Warner A J, Tranter P. Why do the two most abundant copepods in the North Atlantic differ so markedly in their diel vertical migration behaviour? Journal of Sea Research, 1997, 38(1-2):85-92.
    [20]Ohman M D. The demo graphic benefits of diel vertical migration by zooplankton. Ecological Monographs, 1990, 60(3):257-281.
    [21]De Meester L, Weider L J, Tollrian R. Alternative antipredator defences and genetic polymorphism in a pelagic predator-prey system. Nature, 1995, 378(6556):483-485.
    [22]Carol L Folt, Carolyn W. Burns, Biological drivers of zooplankton patchiness. Trends in Ecology&Evolution, 1999, 14(8):300-305.
    [23]Zhang X, Roman M, Sanford A, et al.Can an optical plankton counter produce reasonable estimates of zooplankton abundance andbiovolume in water with high detritus? Journal of Plankton Research, 2000, 22(1):137-150.
    [24]郑重.河口浮游生物研究.自然杂志,1964,5:218-221.
    [25]Wooldridge T. Estuarine zooplankton community structure and dynamics. Estuaries of SouthAfrica. Cambridge University Press, Cambridge, United Kingdom, 1999:141-166.
    [26]Gunter G. Some relations of estuarine organisms to salinity. Limnology and Oceanography, 1961, 6(2):182-190.
    [27]Perkins E J. The Biology of Estuaries and Coastal Waters. London: Academic Press, 1974.
    [28]Remane A. Ecology of brackish water. In: Biology of Brackish Water, Second ed (Remane A, Schlieper C, eds). New York: Wiley-Interscience, 1971.
    [29]黄加祺,郑重.九龙江口桡足类和盐度关系的初步研究.厦门大学学报(自然科学版),1984,23(4):497-505.
    [30]黄加祺,郑重.盐度对九龙江口桡足类分布的影响.海洋学报,1986,8(1):83-91.
    [31]Attrill M J. A testable linear model for diversity trends in estuaries. Journal of Animal Ecology, 2002, 71(2):262-269.
    [32]Rolland S, FultonⅢ. Interactive effects of temperature and predation on an estuarine zooplankton community. Journal of experimental marine biology and ecology, 1983, 72(1):67-81.
    [33]郑重,李少菁,连光山.海洋桡足类生物学.厦门:厦门大学出版社,1992,174-199.
    [34]林元烧,李松.厦门港中华哲水蚤生活周期的初步研究.厦门大学学报自然科学版,1984,23(1):111-117.
    [35]刘光兴,李松.厦门港瘦尾形刺水蚤体长、体重与摄氏率的季节变化.海洋学报,1998,20(3):104-109.
    [36]陈雪梅.温度对武汉东湖剑临水蚤发育及繁殖的影响.水生生物学集刊,1984,8(4):419-426.
    [37]Fryer D, Smyly J P. Some remarks on the resting stages of some freshwater cyclopoida and harparcricoid copepods. Annals and Magazine of Natural History, 1954, 127(73):65-72.
    [38]Huntley M. Nonselective, nonsaturated feeding by three calaniod copepod species in the Labrador Sea. Limnology and Oceanography, 1981, 26:831-842.
    [39]徐兆礼,王云龙,白雪梅,等.长江口浮游动物生态研究.中国水产科学,1999,6(5)增刊:55-58.
    [40]郭沛勇,沈焕庭,刘阿成,等.长江口桡足类数量分布与变动.生态学报,2008,28(9):4259-4267.
    [41]Harris R P. Zooplankton grazing on the coccolithophore Emiliania huxleyi and its role ininorganic carbon flux. Marine Biology, 1994, 119:431-439.
    [42]郭沛勇,沈焕庭,刘阿成,等.长江河口浮游动物的种类组成、群落结构及多样性.生态学报,2003,22(5):892-900.
    [43]徐兆礼,王云龙,陈亚瞿等.长江口最大浑浊带区浮游动物的生态研究.中国水产科学,1995,2(l):39-48.
    [44]Hairston N G, Jr. Photoprotection by carotenoid pigments in the copepod Diaptomus evadensis. Proceedings of the National Academy of Sciences USA, 1976, 73:971-974.
    [45]Williamson C E, Zagarese H E, Schulze P C, et al. The impact of short-term exposure toUV-B radiation on zooplankton communities in north temperate lakes. Journal of Plankton Research, 1994, 16:205-218.
    [46]Cullen J J, Neale P J. Ultraviolet radiation, ozone depletion, and marine photosynthesis. Photosynthesis Research, 1994, 39:303-320.
    [47]Karanas J J, Worrest R C, Van Dyke H. Impact of UVB radiation on the fecundity of the copepod Acartia clausii. Marine Biology, 1981, 65:125-133.
    [48]Chalker-Scott L. Survival and sex ratios of the intertidal copepod, Tigriopus californicus, following ultraviolet-B (290-320 nm) radiation exposure. Marine Biology, 1995, 123:799-804.
    [49]Naganuma T, Inoue T, Uye S. Photoreactivation of Uv-induced damage to embryos of a planktonic copepod. Journal of Plankton Research, 1997, 19:783-787.
    [50]Cabrera S, Lipez M, Tartarotti B. Phytoplankton and zooplankton response to ultraviolet radiation in a high-altitude Andean lake: Short-versus long-term effects. Journal of Plankton Research, 1997, 19(11):1565-1582.
    [51]Kouwenberg H M, Browman H I, Runge J A, et al. Biological weighting of ultraviolet (280-400 nm) induced mortality in marine zooplankton and fish.Ⅱ. Calanus finmarchicus (Copepoda) eggs. Marine Biology, 1999, 134:285-293.
    [52]Kideys A E, Kovalev A V, Shulman G, et al. A review of zooplankton investigations of the Black Sea over the last decade. Journal of Marine Systems, 2000, 24(3-4):355-371.
    [53]Chicharo L, Chicharo M A, Ben-Hamadou R. Use of a hydrotechnical infrastructure (Alqueva Dam) to regulate planktonic assemblages in the Guadiana estuary: Basis for sustainable water and ecosystem services management. Estuarine, Coastal and Shelf Science, 2006, 70(1-2):3-18.
    [54]Bakker C, van-Rijswijk P. Zooplankton biomass in the Oosterschelde (SW Netherlands) before, during and after the construction of a storm-surge barrier. Hydrobiologia, 1994, 282/283:127-143.
    [55]Nicoletta RICCARDI. Selectivity of plankton nets over mesozooplankton taxa: implication for abundance, biomass and diversity estimation. Journal of Limnology, 2010, 69(2):287-296.
    [56]Ulrich Sommer, Frank Sommer, Heidrun Feuchtmayr, et al. The influence of mesozooplankton on phytoplankton nutrient limitation: a mesocosm study with northeast Atlantic plankton. Protist, 2004, 155(3):295-304.
    [57]M. Lionard, F. Azémar, S. BoulêTreau, et al. Grazing by meso- and microzooplankton on phytoplankton in the upper reaches of the Schelde estuary (Belgium/ The Neherlands). Estuarine coastal and shelf science, 2005, 64: 764-774.
    [58]Michael R. Stukel, Michael R. Landry. Contribution of picophytozooplankton to carbon export export in the equatorial Pacific: Areassessment of food web flux inferences from inverse models. Limnology and Oceanorgraphy, 2010, 55(6):2669-2685.
    [59]Azam F, Fenchel T, Field G, et al. The ecological role of water column microbes in the sea. Marine Ecology- Progress Series, 1983, 10:257-263.
    [60]Torkel Nielsen Gissel, Peter Munk. Zooplankton diversitu and the predatory impact by larvael and small juvenile fish ate the Fisher Banks in the North Sea. Journal of Plankton Research, 1998, 20(12):2313-2322.
    [61]Munk Peter, Bj?rensen Peter Koefoed, Boonruang Pensri, et al. Assemblages of fish larvae and mesozooplankton across the continental shelf and shelf slope of the Anadaman Sea (NE Indian Ocean). Marine Ecology Progress Series, 2004, 274:87-97.
    [62]Kwang-Hyeon Chang, Atsuko Amano, Todd W. Miller, et al. Pollution study in Manila Bay: eutrophication and its impact on plankton community. Interdisciplinary Studies on Environmental Chemistry - Environmental Research in Asia, 2009, pp.261-267.
    [63]J. A. Hall, K. Safi, M. R. James, et al. Microbial assemblage during the spring-summer transition on the northeast continental shelf of New Zealand. New Zealand Journal of Marine and Freshwater Research, 2006, 40(1): 195-210.
    [64]Peter J. S. Franks. Phytoplankton blooms in a fluctuating environment: the roles of plankton respone time scales and grazing. Journal of Plankton Research, 2001, 23(12):1433-1441.
    [65]Frost B W. A threshold feeding behavior in Calanus pacificus. Limnology and Oceanography, 1975, 20(2): 263-266.
    [66]Kunio T. Takahashi, Graham W. Hosie, et al. Comparison of zooplankton distribution patterns between four Seasons in the Indian Ocean sector of the Southern Ocean. Polar Science, 2010, 4(2):317-331.
    [67]J. C. Antacli, D. Hernández, M. E. Sabatini. Estimating copepods’abundance with paried nets: Implications of mesh size for population studies. Journal of Sea Research, 2010, 63(1):71-77.
    [68]Eun Jin Yang, Se Jong, Joong ki Choi. Feeding activity of the copepod Acartia hongi on phytoplankton and micro-zooplankton in Gyeonggi Bay, Yellow Sea. Eutuarine, Coastal and Shelf Science, 2010, 88(2):292-301.
    [69]Eun Jin Yang, Joong ki Choi, Jung Ho Hyun. Seasonal variation in the community and size structure of nano- and microzooplankton in Gyeonggi Bay, Yellow Sea. Eutuarine, Coastal and Shelf Science, 2008, 77(3):320-330.
    [70]C. R. Asha Devi, R. Jyothibabu, et al. Seasonal variations and trophic ecology of microzooplankton in the southeastern Arabian Sea. Continental Shelf Resrarch, 2010, 30(9): 1070-1084.
    [71]Sanae Chiba, Toshiro Saino. Variation in mesozooplankton community structure in the Japan/East Sea (1991–1999) with possible influence of the ENSO scale climatic variability. Progress in Oceangraphy, 2003, 57(3-4):317-339.
    [72]Peter Ward, Rachael S. Shreeve. The spring mesozooplankton community at South Georgia: acpmparison of shelf and oceanic sites. Polar Biology, 1999, 22(5):289-301.
    [73]Peter Ward, Rachael Shreeve, Geraint A. Tarling. The autumn mesozooplankton community at South Georgia: biomass, population structure and vertical distribution. Polar Biology, 2006, 29(11):950-962.
    [74]Jesus M. Mercado, Dolores Cortes, et al. Seasonal and inter-annual changes in the planktonic communities of the northwest Alboran Sea (Mediterranean Sea). Progress in Oceanography, 2007, 74(2-3):273-293.
    [75]Andrew T. Davidson, Fiona J. Scott, et al. Physical and biological control of protisan community compositon distribution and abundance in the seasonal ice zone of the Southern Ocean between 30 and 80°E. Deep-Sea ResearchⅡ, 2010, 57(9-10):828-848.
    [76]George L. Hunt Jr, Phyllis J.Stabeno, Suzanne Strom, et al. Patterns of spatial and temporal variation in the marine ecosystem of the southeastern Bering Sea, with special reference to the Pribilof Domain. Deep-Sea ResearchⅡ, 2008, 55(16-17):1919-1944.
    [77]D. L. Mackas, A. Tsuda. Mesozooplankton in the eastern and western subarctic Pacific: community structure, seasonal life histories, and interannual variability. Progress in Oceanography, 1999, 43(2-4):335-363.
    [78]K. S. Bernard, P. W. Froneman. Mesozooplankton community structure in the Southern Ocean upsteam of the Prine Edward Islands. Polar Biology, 2002, 25(8):597-604.
    [79]K. S. Bernard, P. W. Froneman. Mesozooplankton community structure and grazing impact in the Polar Frontal Zone of the south Indian Ocean during austral autumn 2002. Polar Biology, 2003, 6(4):268-275.
    [80]P. Ward, M. Whitehouse, et al. Mesozooplankton community structure across the Antarctic Circumpolar Current to the north of South Georgia: Southern Ocean. Marine Biology, 2003, 143(1): 121-130.
    [81]Veronica Fernandes, N. Ramaiah. Mesozooplankton community in the Bay of Bengal (India): spatial variability during the summer monsoon. Aquatic Ecology, 2009, 43(4):951-963.
    [82]I. Siokou-Frangou, T. Shiganova, et al. Mesozooplankton communities in the Aegean and Black Seas: a comparative study. Marine Biology, 2004, 144(6):1111-1126.
    [83]E. J. H. Head, L. R. Harris, I. Yashayaev. Distributions of Calanus spp. and other mesozooplankton in the Labrador Sea in relation to hydrography in spring and summer (1995-2000). Progress in Oceanography, 2003, 59(1):1-30.
    [84]P. W. Froneman, C. D. McQuaid. Preliminary investigation of the ecological role of microzooplankton in the Kariega estuary, South Africa. Estuarine, Coastal and Shelf Science, 1997, 45(5):689–695.
    [85]Christina Jett. Estimation of microzooplankton grazing in the Suwannee River estuary, Florida, USA. University of Florida, 2004.
    [86]George B. Mc Manus, Melissa C. Ederington-Cantrell. Phytoplankton pigments and growth rates, and microzooplankton grazing in a large temperate estuary. Marine Ecology Progress Series, 1992, 87:77-85.
    [87]Paulo C. Abreu. Effect of fish and mesozooplankton manipulation on the phytoplanktoncommunity in the Patos Lagoon estuary, Southern Brazil. Estuaries, 1994, 17(3):575-584.
    [88]M. C. Murrell, R. S. Stanley, et al. Linkage between microzooplankton grazing and phytoplankton growth in a Gulf of Mexico estuary. Estuaries, 2002, 25(1):19-29.
    [89]Soledad Lorena Diodato, Monica Susana Hoffmeyer. Contribution of planktonic and detritic fractions to the natural diet of mesozooplankton in Bahía Blanca Estuary. Hydrobiologia, 2008, 614(1):83-90.
    [90]Pascal Mouny, Jean-Claude Dauvin. Environmental control of mesozooplankton community structure in the Seine estuary (English Channel). Oceanologica Acta, 2002, 25(1):13-22.
    [91]R. M. Costa, N. R. Leite, L. C. C. Pereira. Mesozooplankton of the Curuca Estuary (Amazon Coast, Brazil). Journal of coastal research, 2009, special issue (56):400-404.
    [92]Eliane A. H. Cavalcanti, Sigrid Neumann-Leitao, Dilma A. do N. Vieira. Mesozooplankton of the estuarine system of Barra das Jangadas, Pernambuco, Brazil. Revista Brasileira de Zoologia, 2008, 25 (3):436-444.
    [93]R. Jyothibabu, N. V. Madhu, et al. Impact of freshwater influx on microzooplankton mediated food web in a tropical estuary (Cochin backwaters-India). Estuarine, Coastal and Shelf Science, 2006, 69(3-4):505-518.
    [94]David T. Elliott, Ronald S. Kaufmann. Spatial and temporal variability of mesozooplankton and tintinnid ciliates in a seasonally hypersaline estuary. Estuaries and Coasts, 2007, 30(3): 418-430.
    [95]黄加祺,许建东,李少菁.台湾海峡北部海域中、小型浮游动物的分布及其对生物生产力的调控.中国海洋学文集,1997,7:177-188.
    [96]李超伦,王荣.莱州湾夏季浮游桡足类的摄食研究.海洋与湖沼,2000,31(1):15-22.
    [97]曾祥波,黄邦钦.厦门海域小型浮游动物和桡足类的摄食对浮游植物生长的影响.台湾海峡,2008,27(4):459-465.
    [98]王荣,张鸿雁.小型桡足类在海洋生态系统中的功能作用.海洋与湖沼,2002,33(5):453-460.
    [99]熊瑛,王云龙,汤建华,等.黄海南部大型水母暴发区中小型浮游动物生态特征.生态学杂志,2007,28(10):2063-2068.
    [100]徐兆礼,王荣,陈亚瞿.黄海南部及东海中小型浮游桡足类生态学研Ⅰ.数量分布.水产学报,2003,27(增刊):1-8.
    [101]陈亚瞿,徐兆礼,杨元利.黄海南部及东海中小型浮游桡足类生态学研究Ⅱ.种类组成及群落特征.水产学报,2003,27(增刊):9-15.
    [102]陈亚瞿,徐兆礼,赵文武.黄海南部及东海中小型浮游桡足类生态学研究Ⅲ.优势种.水产学报,2003, 27(增刊):16-22.
    [103]高露姣,杨元利,李丁成,等.黄海南部及东海中小型浮游桡足类生态学研究Ⅳ.拟哲水蚤属.水产学报,2003, 27(增刊):23-30.
    [104]陈应华.胶州湾小型浮游动物群落特征的初步研究:[硕士学位论文] .广东:汕头大学,2002.
    [105]洪一川,陈栩,朱长寿.湄洲湾中、小型浮游动物的分布.台湾海峡,2009,28(2):238-243.
    [106]左涛,王荣,高尚武,等.南黄海鳀鱼(Engraulis japonicus)产卵场小型桡足类的数量分布.海洋与湖沼,2006,37(4):330-336.
    [107]尹健强,黄晖,黄良民,等.雷州半岛灯楼角珊瑚礁海区夏季的浮游动物.海洋与湖沼,2008,39(2):131-138.
    [108]王荣,王克.两种浮游生物网捕获性能的现场测试.水产学报,2003,27(增刊):98-102.
    [109]郭沛涌,沈焕庭.长江河口中小型浮游动物数量分布、变动及主要影响因素.生态学报,2008,28(8):3517-3526.
    [110]Yehui Tan, Liangmin Huang, etl. Seasonal variation in zooplankton composition and grazing Impact on phytoplankton standing stock in the Pearl River Estuary, China. Continental Shelf Research, 2004, 24(16):1949-1968.
    [111]K. Z. Li, J. Q. Yin, et al. Spatial and temporal variations of mesozooplankton in the Pearl River estuary, China. Estuarine, Coastal and Shelf Science, 2006, 67(4):543-552.
    [112]纪大伟.黄河口及其邻近海域生态环境状况与影响因素研究:[硕士学位论文] .青岛:中国海洋大学,2006.
    [113]陈彰榕.现行黄河口拦门沙的形态和演化.青岛海洋大学学报,1997,27(4):539-546.
    [114]孙效功,杨作升,陈彰榕.黄河三角洲冲淤定量计算及其机制讨论.海洋学报,1993,(15):129-136.
    [115]丁艳峰,潘少明,许祝华.近50年来黄河入海径流量变化的初步分析.海洋开发与管理,2009,26(5):67-73.
    [116]庞家珍,姜明星.黄河河口演变(Ⅰ)——(一)河口水文特征.海洋湖沼通报,2003,(3):1-13.
    [117]马媛.黄河入海径流量变化对河口及邻近海域生态环境影响的研究:[硕士学位论文] .青岛:中国海洋大学环境工程,2006.
    [118]Wang Y C, Liu Z, Gao H W, Ju L, Guo X Y. Response of salinity distribution around the Yellow River mouth to abrupt changes in river discharge. Continental Shelf Research, doi:10.1016/j.csr.2011.01.005.
    [119]李泽刚.黄河口附近海区水文要素基本特征.黄渤海海洋,2000,18(3):20-28.
    [120]石军等.东营市海洋与渔业志.北京:中华书局,2004:25-27.
    [121]陈友媛.生物活动对黄河口底土渗流特性的影响研究:[博士学位论文] .青岛:中国海洋大学,2006.
    [122]宋文鹏.渤海冬、夏季温盐场结构及其海流特征分析:[硕士学位论文] .青岛:中国海洋大学,2009.
    [123]王强.渤海环流的季节变化及浮游动力生态学模拟:[硕士学位论文] .青岛:中国海洋大学,2004.
    [124]何孝海.黄河三角洲动力沉积及冲淤演变研究:[硕士学位论文] .青岛:中国海洋大学,2006.
    [125]万瑞景,姜言伟.渤海硬骨鱼类鱼卵和仔稚鱼分布及其动态变化.中国水产科学,1998,5(1):43-50.
    [126]朱鑫华,缪锋,刘栋,等.黄河口及邻近海域鱼类群落时空格局与优势种特征研究.海洋科学集刊,2001,45:141-151.
    [127]孙儒泳.动物生态学原理第二版.北京:北京师范大学出版社,1992:356-357.
    [128]Lambshead P J D, Platt H M, Shaw K M. The detection of differences among assemblages of marine benthic species based on assessment of dominance and diversity. Journal of Natural History, 1983, 17(6): 859-874.
    [129]陈亚瞿,徐兆礼,王云龙,等.长江口河口锋区浮游动物生态研究II.种类组成、群落结构、水系指示种.中国水产科学,1995,2(1):59-63.
    [130]张金标.中国海洋浮游管水母类.北京:海洋出版社,2005.
    [131]陈柏云.中国海洋浮游桡足类区系的初步研究.海洋学报,1984,5(增刊):914-922.
    [132]黄世玫.长江口及济洲岛邻近海域综合调查研究报告第五章第三节浮游动物生态.山东海洋学院学报,1986,16(2):55-87.
    [133]田家怡,李洪彦.黄河口附近海域浮游动物的分布特征及其与环境因子的关系.海洋环境科学,1985,4(32):32-41.
    [134]焦玉木,田家怡.黄河三角洲附近海域浮游动物多样性研究.1999,18(4):33-38.
    [135]王克,张武昌,王荣,等.渤海中南部春秋季浮游动物群落结构.海洋科学集刊,2002,44:34-42.
    [136]张武昌,王克,高尚武,等.渤海春季和秋季的浮游动物.海洋与湖沼,2002,11(6):630-639.
    [137]宋秀凯,刘爱英,杨艳艳,等.莱州湾鱼卵、仔稚鱼数量分布及其与环境因子相关关系研究.海洋与湖沼,2010,41(3):378-385.
    [138]郑重,郑执中,王荣,等.烟威鲐鱼渔场及临近水域浮游动物生态的初步研究.海洋与湖沼, 1965,7(24):329-354.
    [139]王真良,刘晓丹.北黄海碱渣及三类废弃物处置海区浮游动物基线调查研究.海洋环境科学,1991,10(7):29-36.
    [140]Shim M B, Choi J K. A study on the seasonal succession of copepod community in Kyeonggi Bay, Yellow Sea through the short interval surveys. The Yellow Sea, 1996, 2: 65-75.
    [141]Uye Shin-ichi, Shibuno Nobuko. Reproductive biology of the planktonic copepod Paracalanus sp. in the Inland Sea of Japan. Journal of Plankton Research, 1992, 16(3): 343-358.
    [142]Liang D,Uye S. Population dynamics and production of the planktonic copepods in a eutrophic inlet of the Inland Sea of Japan.ⅢParacalanus sp.Marine Biology, 1996, 127: 219-227.
    [143]王真良.小长山岛周围海域浮游动物群落结构的初步研究.大连水产学院学报,2003,18(4):296-300.
    [144]杨波,徐汉光.黄海主要桡足类的生物量.大连水产学院学报,1988,3/4:35-42.
    [145]王真良.大连湾水域浮游桡足类的分布.黄渤海海洋,1995,13(1):47-54.
    [146]黄凤鹏,黄景洲,杨玉玲,等.胶州湾浮游桡足类时空分布.生态学报,2009,29(8):4045-4052.
    [147]姜胜,黄长江,陈善文,等.2000~2001年柘林湾浮游动物的群落结构及时空分布.生态学报,2002,22(6):828-840.
    [148]黄长江,陈善文,何歆,等.2001~2002年粤东柘林湾浮游动物的生态学研究.海洋与湖沼,2003,34(2):117-130.
    [149]孙儒泳,李庆芬.基础生态学.北京:高等教育出版社,2002,140-146.
    [150]Pielou E C. The measurements of diversity in different types of biological collections. Journal of Theoretical Biology, 1966, 13: 131-144.
    [151]Souissi S, Ibanez F, Ben Hamadou R, et al.A new multivariate mapping method for studying species assemblages and their habitats: example using bottom trawl surveys in the Bay of Biscay (France). Sarsia, 2001, 86: 527-542
    [152]Field J G, Clarke K R, Warwick R M. A practical strategy for analysis multispecies distribution patterns. Marine Ecology Progress Series, 1982, 8(1): 37-52.
    [153]Bray J R, Curtis J T. An ordination of the upland forest communities of Southern Wisconsin. Ecological Monographs, 1957, 27: 325-349.
    [154]Clarke K R, Warwick R M. Change in marine communities: An approach to statistical analysis and interpretation (2nd edition). Plymouth: Primer-E, 2001.
    [155]Kruskal J B. Multidimensional scaling by optimizing goodness of fit to a non-metric hypothesis. Psychometrika, 1964, 29(1): 1-27.
    [156]Clarke K R, Green R H. Statistical design and analysis for a‘biological effect’study. Marine Ecology Progress Series, 1988, 46: 213-226.
    [157]巩俊霞,杨秀兰,段登选,等.黄河入海口水域春季浮游动物群落特征研究.广东海洋大学学报,2010,30(6):1-6 .
    [158]侍茂崇,赵进平,孙月彦.黄河口附近水文特征分析.山东海洋学院学报,1985,15(2):81-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700