用户名: 密码: 验证码:
YAG:Ce~(3+)荧光粉的制备及发光性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光LED具有能耗低、亮度高、工作电压低、使用寿命长等特点,广泛应用于照明、指示及显示领域。白光LED是由蓝光LED芯片((In,Ga)N)和颜色转换层(YAG:Ce3+荧光粉均匀分散在环氧树脂等基质中)两部分组成的。基于互补的两种发射光混合形成适于照明应用的白色光源的原理,(In,Ga)N蓝色LEDs发出的部分蓝光被颜色转换层吸收而发出黄光与剩余蓝光混合形成白色光源。稀土铈离子掺杂钇铝石榴石荧光粉(YAG:Ce3+)具有很高的发光效率和化学稳定性,所以被广泛应用于真空紫外、等离子平板显示、固体激光器以及白光LED等应用技术领域。论文中全面介绍了飞YAG:Ce3+发光材料的发展概况、发光机理以及常用的制备技术,同时还提出了一种制备YAG:Ce3+发光材料的新的简单方法——直接蒸发烧结法(简称:DESM)。
     本文分别采用溶剂热法和直接蒸发烧结法(DESM)制备YAG:Ce3+荧光粉。研究了这两种制备方法的后处理温度对YAG:Ce3+荧光粉结晶性能、表面形貌、发光性能等的影响。同时还对YAG:Ce3+荧光粉发光性能的温度依赖性、荧光寿命、量子效率等有更深入的研究,弥补了现有文献资料对YAG:Ce3+荧光粉低温发光性能研究数据的不足。总结如下:
     溶剂热法合成YAG:Ce3+荧光粉的成相烧结温度大约在900℃,1000℃时得到YAG纯相,粉体颗粒形貌是不规则的球形,颗粒尺寸大约35 nm。样品的光致发光光谱显示出YAG:Ce3+荧光粉的激发光谱中有两个很强的激发峰,分别为340 nm和460nm。发射光谱是一个很宽的发射带(500-700nm),峰值波长为540 nm。
     与溶剂热法制备YAG:Ce3+荧光粉相比,DESM法更有优势。首先,DESM法的合成路径更简单,反应物不需要离心、水洗、醇洗等处理过程。如此,便避免了由于这些处理过程可能带来的产物流失或者引入新的杂质元素等问题。其次,DESM法的烧成温度更低。从XRD分析结果可知,溶剂热法烧成的YAG:Ce3+荧光粉的纯相形成温度为1000℃左右,且颗粒形貌不是很规则的球形。而DESM法制备YAG:Ce3+荧光粉的纯相形成温度仅为850℃,而且颗粒形貌是很规则的球形,颗粒平均尺寸为30 nm。量子效率方面,同是纯相的YAG:Ce3+荧光粉,DESM法制备的样品量子效率比溶剂热法合成的产品高9个百分点左右。另外,溶剂热法需要在高压釜内进行,而DESM法在大气环境中即可进行反应,且不需要昂贵的高温(>1000℃)烧结炉,因此DESM法更安全,成本更低。
     YAG:Ce3+荧光粉发光的温度依赖性研究结果显示,其发光性能会受烧结温度和环境温度影响。随着烧结温度的提高,YAG:Ce3+荧光粉的杂相含量降低、结晶性能提高;表面形貌逐步趋于圆球形;发光强度逐渐增强;量子效率有效提高。从低温光谱可知,在较低环境温度下,可以明显看到发射峰是由两个峰值很接近的发射峰组成的,分别对应Ce3+的两个能级发射,即5d1→2F5/2和5d1→2F7/2。而且随着温度的升高,发射峰变宽,两个发射峰的重叠部分逐渐增加,变成一个发射宽峰。其发光强度呈指数形式衰减,而且衰减时间会随着环境温度的增加而降低。
     文章最后,我们对YAG:Ce3+荧光粉的发展前景及今后的研究趋势进行了展望。
White LEDs are typically used as illuminators and indicators and used in displays due to low energy consumption, high brightness levels, low operating voltages and longer lifetimes. The white LED is composed of a blue LED chip ((In.Ga)N) and a color conversion layer of YAG:Ce3+ phosphors dispersed in a medium such as epoxy resin. It is based on the principle of integrating two complementary luminescence emissions to generate white light suitable for lighting applications. Part of the blue light from the (In.Ga)N LED is absorbed by the color conversion layer and is converted into yellow light. The combination of blue and yellow gives a bright white light source. Ce3+-doped YAG phosphors have been recognized as the most excellent phosphors satisfactorily applied in vacuum ultraviolet. plasma display panels, solid-stated lasers, and white LED commercial market, because of the high luminescent efficiency and chemical stability. In this article, the development of YAG:Ce3+ photoluminescent materials and photoluminescent mechanism and common preparation methods are introduced. Furthermore, a novel simple method which is called Direct Evaporation Sintering Method (DESM) is proposed for preparing YAG:Ce3+phosphors.
     In this paper, YAG:CeJ3+ phosphors have prepared by solvothermal method and DESM, respectively. We study the effect of sintering temperature on crystallization properties, surface morphology and luminescent properties of YAG:Ce3+ phosphors. Meanwhile, we pay attention to the behavior of temperature-dependence of luminescence, fluorescence decay lifetimes and quantum efficiency (QE) of prepared YAG:Ce3+ phosphors. which make up the insufficient data of lower temperature luminescent properties of YAG:CeJ-phosphors in the existing literatures. Such as follows:
     For solvothermal method, the formation temperature of YAG phase is about 900℃, while the pure YAG phase can be obtained at 1000℃. The morphology of the particles can be described as irregular ellipse spherical and the average particle size is about 35 nm. As shown in PL spectra of YAG:Ce3+ phosphors, The excitation spectra are consist of two broad Ce3+ absorption bands peaked at 340 nm and 460 nm. And the emission spectra show a broad emission band with a maximum at 540 nm and located in the range from 500 nm to 700 nm.
     Compared with the solvothermal method (STM), DESM has some advantages. Firstly, DESM is very simple; reaction product does not need to fast speed centrifugation. water or alcohol washes. So, the problems of products loss and new impurities which are caused by these processes can be avoided. Secondly, the sintering temperature of DESM is lower. According to the XRD results, the pure YAG phase can be generated at 1000℃by STM. and the morphology of the samples is irregularly spherical. While the pure YAG phase can be formed at 850℃by DESM, and the surface morphology of the YAG:Ce3+ phosphors can be described as spherical, and the average particle size is about 30 nm. For the quantum efficiency (QE) of prepared YAG:Ce3+ phosphors, the QE of DESM is 9% higher than STM. Furthermore, the high-pressure reaction kettle is needed for STM, while DESM does not need it. All reaction processes are carried out in open systems, and no need expensive high temperature (>1000℃) sintering furnace, so the DESM is more secure, low-cost.
     The behavior of temperature-dependence luminescent properties of YAG:Ce3+ phosphors between 6 K and 325 K shows that the luminescent properties are influenced by sintering temperature and environment temperature. As the sintering temperature rising, the impurity phase is gradually disappeared and the crystallinity is increased; surface morphology will become more spherical; luminescent intensity and quantum efficiency are also effectively improved. From the low temperature spectra of YAG:Ce3+ phosphors, we can clearly observe the well-known double band structure of the Ce3+ emission at low environment temperature, that is attributed to the emissions of Ce3+, viz.5d1→2F5/2 and 5d1→2F7/2. And with the rising of temperature, the two emission bands broaden and start to overlap, resulted in one broad emission band. Meanwhile.the intensity of luminescence is exponential decay, and decrease with the environment temperature rising.
     Finally, the prospect and the development trend for the YAG:Ce3+ phosphors are also proposed.
引文
[1]刘春佳.稀土铈离子(Ce3+)掺杂YAG荧光粉的湿化学法制备和性能研究[D].厦门大学.2007.
    [2]奚群.阳离子取代YAG:Ce荧光材料的微结构调控与发光性能研究[D].天津理工大学.2009.
    [3]Holonyak Jr. N, Bevacqua S F. Coherent (visible) light emission from Ga(Asl-xPx) junctions[J]. Applied Physics Letters.1962,1(4):82-83.
    [4]Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes[J]. Applied Physics Letters.1994,64(13): 1687-1689.
    [5]赵晓霞,王晓君,陈宝玖,等.白光LED用红色荧光粉α-Gd2(MoO4)3:Eu的制备及其发光性能研究[J].光谱学与光谱分析.2007(4):629-633.
    [6]高涛,成建波,饶海波,等Cr4-:YAG能级结构的全量子力学计算[J].原子与分子物理学报.2001(4):415-420.
    [7]赵静.半导体照明用荧光粉YAG:Ce3+的制备及其性能研究[D].天津大学,2007.
    [8]牟中飞,胡义华YAG:Ce3黄色荧光粉的高温固相法制备[J].广州化工.2011(8):432-436.
    [9]Yan X, Zheng S, Yu R, et al. Preparation of YAG:Ce3-phosphor by sol-gel low temperature combustion method and its luminescent properties[J]. Transactions of Nonferrous Metals Society of China.2008.18(3):648-653.
    [10]Yang H, Yuan L, Zhu G, et al. Luminescent properties of YAG:Ce3+ phosphor powders prepared by hydrothermal-homogeneous precipitation method[J]. Materials Letters.2009. 63(27):2271-2273.
    [11]Chiang C C, Tsai M S, Hsiao C S, et al. Synthesis of YAG:Ce phosphor via different aluminum sources and precipitation processes[J]. Journal of Alloys and Compounds.2006, 416(1-2):265-269.
    [12]Lee S H, Koo H Y, Lee S M, et al. Characteristics of Y3Al5O12:Ce phosphor powders prepared by spray pyrolysis from ethylenediaminetetraacetic acid solution[J]. Ceramics International.2010,36(2):611-615.
    [13]Chen Z, Yang Y, Hu Z. et al. Synthesis of highly sinterable YAG nanopowders by a modified co-precipitation method[J]. Journal of Alloys and Compounds.2007.433(1-2):328-331.
    [14]Kasuya R, Isobe T, Kuma H, et al. Photoluminescence enhancement of PEG-modified YAG: Ce3+ nanocrystal phosphor prepared by glycothermal method[J]. Journal of Physical Chemistry B.2005,109(47):22126-22130.
    [15]Lin Y S. Liu R S, Cheng B M. Investigation of the luminescent properties of Tb3+-substituted YAG:Ce, Gd phosphors[J]. Journal of the Electrochemical Society.2005,152(6):J41-J45.
    [16]Chiang C, Tsai M, Hon M. Preparation of cerium-activated GAG phosphor powders influence of Co-doping on crystallinity and luminescent properties[J]. Journal of the Electrochemical Society.2007,154(10):J326-J329.
    [17]Zhang S S, Zhuang W D, Zhao C L, et al. Study on (Y. Gd)3(Al, Ga)5O12:Ce3+ phosphor[J]. Journal of Rare Earths.2004.22(1):118-121.
    [18]Lin Y S, Liu R S. Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination[J]. Journal of Luminescence. 2007,122(SI):580-582.
    [19]李永绣,闵宇霖,周雪珍,等.有机-无机杂化凝胶法合成YAG:Ce3+荧光粉的包膜及其稳定性[J].无机化学学报.2003(11):1169-1174.
    [20]Tamura T, Setomoto T, Taguchi T. Illumination characteristics of lighting array using 10 candela-class white LEDs under AC 100 V operation[J]. Journal of Luminescence.2000, 87-9:1180-1182.
    [21]Kimura H, Numazawa T. Sato M,et al. Single-crystal growth of (DY1-XGDX)3Al5O12 and (DY1-X-YGDXYY)3Al5O12 garnets[J]. Journal of Crystal Growth.1989,97(3-4):607-612.
    [22]邱克辉,李峻峰,高晓明,等.SrAl2O4:Tb3+,Ce3+发光材料的合成与发光特性[J].发光学报.2004(2):197-201.
    [23]马林,胡建国,万国江,等.YAG:Ce发光材料合成的助熔剂研究[J].发光学报.2006(3):348-352.
    [24]吴作贵,张旭东,何文,等.白光LED用YAG:Ce3+荧光粉制备技术的研究进展[J].山东陶瓷.2007(1):28-30.
    [25]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社.2003,第1版.
    [26]王焆,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状[J].化学工业与工程.2009(3):273-277.
    [27]Lu C H, Jagannathan R. Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting[J]. Applied Phrsics Letters.2002,80(19): 3608-3610.
    [28]娄天军,王天喜,谷永庆,等.YAG:Ce荧光粉体的柠檬酸盐分解法制备和表征[J].人工晶体学报.2007(4):931-934.
    [29]Zhang N, Wang D, Li L, et al. YAG:Ce phosphors for WLED via nano-pesudoboehmite sol-gel route[J]. Journal of Rare Earths.2006,24(3):294-297.
    [30]缪春燕,李东平,刘丽芳,等.YAG:Ce3+的合成与光谱性能研究[J].光谱实验室.2004(3): 563-565.
    [31]张凯,刘河洲,仵亚婷,等.共沉淀法制备纳米铈掺杂钇铝石榴石荧光粉及其荧光特性[J].机械工程材料.2007(1):53-56.
    [32]周永慧,林君,于敏,等.喷雾热解法制备发光材料研究进展[J].发光学报.2002(5):503-508.
    [33]Jia N, Zhang X, He W, et al. Property of YAG:Ce phosphors powder prepared by mixed solvothermal method[J]. Journal of Alloys and Compounds.2011,509(5):1848-1853.
    [34]Li X, Liu H, Wang J, et al. YAG:Ce nano-sized phosphor particles prepared by a solvothermal method[J]. Materials Research Bulletin.2004,39(12):1923-1930.
    [35]Ramanthan S, Kakade M B. Roy S K, et al. Processing and characterization of combustion synthesized YAG powders[J]. Ceramics International.2003,29:477-484.
    [36]苏锵.稀土化学[M].河南科学技术出版社,1993年8月:p5.
    [37]Dong Y, Zhou G, Xu J. et al. Luminescence studies of Ce:YAG using vacuum ultraviolet synchrotron radiation[J]. Materials Research Bulletin.2006.41(10):1959-1963.
    [38]黄朝红,张庆礼,周东方,等Ce3+:YAG单晶闪烁体的激发和发光特性[J].人工晶体学报.2003(4):295-299.
    [39]李武林.YAG:Ce荧光粉喷雾热解合成与表征[D].重庆大学.2007.
    [40]周迪斌Y2O2S:Eu. Mg. Ti红色长余辉磷光体制备与光谱性能[D].浙江大学.2002.
    [41]P.F.Bongers. Philips Technical Review[J].1967.28 (1):13.
    [42]G. B. Energy transfer in oxidic phosphors[J]. Physics Letters A.1968,28(6):444-445.
    [43]丁建红,李许波,倪海勇,等.白光LED用YAG:Ce3+荧光粉的性能研究[J].广东有色金属学报.2006(1):8-11.
    [44]Chiang C,Tsai M, Hon M. Preparation of cerium-activated GAG phosphor powders influence of Co-doping on crystallinity and luminescent properties[J]. Journal of the Electrochemical Society.2007,154(10):J326-J329.
    [45]Zhang S S, Zhuang W D, Zhao C L. et al. Study on (Y, Gd)3(Al, Ga)5O12:Ce3+ phosphor[J]. Journal of Rare Earths.2004.22(1):118-121.
    [46]Lin Y S, Liu R S. Chemical substitution effects of Tb3+ in YAG:Ce phosphors and enhancement of their emission intensity using flux combination[J]. Journal of Luminescence. 2007,122(SI):580-582.
    [47]吴竞,梁超,董岩,等.掺杂对白光LED用YAG:Ce荧光粉发光性能的研究[Z].中国湖北武汉:2007190-192.
    [48]Pan Y X, Wu M M, Su Q. Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor[J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology.2004.106(3):251-256.
    [49]Pan Y X, Wu M M, Su Q. Tailored photoluminescence of YAG:Ce phosphor through various methods[J]. Journal of Physics and Chemistry of Solids.2004,65(5):845-850.
    [50]Yang Z, Li X, Yang Y, et al. The influence of different conditions on the luminescent properties of YAG:Ce phosphor formed by combustion[J]. Journal of Luminescence.2007, 122(SI):707-709.
    [51]Potdevin A, Chadeyron G, Boyer D. et al. Sol-gel based YAG:Ce3+ powders for applications in LED devices[M].2007:4.65-69.
    [52]Ye S, Xiao F, Pan Y X, et al. Phosphors in phosphor-converted white light-emitting diodes Recent advances in materials, techniques and properties[J]. Materials Science& Engineering R-Reports.2010,71(1):1-34.
    [53]Chiang C C, Tsai M S, Hsiao C S, et al. Synthesis of YAG:Ce phosphor via different aluminum sources and precipitation processes[J]. Journal of Alloys and Compounds.2006, 416(1-2):265-269.
    [54]Zych E, Walasek A, Szemik-Hojniak A. Variation of emission color Of Y3Al5O12:Ce induced by thermal treatment at reducing atmosphere[J]. Journal of Alloys and Compounds.2008, 451(1-2):582-585.
    [55]Mancic L, Del Rosario G, Stanojevic Z V M, et al. Phase evolution in Ce-doped yttrium-aluminum-based particles derived from aerosol[J]. Journal of the European Ceramic Society.2007,27(13-15):4329-4332.
    [56]Purwanto A, Wang W, Lenggoro I W, et al. Formation and luminescence enhancement of agglomerate-free YAG:Ce3+ submicrometer particles by flame-assisted spray pyrolysis[J]. Journal of the Electrochemical Society.2007,154(3):J91-J96.
    [57]Jia D, Wang Y. Guo X. et al. Synthesis and characterization of YAG:Ce3+ LED nanophosphors[J]. Journal of the Electrochemiscal Society.2007.154(1):J1-J4.
    [58]Kasuya R, Isobe T. Kuma H, et al. Photoluminescence enhancement of PEG-modified YAG: Ce3+ nanocrystal phosphor prepared by glycothermal method[J]. Journal of Physical Chemistry B.2005,109(47):22126-22130.
    [59]Lu C H. Jagannathan R. Cerium-ion-doped yttrium aluminum garnet nanophosphors prepared through sol-gel pyrolysis for luminescent lighting[J]. Applied Physics Letters.2002,80(19): 3608-3610.
    [60]Vaidhyanathan B. Binner J G P. Microwave assisted synthesis of nanocrystalline YAG[J]. Journal of Materials Science.2006.41(18):5954-5957.
    [61]房喻,王辉.荧光寿命测定的现代方法与应用[J].化学通报.2001(10):631-636.
    [62]王文韵,于皎路,于英宁,等.分子和离子的荧光寿命测量和研究[J].激光杂志.1993(3):127-130.
    [63]毛艳丽,丁菲,顾玉宗.Yb3-离子掺杂浓度对Yb:YAG晶体发光及荧光寿命的影响[J].光子学报.2006(3):365-368.
    [64]付伟,钱可元,罗毅,等.白光LED荧光粉荧光外量子效率的准确测量[J].半导体光电.2011(5):640-645.
    [65]魏明真.溶剂热法合成纳米材料的研究进展[J].四川化工.2007(3):22-24.
    [66]Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology[J]. Progress in Crystal Growth and Characterization of Materials.2007,53(2):117-166.
    [67]Jiao H, Ma Q, He L, et al. Low temperature synthesis of YAG:Ce phosphors by LiF assisted sol-gel combustion method[J]. Powder Technology.2010,198(2):229-232.
    [68]Yang H, Yuan L, Zhu G, et al. Luminescent properties of YAG:Ce3+ phosphor powders prepared by hydrothermal-homogeneous precipitation method[J]. Materials Letters.2009, 63(27):2271-2273.
    [69]Li X, Liu H, Wang J, et al. Rapid synthesis of YAG nano-sized powders by a novel method[J]. Materials Letters.2004.58(19):2377-2380.
    [70]Bachmann V, Ronda C, Meijerink A. Temperature quenching of yellow Ce3+ luminescence in YAG:Ce[J]. Chemistyry of Materials.2009,21(10):2077-2084.
    [71]陈俊锋,李赞,宋桂兰,等.光激发下Li6Gd(BO3)3:Ce晶体发光和衰减的温度依赖特性[J].无机材料学报.2007(1):25-29.
    [72]Pidol L, Kahn-Harari A, Viana B, et al. Scintillation properties of Lu2Si2O7:Ce3+,a fast and efficient scintillator crystal[J]. Journal of Physics-condensed Matter.2003,15(12): 2091-2102.
    [73]张凯,刘河洲,仵亚婷,等YAG:Ce纳米荧光粉发光的温度依赖特性[J].无机材料学报.2008(5):1045-1048.
    [74]王林生,陈建军,周健,等.白光LED用YAG:Ce3+荧光粉的研究进展[J].世界有色金属.2011(1):73-75.
    [75]Raue R, Vink A T, Welker T. Phosphorscreens in cathode-ray tubes for projection television [J]. Philips Technical Review.1989:44(11/12):3352347.
    [76]蒋大鹏,侯凤勤,赵成久,等.白色发光二极管色坐标和显色指数的一致性[J].液晶与显示.2002(3).
    [77]姚光庆,段洁菲,任敏,等YAG:Ce蓝光转换材料的合成和发光性质研究(英文)[J].发光学报.2001:21-23.
    [78]张乐,韩朋德,陈雁,等.柠檬酸凝胶燃烧法合成YAG:Ce,RE荧光粉及其光谱性能研究[J].人工晶体学报.2011(3):677-683.
    [79]王磊,齐恩磊,李明龙,等.制备条件对微波合成YAG:Ce3荧光粉性能的影响[J].硅酸盐学报.2011(3):491-494.
    [80]Jiang D S, Jung H. Ploog K. Temperature-dependence of photoluminescence from gaas single and multiple quantum-wall heterostructures growth by molecular-beam epitaxy[J]. Journal of Applied Physics.1988,64(3):1371-1377.
    [81]Blasse G, Bril A. A new phosphor for flying-spot cathode-ray tubes for color television: Yellow-emitting Y3Al5O12:Ce3+[J]. Applied Physics Letters.1967,11(2):53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700