用户名: 密码: 验证码:
铁碳纳米纤维的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能性碳纤维在能源、环保、航天等方面得到了广泛的应用,其中负载金属的碳纤维是材料科学研究的前沿,可控制备载铁碳纳米纤维具有重要意义。
     本论文以DMF作为溶剂,将二茂铁(Fc)溶于质量分数为15%的聚丙烯腈(PAN)溶液,以N,N-二甲基甲酰胺和四氢呋喃作为混合溶剂,配制聚丙烯腈和聚二茂铁硅烷(PFS)的共混溶液。采用静电纺丝,分别得到PAN/Fc和PAN/PFS微纳前驱体纤维,对得到的纤维进行预氧化和炭化处理,最终得到了含Fe的碳纳米纤维膜。
     初步研究了静电纺制备纳米纤维前驱体、纤维的预氧化和纤维炭化工艺,利用TGA分析了纳米纤维前驱体的热失重规律,SEM、TEM、XPS、FTIR和Raman分别对纳米纤维的形貌、尺寸、组成和结构演变进行了表征。结果表明:经热处理后纤维直径明显减小,含PFS的纤维中表面有元素Fe,并随热处理的深入Fe价态发生变化。
Functional carbon fibers are important and have a wide range of applications from energy to the aerospace industry, and the carbon nanofibers containing metal become foreland domain of materials science research, So controllable Preparation of carbon nanofibers containing iron is important.
     In the present work, PAN/Fc nanofibers were prepared by electrospinning using a composite solution of Fc dispersed into 15 Wt.% polyacrylonitrile (PAN) solution in DMF, and a mixture of polyacrylonitrile and polyferrocenylsilanes in N, N-dimethylformamide and tetrahydrofuran were electronspun into submicrometer fibers. The fiber precursors were stabilized, and then carbonized, the carbon nanofibers containing iron were successfully prepared.
     The electrospinning, stabilization, and carbonization processes were researched. The thermal decomposition of nanofiber precursors were charactered by TGA, and the morphology, size, structure evolution, and components of nanofibers were characterized by SEM, TEM, XPS, FTIR, and Raman. The results show that the diameters of the nanofibers were decreased during the pyrolysis process, Fe were contained in the surface of the PAN/PFMMS fibers and the valence state of Fe changed in the stabilization and carbonization processes.
引文
[1] Chen, H.; Qu, R. J.; Liu, J. S. High-molecular-weight polyacrylonitrile by atom transfer radical polymerization. J. Appl. Polym. Sci. 2006, 100(4):3372-3376.
    [2] Dong, H.; Tang, W.; Matyjaszewski, K. Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP. Macromolecules 2007, 40(9):2974-2977.
    [3]胡爱娟,崔玉双,孔令泉,鲁在君.含聚丙烯腈的嵌段共聚物及其纳米碳材料.中国科技论文在线. 2008, 3(6):395-403.
    [4] Masson, J. C. Acrylic Fiber Technology and Application. Marcel Dekker, New York. 1995, p1-10.
    [5]贺福.碳纤维及其应用技术.北京:化学工业出版, 2004, p64-69, 160-179.
    [6]杨秀珍,李青山,卢东.聚丙烯腈基碳纤维研究进展.现代纺织技术. 2007, 1, 45-47.
    [7]朱群玉,王庆瑞.聚丙烯腈基活性中空炭纤维的制备和性能的研究.博士论文. 2006.
    [8]刘恩华,李树锋,程博闻,杜启云.聚丙烯腈基中空碳纤维膜制备及结构研究.纺织学报. 2006, 27(4):19-21.
    [9] Bates, F. S. Polymer-Polymer Phase Behavior. Science. 1991, 251, 898-905.
    [10] Kowalewski, T.; Tsarevsky, N. V.; Matyjaszewski, K. Nanostructured carbon arrays from block copolymers of polyacrylonitrile chlorides. J. Am. Chem. Soc. 2002, 124(36):10632-10633.
    [11] Kowalewski, T. Complex Nanostructured materials from segmented copolymers prepared by ATRP. Eur. Phys. J. E. 2003, 10(1):5-16.
    [12] Tang, C.; Tracz, A.; Kruk, M.; Zhang, R. Long-range ordered thin films of block copolymers prepared by zone-casting and their thermal conversion into ordered nanostructured carbon. J. Am. Chem. Soc. 2005, 127(19):6918-6919.
    [13] Chen, J. T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M.; Russell, T. P. Amorphous carbon nanotubes with tunable properties via template wetting. Adv. Funct. Mater. 2006, 16(11):1476-1480.
    [14] Wang, J.; Yang, Q.; Zhang, Z. Selective synthesis of magnetic Fe2P/C and FeP/CCore/Shell nanocables. J. Phys. Chem. Lett. 2010, 1(1):102-106.
    [15] Ipaktschi, J.; Hosseinzadeh, R.; Schlaf, P. Self-assembly of quinodimethanesthrough covalent bonds: a novel principle for the synthesis of functionalmacrocycles. Angew. Chem. Int. Ed. 1999, 38(11):1658-1660.
    [16] Skibar, W.; Kopacka, H.; Wurst, K.; Salzmann, C.; Ongania, K. H.; Zanello, P.;Bildstein, B.α,ω-Diferrocenyl cumulene molecular wires. Synthesis, spectroscopy,structure, and electrochemistry. Organometallics 2004, 23(5):1024-1041.
    [17] Wang, J. J.; Wang, L.; Chen, T.; Wang, X. J.; Wang, C. L.; Dong, X. C.; et al. Studyon synthesis and properties of poly(ferrocenylnbutylmethylsilane) withunsymmetrical silicon substitution groups. Eur. Polym. J. 2006, 42:843–848.
    [18] Foucher, D. A.; Tang, B. Z.; Manners, I. Ring-opening polymerization of strained,ring-titled ferrocenophanes: a route to high molecular weightpoly(ferrocenylsilanes). J. Am. Chem. Soc. 1992, 114(15):6246–6248.
    [19] Wang, J.-J.; Wang, L.; Huo, J.; Li, J.-H. Electronic properties ofpoly(ferrocenylsilanes) thin films after iodine diusion doping. J. Northwest.Norm. Univ(Nat Sci). 2006, 142(28):34–35.
    [20] Ginzburg, M.; Maclachlan, M. J.; Yang, S. M.; Coombs, N.; Coyle, T. W.; Raju, N.P.; Greedan, J. E.; Ozin, G. A.; Manners, I. Genesis of nanostructured,magnetically tunable ceramics from the pyrolysis of cross-Linkedpolyferrocenylsilane networks and formation of shaped macroscopic objects andmicron scale patterns by micromolding inside silicon wafers. J. Am. Chem. Soc.2002, 124(11):2625-2639.
    [21] Wang, L.; Wang, X. J.; Pan, J.; Feng, L. X. Study on ESR spectra ofpoly(ferrocenyldimethylsilane)/TCNE and spin-probedpoly(ferrocenyldimethylsilane). J. Appl. Polym. Sci. 2002, 86(14):3508-3511.
    [22] Maclachlan, M. J.; Ginzburg, M.; Coyle, T. W.; Raju, N. P.; Greedan, J. E.; Ozin,G. A.; Manners, I. Shaped ceramics with tunable magnetic properties frommetal-containing polymers. Science 2000, 287:1460-1463.
    [23] Chen, Z.; Foster, M. D.; Zhou, W.; Fong, H.; Resendes, R.; Manners, I. Structureof poly(ferrocenyldimethylsilane) in electrospun nanofibers. Macromolecules 2001,34(18):6156-6158.
    [24] Bellas, V.; Rehahn, M. Polyferrocenylsilane-based polymer systems. Angew. Chem.Int. Ed. 2007, 46(27):5082-5104.
    [25] Hu, J.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32(5):435–445.
    [26] Roth, S.; Carroll, D. One-dimensional metals: conjugated polymers, organic crystals, carbon nanotubes. Weinheim: Wiley-VCH. 2004, p5-9.
    [27] Taylor, G. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Proc. Roy. Soc. London A. 1969, 313:453-475.
    [28]刘芸,戴礼兴.静电纺丝纤维形态及其主要影响因素.合成技术及应用. 2005, 20(1):25-28.
    [29] Li, D.; Xia, Y. Electrospinning of nanofibers: reinventing the wheel. Adv. Mater. 2004, 16(14):1151–1170.
    [30] Jaeger, R.; Sch?nherr, H.; Vancso, G. J. Chain packing in electro-spun poly(ethylene oxide) visualized by atomic force microscopy. Macromolecules 1996, 29(23):7634–7636.
    [31] Lee, S. W.; Belcher, A. M. Virus-based fabrication of micro- and nanofibers using electrospinning. Nano. Lett. 2004, 4(3):387–390.
    [32] Wu, H.; Zhang, R.; Liu, X.; Lin, D.; Pan, W. Electrospinning of Fe, Co, and Ni nanofibers: synthesis, assembly, and magnetic properties. Chem. Mater. 2007, 19(14):3506–3511.
    [33] Zhao, Y.; Cao, X.; Jiang, L. Bio-mimic multichannel microtubes by a facile method. J. Am. Chem. Soc. 2007, 129(4):764–765.
    [34] Chen, Z.; Foster, M. D.; Zhou, W.; Fong, H.; Reneker, D. H.; Resendes, R.; et al. Structure of poly(ferrocenyldimethylsilane) in electrospun nanofibers. Macromolecules 2001, 34(18):6156–6158.
    [35] Wang, J. J.; Dai, L. X.; Gao, Q.; Wu, P. F.; Wang, X. B. Electrospun nanofibers of polyferrocenylsilanes with dievolution of pitch-based activated carbon microfibers. Ind. Eng. Chem. Res. 2008, 47(11):3883-3890.
    [38] Lin, T.; Wang, H. X.; Wang, X. G. Self-crimping bicomponent nanofibers electrospun from polyacrylonitrile and elastomeric polyurethane. Adv. Mater. 2005, 17(22):2699-2703.
    [39] Bergshoef, M. M.; Vnaeso, G. J. Transparent nanocomposites with ultrathin, electrospun nylon-4,6 fiber reinforcement. Adv. Mater. 1999, 11(16):1362-1365.
    [40] Ding, B. Elcetorspunifbrous oplyacyrlci acdimembrane-based gas sensosr. Sensosr. Acutat. 2005, 106(1):477-483.
    [41] Ji, L.; Zhang, X. Manganese oxide nanoparticle-loaded porous carbon nanofibers as anode materials for high-performance lithium-ion batteries. Electrochem. Commun. 2009, 11(4):795-798.
    [42] Zhu, Y.; Zhang, J. C.; Zhai, J.; Zheng, Y. M.; Feng, L.; Jiang, L. Multifunctional carbon nanofibers with conductive, magnetic and superhydrophobic properties. Chemphyschem. 2006, 7(2):336-341.
    [43] Huang, J. H.; Wang, D. W.; Hou, H. Q.; You, T. Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Adv. Funct. Mater. 2008, 18(3) 441-448.
    [44] Hou, H. Q.; Reneker, D. H. Carbon nanotubes on carbon nanofibers: a novel structure based on electrospun polymer nanofibers. Adv. Mater. 2004, 16(1):69-73.
    [45] Iijima. S. Helieal micortubules of graphitic. Nature 1991, 354:56-58.
    [46] Hou, H. Q.; Ge, J. J.; Zeng, J.; Li, Q.; Reneker, D. H.; Greiner, A.; Cheng, S. Z. D. Electrospun polyacrylonitrile nanofibers containing a high concentration of well-aligned multiwall carbon nanotubes. Chem. Mater. 2005, 17(5):967-973.
    [47] Wang, G.; Tan, Z.; Chawda, S.; Koo, J. S.; Samuilov, V.; Dudley, M. Conducting MWNT/poly(vinyl acetate) composite nanofibres by electrospinning. Nanotechnology 2006, 17(23):5829-5835.
    [48] Zhang, Q.; Chang, Z.; Zhu, M.; Mo, X.; Chen, D. Electrospun carbon nanotube composite nanofibres with uniaxially aligned arrays. Nanotechnology 2007, 18(11):1-6.
    [49] Ra, E. J.; An, K. H.; Kim, K. K.; Jeong, S. Y.; Lee, Y. H. Anisotropic electrical conductivity of MWCNT/PAN nanofiber paper. Chem. Phys. Lett. 2005, 413(1-3):188-193.
    [50] Kedem, S.; Schmidt, J.; Paz, Y.; Cohen, Y. Composite polymer nanofibers with carbon nanotubes and titanium dioxide particles. Langmuir 2005, 21(12):5600-5604.
    [51] Ji, L.; Lin, Z.; Zhou, R.; Shi, Q.; Toprakci, O.; Medford, A. J.; Millns, C. R.; Zhang, X. Formation and electrochemical performance of copper/carbon composite nanofibers. Electrochimica. Acta. 2010, 55(5):1605–1611.
    [52] Mosby, J. M.; Prieto, A. L. Direct electrodeposition of Cu2Sb for lithium-ion battery anodes. J. Am. Chem. Soc. 2008, 130(32):10656-10661.
    [53] Xiang, J. Y.; Tu, J. P.; Yuan, Y. F.; Huang, X. H.; Zhou, Y.; Zhang, L. Improved electrochemical performances of core-shell Cu2O/Cu composite prepared by a simple one-step method. Electrochem. Commun. 2009, 11(2):262-265.
    [54] Demir, M. M.; Gulgun, M. A.; Menceloglu, Y. Z. Palladium nanoparticles by electrospinning from polyacrylonitrile-co-acrylic acid-PdCl2 solutions. Relations between preparation conditions, particle size and catalytic activity. Macromolecules 2004, 37(5):1787-1792.
    [55] Kim, H.; Lee, D.; Moon, J. Co-electrospun Pd-coated porous carbon nanofibers for hydrogen storage applications. Int. J. Hydrogen. Energ. 2011, 36(5):3566-3573.
    [56]徐雄立,周美华.静电纺丝工艺参数对含纳米银的明胶纳米纤维形态结构的影响.东华大学学报. 2008, 34(2):127-131.
    [57] Wang, Y. Z.; Yang, Q. B.; Shan, G. Preparation of silver nanoparticles dispersed in polyacrylonitrile nanofiber film spun by electrospinning. Mater. Lett. 2005, 59(24-25):3046-3049.
    [58] Yang, Q. B.; Li, D. M.; Hong, Y. L.; Li, Z. Y.; Wang, C. Preparation and characterization of a PAN nanofibre containing nanoparticles via electrospinning. Synthetic. Met. 2003, 137(1-3):973-974.
    [59] Lee, H. K.; Jeong, E. H.; Baek, C. K.; Youk, J. H.. One-step preparation of ultrafine poly(acrylonitrile) fibers containing silver nanoparticles. Mater. Lett. 2005, 59(23):2977-2980.
    [60] Nataraj, S. K.; Kim, B. H.; Cruz, M.; Ferraris, J.; Aminabhavi, T. M.; Yang, K. S. Free standing thin webs of porous carbon nanofibers of polyacrylonitrile containing iron-oxide by electrospinning. Mater. Lett. 2009, 63(2):218-220.
    [61] Chen, I.; Wang, C.; Chen, C. Fabrication and characterization of magnetic cobaltferrite/polyacrylonitrile and cobalt ferrite/carbon nanofibers by electrospinning.Carbon 2010, 48(3):604-611.
    [62] Bayat, M.; Yang, H.; Ko, F. Electromagnetic properties of electrospunFe3O4/carbon composite nanofibers. Polymer 2011, 52(7):1645-1653.
    [63]王建军.新型二茂铁基聚合物的合成、表征、交联反应及性能研究.浙江大学博士论文, 2006.
    [64] Moon, S.; Farris, R. J. Strong electrospun nanometer-diameter polyacrylonitrilecarbon fiber yarns. Carbon 2009, 47(12):2829-2839.
    [65] Zhou, Z.; Lai, C.; Zhang , L.; Qian, Y.; Hou, H.; Reneker, D. H.; Fong, H.Development of carbon nanofibers from aligned electrospun polyacrylonitrilenanofiber bundles and characterization of their microstructural, electrical, andmechanical properties. Polymer 2009, 50(13):2999-3006.
    [66] Im, J. S.; Park, S.; Kimc, T. J.; Kim, Y. H.; Lee, Y. The study of controlling poresize on electrospun carbon nanofibers for hydrogen adsorption. J. Colloid. Interf.Sci. 2008, 318(1):42-49.
    [67] Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A review on polymernanofibers by electrospinning and their applications in nanocomposites. Compos.Sci. Technol. 2003, 63(15):2223–2253.
    [68] Greiner, A.; Wendor, J. H. Electrospinning: a fascinating method for thepreparation of ultrathin fibers. Angew. Chem. Int. Ed. 2007, 46(30):5670–5703.
    [69] Doshi, J.; Reneker, D. H. Electrospinning process and applications of electrospunfibers. J. Electrostat. 1995, 35(2-3):151–160.
    [70] Huang, C.; Chen, S.; Lai, C.; Reneker, D. H.; Qiu, H.; Ye, Y.; et al. Electrospunpolymer nanofibers with small diameters. Nanotechnology 2006, 17:1558–1563.
    [71]荣国斌译.波谱数据表:有机化合物的结构解析.上海:华东理工大学出版,2002, p245-308.
    [72]关烨第,李翠娟,葛树丰.有机化学实验.北京:北京大学出版, 2007,p102-106, 252.
    [73] Esrafilzadeh, D.; Morshed, M.; Tavanai, H. An investigation on the stabilization ofspecial polyacrylonitrile nanofibers as carbon or activated carbon nanofiberprecursor. Synthetic. Met. 2009, 159(3-4):267-272.
    [74] Rahaman, M. S. A.; Mustafa, A.; Ismail, A. F. A review of heat treatment onpolyacrylonitrile fiber. Polym. Degrad. Stabil. 2007, 92(8):1421-1432.
    [75] Paiva, M. C.; Kotasthane, P.; Ogale, A. A. UV stabilization route formelt-processible PAN-based carbon fibers. Carbon 2003, 41(7):1399-1409.
    [76] Gu, S. Y.; Ren, J.; Vancso, G. J. Process optimization and empirical modeling for electrospun polyacrylonitrile(PAN) nanofiber precursor of carbon nanofibers. Eur. Polym. J. 2005, 41(11):2559-2568.
    [77] Paiva, M. C.; Kotasthane, P.; Ogale, A. A. UV stabilization route formelt-processible PAN-based carbon fibers. Carbon 2003, 41(7):1399-1409.
    [78] Dalton, S.; Heatley, F.; Budd, P. M. Thermal stabilization of polyacrylonitrile fibers. Polymer 1999, 40(20):5531-5543.
    [79] Ko, T. K. Influence of continuous stabilization on the physical properties and microstructure of PAN-based carbon fibers. J. Appl. Polym. Sci. 1991, 42(7):1949-1957.
    [80] Fitzer, E.; Frohs, W.; Heine, M. Optimization of stabilization and carbonization of PAN fibers and structural characterization of the resulting carbon fibers. Carbon 1986, 24(4):387-395.
    [81] Mathur, R. B.; Bahl, O. P.; Mittal, J. A new approach to thermal stabilization of PAN fibers. Carbon 1992, 30(4):657-663.
    [82] Mittal, J.; Mathur, R. B.; Bahl, O. P. Single step carbonization and graphitization of highly stabilized PAN fibers. Carbon 1997, 35(8):1196-1197.
    [83] Wang, Y.; Coombs, N.; Turak, A.; Lu, Z.-H.; Manners, I.; Winnik, M. A. Interfacial staining of a phase-separated block copolymer with ruthenium tetroxide. Macromolecules 2007, 40(5):1594-1597.
    [84] Lammertink, R. G. H.; Hempenius, M. A.; Chan, V. Z.-H.; Thomas, E. L.; Vancso, G. J. Poly(ferrocenyldimethylsilanes) for reactive ion etch barrier applications. Chem. Mater. 2001, 13(2):429-434.
    [85] Rider, D. A.; Liu, K.; Eloi, J.-C.; Wanderark, L.; Yang, L.; Wang, J.-Y.; Grozea, D.; Lu, Z.-H.; Russell, T. P.; Manners, I. Nanostructured magnetic thin films from organometallic block copolymers: pyrolysis of self-assembled polystyrene-block-poly(ferrocenylethylmethylsilane). ACS Nano 2008, 2(2): 263-270.
    [86] Chen, J. C.; Harrison, I. R. Modification of polyacrylonitrile (PAN) carbon fiber precursor via post-spinning plasticization and stretching in dimethylformamide(DMF). Carbon 2002, 40(1):25-45.
    [87] Wang, Y.; Serrano, S.; Santiago-Avilés, J. J. Raman characterization of carbon nanofibers prepared using electrospinning. Synthetic. Met. 2003, 138(3):423-427.
    [88] Xia, W.; Su, D.; Birkner, A.; Ruppel, L.; Wang, Y.; W?ll, C.; Qian, J.; Liang, C.; Marginean, G.; Brandl, W.; Muhler, M. Chemical vapor deposition and synthesis on carbon nanofibers: sintering of ferrocene-derived supported iron nanoparticles and the catalytic growth of secondary carbon nanofibers. Chem. Mater. 2005, 17(23):5737-5742.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700