用户名: 密码: 验证码:
氮素在盐碱稻田中的迁移转化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国有各类盐碱地约1亿hm2,其中东北地区松嫩平原苏打盐碱地面积高达233.3万hm2,是世界三大片苏打盐碱土集中分布区之一。苏打型盐碱地的利用现状为农业和牧业利用并重,其中农业利用地占盐碱地总面积的28.7%。近年来,在盐碱地上种植作物以改善盐碱地性质的方法越来越普遍,但是也带来了新的农业污染问题。实验区所在地——前郭灌区位于松嫩平原,该区的水稻田氮素流失已经成为影响水环境的一个重要污染源。由于氮肥过量施用、氮肥利用率较低和施氮肥方式不合理等原因,使得氮肥大量流失,严重威胁到下游的查干湖国家4A生态保护区的水质安全。
     目前,国内对于苏打型盐碱地稻田中氮的动态变化、迁移转化规律以及其对环境的潜在影响的研究尚缺乏系统研究。因此开展盐碱水田中氮的动态变化规律的研究,对于科学进行水肥管理,盐碱地治理,合理控制氮素流失,保护水体等均有十分重要的意义。本研究以松嫩平原典型苏打盐碱地水稻田为研究对象,在两年大田实验的基础上,结合室内模拟实验,探讨了盐碱地水稻田中氮素动态变化、迁移转化规律及其对环境的潜在影响。课题的主要内容有:1、调查试验区的基本水文、气候等基本情况,连续两年跟踪监测盐碱水稻田中的流失规律;2、在大田实验基础上,取实验区的原状土,在实验室进行土壤元素分析、土壤氮素物料平衡分析、氨挥发实验、氮素淋溶实验以及土壤固铵性能分析等实验。通过土壤性质、氮素流失途径、施肥量等几个因素,在理论上分析氮素在盐碱水稻田中的迁移转化规律;3、结合苏打盐碱地的主要特征及当地农田管理措施,提出减少氮污染的主要途径及技术手段。
     主要结论如下:
     1、试验区土壤属强碱土,土壤中氮、碳、磷元素含量偏低,在土层剖面上随土层的加深而减少;土壤中的钠、镁、铝、钙等4种元素的含量较高,且4种元素总量随着土层的加深而显著增加;土壤的CEC与其含有的蒙脱石含量和腐殖酸含量相关,且都是深层土中的含量大于浅层土中的含量,这导致了浅层土壤的保肥能力差。
     2、两年试验期内,田表水中的盐碱化指标如Ca2+、Mg2+等含量波动较大;试验初期总氮和铵态氮浓度达到最高值,之后随时间的推移而下降,强降雨对其影响较大;硝态氮浓度出现峰值晚于总氮和铵态氮出现峰值的时间,之后随时间推移而下降;试验后期,总氮浓度减少了78.4%~90.2%,铵态氮浓度减少了41.9%~86.2%以上,硝态氮浓度减少了66.5%~87.1%以上,氮素流失严重。稻田排水中总氮浓度均高于国家地表水环境质量Ⅲ类标准;农田退水中的非离子氨浓度较高,对下游查干湖鱼类养殖存在潜在危害。
     3、实验室模拟实验中,淹水环境下,不同施肥量时,表水中氮素较少以氨挥发的形式流失,约占总损失量的0.01%左右;表水与30cm土层出水中的总氮浓度与施肥量成正相关,而深层土出水中的总氮浓度与施肥量无明显相关关系;不同施肥量处理时,氮素在盐渍土中均大量的以硝态氮形式发生淋溶,深层土层出水中的硝态氮浓度基本与施肥量无关;同一施肥量处理的土壤,其硝态氮淋溶浓度随土层的加深而增大;盐渍土含有的大量的盐碱成分,影响土壤的氮饱和量,是造成促进氮肥的淋溶损失的重要因素之一。
     4、铵的固定和释放是土壤氮素内循环的重要过程之一。实验土壤对铵的固定符合Langmuir吸附等温式和Freundlich吸附等温式,但Freundlich吸附等温式的拟合度较高(R2=0.9523),由此推断土壤对铵的固定属于多层吸附。同时,土壤对铵的吸附量在一定范围内随着溶液中铵加入量的增加而增大,但从两种等温式上看,试验区土壤对铵的固定能力较弱,最大吸附量在1.25 mg/g。
     5、最佳管理措施(BMPs)是目前控制非点源污染的主要手段,试验区可以通过加强耕作管理、综合肥力管理、合理灌溉以及构建人工湿地等措施,控制当地的氮素污染。
There are all kinds of saline-alkali soil around 100 million hm2 in China. The saline-alkali soil area in Songnen Plain, which is one of the three major saline-alkali soil concentrated distribution area, is up to 2.333 million hm2. Equally important to animal husbandry land for developing saline-alkali soil, farm land takes 28.7% proportion of the saline-alkali soil. In recent years, the way of planting on the saline-alkali soil aiming to improve saline-alkali soil grows more and more popular. However, it brings the new agricultural pollution issue:the agricultural non-point source pollution. Qianguo irrigated areas as the field experimented site is located in in Songnen Plain. Nitrogen loss of the paddy land in Qianguo is one of the heavily polluting sources for water environment. Because of excessive amounts, the low utilization, as well as the unscientific way of applying nitrogen fertilizer, the heavy loss of nitrogen becomes a serious threat to the Chagan Lake, the 4A class national ecological protection zone laying downstream.
     At present, the systematic research on dynamics, transport and transformation of nitrogen in soda saline-alkali soil as well as their potential impact to the environment is in great need. Therefore, researching on the nitrogen dynamic change law of saline-alkali paddy field is not only important for water and fertilizer, and the regulating of nitrogen loss, but will also bring good news to the management of saline-alkali soil and the protecting water environment cause. In this study, Songnen Plain soda saline paddy fields are selected as the research object, in two field experiments, based on the combination of laboratory simulation experiments to explore the saline paddy nitrogen dynamics, migration and transformation of its potential impact on the environment.
     The main objectives of this work are:(1) pilot area survey of the basic hydrology, climate and other basic conditions for two consecutive years of tracking and monitoring saline paddy nitrogen dynamics; (2) based on field experiments, taking the experimental area of undisturbed soil, elements in the laboratory for soil analysis, material balance analysis of soil nitrogen, ammonia volatilization experiments, nitrogen leaching and soil solid ammonium performance analysis and other experiments. By soil properties, nitrogen loss means the amount of fertilizer and other factors, in theory, analysis of nitrogen in saline paddy fields of migration and transformation rules; (3) propose the main channels and technical means to reduce nitrogen pollution with the main features of soda saline and local farm management measures.
     The main conclusions are as follows:
     1, The tested soil is rich in alkalinity, depending on the depth of soil layer; the contents of N, C and P are low and reduce with the depth of soil; the contents of Na, Mg, Al and Ca are higher comparing to other metals in soil and their contents increase with the soil depth; CEC of soil relates to of the soil montmorillonite and humic acid contents, and deep soil levels are greater than the shallow soil in the content, which can be attributed to the soil surface fertilizer.
     2, During the two year experimental period, the Ca2+ and Mg2+ content in paddy field surface water changed significantly. The total nitrogen (TN) and ammonia (NH4+-N) concentration reached its peak value after fertilization, and subsequently decreased with time. Heavy storm was observed to increase nitrogen runoff. The nitrate (NO3--N) content was observed to reach its peak value later than TN and NH3-N, and its concentration decreased with time. It was found that TN, NH4+-N and NO3--N decreased by about 78.4%~90.2%,41.9%~86.2% and 66.5%~87.1% respectively, which is an indicative of serious nitrogen leaching. The TN concentrations in paddy field runoff exceeded the National Surface Water Quality Standard (levelⅢ). In addition, the non-ionic ammonia concentration was very high, and could pose serious threat to the aquatic biota in Chagan Lake.
     3, Through the laboratory simulation experiment, in the flooded environment, with different fertilization nitrogen in surface water rarely loss in the form of ammonia volatilization, accounts for about 0.01% of the total loss; total nitrogen concentration in surface water and 30 cm Soil water are positively correlated with the amount of fertilizer, while concentration of total nitrogen in deep soil water has no significant correlation with fertilizing amount; different fertilization while the same layer loss of form by nitrate in saline-alkali soil, and the concentration of nitrate in deep soil is unrelated with the amount of fertilizer; saline soil contains a lot of salt composition and it effects nitrogen saturation quantity of soil, also be one of the important factors of promoting nitrogen fertilizer leaching loss.
     4, Fixation and release of ammonia is one of the important processes of inner cycle of soil nitrogen. Characteristics of soil ammonium fixation corresponds with the Langmuir adsorption isotherm and Freundlich adsorption isotherm and the Freundlich adsorption isotherm is better (r2 =0.9523) so that the soil adsorption of ammonia can be attributed to the multi-layer adsorption mechanism. Meanwhile, the soil adsorption of ammonium are enhanced by increasing ammonium concentration in solution. But through the observation of two isotherm type, the capacity of ammonium fixation of tested soil is low and the maximum adsorption capacity is 1.25 mg/g.
     5, BMPs are the primary measures to control non-point source pollution. By taking the measures of enhancement of fanning management, integrated soil fertility management, rational irrigation, construction of artificial wetlands and others and the local nitrogen pollution can be controlled.
引文
[1]唐浩.水稻田农药、氮素流失特性及其控制技术研究[D].上海交通大学,2003.
    [2]孙彭立,王慧君.氮素化肥的环境污染[J].环境污染与防治,1995,17(1):38-41.
    [3]张维理,田哲旭,张宁等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    [4]Emteryd O, Lu D Q, Nykvist N. Nitrate in soil profiles and nitrate Pollution of drink water in the loss region of China[J].Ambio,1998,27(6):441-443.
    [5]金根东.我国湖泊富营养化研究现状[J].现代农业科技.2008(16):334-336.
    [6]胡泽友,郭朝晖,周作明,等.湖南省稻田化肥施用与氮磷流失状况的研究[J].湖南农业大学学报,2000,26(4):264-266.
    [7]Kronvang B, Graesboll P, Larsen S E, et al. Diffuse nutrient losses in Denmark[J]. Water Science and Technology,1996,33(4-5):81-88.
    [8]史蒂文森(阂九康等译).农业十壤中的氮[M].北京:科学出版社,1989.
    [9]世界资源研究所,联台国环境规划署,联合国开发计划署编.世界资源报告(1992-1993),1993,北京:中国环境科学出版社.
    [10]赵永秀,刘世海,张暄.农业面源污染及防治对策[J].内蒙古环境科学,2007(1):9-12.
    [11]张青松,刘飞,辉建春.农业化肥面源污染现状及对策[J].亚热带水土保持,2010,22(2):44-46.
    [12]蒋鸿鲲,高海鹰,张奇.农业面源污染最佳管理措施(BMPs)在我国的应用[J].农业环境与发展,2006,23(4):64-67.
    [13]董凤利.上海市农业面源污染控制的滨海缓冲带体系初步研究[D].上海师范大学,2004.
    [14]刘冬梅,管宏杰.美、日农业面源污染防治立法及对中国的借鉴[J].世界农业,2008(4):35-37.
    [15]鲍全盛.王华东.毛显强.我国水环境非点源研究进展污染防防治政策目标和技术选择[J].环境科学进展,1995,3(3):31-36.
    [16]徐谦.我国化肥和农药非点源污染状况综述[J].农村生态环境,1996,12(2):39-43.
    [17]章明奎,李建国,边卓平.农业非点源污染控制的最佳管理实践[J].浙江农业学报,2005,17(5):244-250.
    [18]金可礼,陈俊,龚利民.最佳管理措施及其在非点源污染控制中的应用[J].水资源与水工程学报,2007,18(1):37-40.
    [19]莫绍周.复合人工湿地在农业面源污染治理中的应用研究[D].昆明理工大学,2005.
    [20]Donald L H, Kirk R B, Carolann B. The hydrology of four experimental constructed marshes [J]. Ecological Engineering,1994,3(4):319-343.
    [21]Neda F, Gregory M M, Eneas S F. Nutrient removal in a vertical upflow wetland in Piracicaba, Brazil[J].Ambio,2000,29(2):74-77.
    [22]张劲,李兆华,朱联东,等.农业面源污染现状及其控制对策的研究进展[J].农业环境越发展,2009,26(3):1-5.
    [23]仓恒瑾,许炼峰,李志安,等.农业非点源污染控制中的最佳管理措施及其发展趋势[J].生态科学,2005,24(2):173-177.
    [24]陈洪波,王业耀.国外最佳管理措施在农业非点源污染防治中的应用[J].环境污染与防治,2006,28(4):279-282.
    [25]贺缠生,傅伯杰,陈利顶.非点源污染的管理及控制[J].环境科学,1998,19(5):87-91,96.
    [26]王坷,朱荫湄,王人潮.土壤耕作与农业非点源污染[J].耕作与栽培,1996,2:15-17.
    [27]张辉.士壤环境学[M].北京:化学工业出版社,2005.
    [28]马立珊,汪祖强,张水铭,等.苏南太湖水系农业面源污染及其控制对策研究[J].环境科学学报,1997,17(1):39-47.
    [29]黄宗楚.上海旱地农田氮磷流失过程及环境效益研究[D].上海:华东师范大学,2005.
    [30]朱兆良.农田中氮肥的损失与对策.土壤与环境[J].2000,9(1):1-6.
    [31]李志博,王起超,陈静.农业生态系统中氮素循环研究进展[J].土壤与环境,2002,11(4):417-421.
    [32]傅涛,倪九派,魏朝富等.不同雨强和坡度条件下紫色土养分流失规律研究[J].植物营养与肥料学报,2003,9(1):71-77.
    [33]马立珊,王祖强,张水铭等.苏南太湖水系农业面源污染及控制对策研究[J].环境科学学报,1997,17(1):39-47.
    [34]康玲玲,朱小勇,王云璋,等.不同雨强下黄土性土壤养分流失规律研究[J].土壤学报,1999,16(4):536-541.
    [35]于兴修,杨桂山,梁涛.西苕溪流域土地利用对氮素径流流失过程的影响[J].农业环境保护,2002,21(5):421-427.
    [36]蒋晓辉.滇池面源污染及其综合治理[J].云南环境科学,2000,(12):33-34.
    [37]段永惠,张乃明,张玉娟.施肥对农田氮磷污染物径流输出的影响研究[J].土壤,2005,37(1):48-53.
    [38]王晓燕,高焕文,李洪文,等.保护性耕作对农田地表径流与土壤水蚀影响的试验研究[J].农业工程学报,2000,16(3):66-69.
    [39]李虎.小清河流域农田农田非点源氮污染定量评价研究[D].中国农业科学院,2009.
    [40]Packer P, Leach S. Origin and significance of nitrite in water [J]. In:Hill Med. Nitrates and Nitrites in Food and Water. Chichester:Ellis Horwood Press,1991:77-92.
    [41]刘宏斌,李志宏,张维理,等.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J].植物营养与肥料学报,2004,10(3):286-291.
    [42]袁新民,杨学云,同延安,等.不同施氮量对土壤硝态氮累积的影响.干旱地区农业研究[J].2001,19(1):7-13.
    [43]郭胜利,余存祖.有机肥对土壤剖面硝态氮淋失影响的模拟研究[J].水土保持研究,2000,7(4):123-126.
    [44]袁新民,同延安,杨学云,等.有机肥对土壤NO3--N累积的影响[J].土壤与环境,2000,9(3):197-202.
    [45]Kanwar R S, Colvin T S, Karlen D L. Ridge, mold-board, chisel and no-tillage effects on tile water quality beneath two cropping systems [J]. Prod. Agric,1997,10:277-234.
    [46]曹志洪.施肥与大气环境质量:论施肥对环境的影响(1)[J].土壤,2003,35(4):265-270.
    [47]宋勇生,范小晖.稻田氨挥发研究进展[J].生态环境,2003,12(2):240-244.
    [48]王朝辉,刘学军,巨晓棠,等.北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定[J].生态学报,2002,22(3):359-365.
    [49]绉长明,颜晓元,八木一行.淹水条件下的氨挥发研究[J].中国农学通报,2005,21(2):167-170.
    [50]王连君,刘中军,王继红.黑土玉米农田生态系统氮磷配施氨挥发规律[J].东北林业大学学报,2009,37(7):88-90.
    [51]Moeller M B, Vlek P L G. The chemical dynamics volatilization from aqueous solution [J].Aatmospheric Environment,1982,16:709-717.
    [52]Martin J F, Reddy K R. Interaction and spatial distribution of wetland nitrogen processes [J]. Ecological Modeling,1997,105(1):1-21.
    [53]庄舜尧.表面分子膜降低氨挥发的Logistic模型研究[J].土壤与环境,2002,11(1)47-49.
    [54]李慧琳,韩勇,蔡祖聪.运用Jayaweera-Mikkelsen模型对太湖地区水稻田稻季氨挥发的模拟[J].环境科学,2008,29(4):1045-1052.
    [55]陈德立,朱兆良.稻田土壤供氮能力的解析研究[J].上壤学报,1988,25(3):262-268.
    [56]文启孝,张晓华.上壤中的固定态按[J].中国土壤学会土壤农业化学专业委员会、土壤生物化学专业委员会编,我国土壤氮素研究工作的现状和展望.北京:科学出版社,1986.34-45.
    [57]程励励,文启孝,李洪.盆栽和田间条件下13N标记肥料氮的转化[J].土壤学报,1989,26(2):124-130.
    [58]Chen B Y, Cheng L L, Wen Q X. Difficultly extractable fixed ammonium in some soils of China[J].Pedosphere,1999,9(2):185-188.
    [59]彭佩钦,仇少君,刘强,等.洞庭湖平原典型水稻土氮素固持动态及氮的残留形态[J].环境科学,2009,30(4):1140-1144.
    [60]文启孝,程励励,陈碧云.我国土壤中的固定态饺[J].土壤学报,2000,37(2):145-156.
    [61]李忠佩,程励励,文启孝.黄淮海平原土壤中的固定态铵[J].土壤通报,1992,23(5):200-202.
    [62]黄巧云主编.迈向21世纪的土壤与植物营养科学[M].北京:中国农业出版社,1997:167-170.
    [63]文启孝,程励励,陈碧云.我国土壤中的固定态铵[J].土壤学报,2000,37(2):145-156.
    [64]林菲.湿沉降氮和部分植物氮利用研究[D].大连交通大学,2009.
    [65]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [66]沈善敏主编.中国十壤肥力[M].北京:科学出版社,1999.
    [67]刘学军,赵紫娟,巨晓棠,等.基施氮肥对冬小麦产量、氮肥利用率及氮平衡的影响[J].生态学报,2002,22(7):1122-1128.
    [68]巨晓棠,刘学军,邹国元,等.尿素配施有机物料时土壤不同氮素形态的动态及利用[J].中国农业科学,2002,35(12):1493-1499.
    [69]艾应伟,刘学军,张福锁.旱作与覆盖方式对水稻吸收利用氮的影响[J].土壤学报,2004,41(1):152-155.
    [70]王建美.农村面源污染的危害及防治[J].黑龙江环境通报,2003,27(2):19-21.
    [71]Environmental Protection Agency. National primary and secondary drinking recommendations[J].1984,2:290-292.
    [72]李庆诚.全国重点环境考核城市地下水污染情况与防治对策[J].地下水,1992,14(1):2-5.
    [73]家峰,崔丽英,肖美丽.济南市地下水硝酸盐污染研究[J].农村生态环境,1998,14(1):55-57.
    [74]罗泽娇,靳盂贵.地下水三氮污染的研究进展[J].水文地质工程地质,2002(4):65-69.
    [75]童桂华.去除地下水硝酸盐PRB介质试验研究[D].青岛:中国海洋大学,2008.
    [76]张维理,田哲旭,张宁,等.我国北方农用氮肥造成地下水硝酸盐污染的调查[J].植物营养与肥料学报,1995,1(2):80-87.
    [77]赵可夫,范海,宋杰,等.中国盐生植物的种类、类型、植被及其经济潜势[A].刘小京,刘孟雨.盐生植物利用与区域农业可持续发展[C].北京:气象出版社,2002:1-9.
    [78]王遵亲,祝寿泉,俞仁培,等.中国盐渍土[M].北京:科学出版社,1993.
    [79]范海,赵可夫.中国盐生植物资源[A].刘小京,刘孟雨.盐生植物利用与区域农业可持续发展[C].北京:气象出版社,2002:26-32.
    [80]王春裕,王汝镛,李建东.中国东北地区盐渍士的生态分区[J].土壤通报,1999,30(5):193-196.
    [81]刘兴士.松嫩平原退化土地整治与农业发展[M].北京:科学出版社,2001.
    [82]李秀军.松嫩平原西部土地盐碱化与农业可持续发展[J].地理科学,2000,20(1):51-55.
    [83]顾峰雪,潘晓玲.中国西北干旱荒漠区盐生植物资源与开发利用[J].干旱区研究,2002,19(4):17-20.
    [84]王青海,沈军辉,李恒玉.我国西北地区土地盐渍化与水资源利用[J].四川环境,2000,19(4):40-42.
    [85]王根绪,程国栋.西北干旱区土壤资源特征与可持续发展[J].地球科学进展,1999,14(5):492-497.
    [86]刘小京,田魁祥.环渤海盐碱地区农业资源分布特征与农业持续发展模式初探[J].生态农业研究,2000,8(4):67-70.
    [87]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,5(1):46-52.
    [88]鲁如坤主编.土壤农业分析方法[M].中国农业科技出版社,2000.
    [89]王小利,周建斌,段建军,等.包膜控释肥料氮素释放动力学研究[J].西北农林科技大学学报:自然科学版,2003(5):35-42.
    [90]金兴坤,高建峰,刘亚青.高分子绥释化肥的缓释性能研究[J].化肥研究,2007(1):61-68.
    [91]周莎莎,蔡冬清,吴林,等.沙柱淋溶法改进前后化肥氮素释放特性比较[J].安徽农业科学,2009,37(27):12978-12980.
    [92]胡启武,欧阳华,刘贤德.祁连山北坡垂直带土壤碳氮分布特征[J].山地学报,2006,24(6):654-661.
    [93]Post W M, Pastord, Zinke P J, Stangenberger A G. Globalpattenrs of soil nitrogen storage[J]. Nature,1985,317(17):613-616.
    [94]Prescott C E, Chappell N H,VcsterdalL. Nitrogen turnover in forest floors ofcoastal Douglas-firatsites differing in soilnitrogen capital[J]. Ecology,2000,81:1878-1886.
    [95]陶志强.改性膨润土的制备及其在水处理中的应用[D].南京理工大学,2006.
    [96]鹿贞彬.腐植酸和多环芳烃相互作用研究初探[D].厦门大学,2005.
    [97]宋新山,邓伟,闫百兴.松嫩平原西部水环境中各盐碱化成分的变异特征[J].东北水利水电,2002,20(218):45-46.
    [98]Jayawera G R,Mikkelsen D S.Ammonia volatilization from flooded soil systems:a computer model II.Theory and model results[J]. Soil Science Society of America Journal,1990,54(5):1456-1462.
    [99]Jin J,Yang J P,Shin H X, et al. Nitrogen and phosphorus in paddy field surface water characteristics of the dynamic factors [J]. Agriculture Environment Science,2005,24(2):357-361.
    [100]Gu J,Li Y,Yang L Z,et al. Dynamic changes of water and runoff losses of nitrogen in the paddy fields[J].Anhui agricultural Sciences,2009,37(8):3626-3628.
    [101]Aber J D,McDowell W,Nadelhoffer K, et al. Nitrogen saturation in temperate forest ecosystems [J].Bioscience,1998,8:921-934.
    [102]Fang H J,Cheng S L,Yu G R. Research of the forest soil carbon and nitrogen leaching process and mechanism[J].Geographic Science,2007,26(3):29-37.
    [103]Ye J Q,Yuan R X,Wang Z H, et al. Dynamic Changes of Nitrogen in Saline-alkaline Paddy Field and Their Potential Environmental Impacts [J].Agriculture Science and Technology,2011,12 (3):443-446.
    [104]Aber J D,Nadelhoffer K J,Steudler P,et al. Nitrogen saturation in northern forest ecosystems.Bioscience,1989,39:378-386.
    [105]潘根兴,褚清河,张英,等.太湖地区高产水稻土经济极点施肥:一种农田N、P养分负荷的田间控制技术[J].环境科学,2003,24(3):96-100.
    [106]李荣刚,戴其根,皮家欢.江苏太湖稻麦两熟地区生态、经济施氮量的初步研究[J].江苏农业研究,2000,21(2):30-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700