用户名: 密码: 验证码:
LNG系统中工作压力设定依据与换热器正交试验设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液化天然气(LNG)在天然气的储存和运输方面都具有十分明显的优势,而我国的天然气液化技术是一项新兴的技术,正在迅猛发展,但与国外天然气液化技术相比,国内天然气液化技术起步较晚,差距很大。尤其是我国存在许多零散的天然气资源,由于各种条件的限制,这些资源没有得到开发或利用,小型液化天然气装置研制的目的正是为了开发和利用边远地区零散天然气资源,使这些无法开发利用的天然气资源优势真正转化为经济优势。本文从热力学角度出发,对小型混合制冷剂天然气液化流程模拟与优化进行了详细的研究。
     本文首先论述了国内外天然气液化技术的现状和发展趋势,阐述了液化技术原理,并通过各地天然气液化工厂的不同液化技术的比较,给出了液化流程的选择原则;确定了以P-R方程作为计算天然气液化相平衡的基础模型,并对液化流程中的设备(压缩机、节流阀、多股流换热器)建立了数学模型;结合气源特点,拟选出三套小型混合制冷剂天然气液化流程,并在前两步的基础上,进行了全流程的模拟和分析,最终确定采用带回热的丙烷预冷混合制冷剂天然气液化流程。
     本文对带回热的丙烷预冷混和制冷剂天然气液化流程进行了工作压力分析,重点分析了制冷剂低压的工作压力、制冷剂高压的工作压力、液化天然气储存工作压力的设定依据。并在此基础上以功耗为目标函数,对流程参数进行了优化。
     本文对带回热的丙烷预冷混合制冷天然气液化流程中的重要设备板翅式换热器,进行了正交试验设计,并用MATLAB编程计算结果。从正交试验设计的直观分析得出最优搭配方案,从正交试验设计的方差分析得出因素的显著性。并采用局部热负荷平衡型通道排列模型,来分析板翅式换热器通道排列的好坏。
     最后,本文运用商业软件FLUENT对板翅式换热器封头结构内部流场进行了稳态数值模拟。在不同管径比和纵深比情况下,得到了相应的速度分布规律,并指出封头结构对内部流动的影响规律。
Liquid natural gas (LNG) has obvious advantages in storing and transporting natural gas. Compared to LNG technology in western nations, the LNG technology in China which is a new technology and developing rapidly have a shorter history and a big technology gap. There are lots of scattered and remote natural gas resources in China, which haven’t been utilized for limits of kinds of conditions, and our purpose of researching small plants of gas liquefaction is no other than to utilize these natural gas resources. Based on thermodynamics, here the simulation and optimization of the process of mixed refrigerant cycle (MRC) for small scale gas liquefaction plants have been researched.
     In this thesis first the history and trends of LNG technology in the world is presented, and the principle of liquefaction technology is introduced. Based on the investigation of different liquefaction technology chosen by plants of natural gas liquefaction over the world, the choosing principles for liquefaction process are presented here too. The author chooses the P-R equation to calculate the phase equilibrium properties of LNG liquefaction, and builds mathematic models for equipment modules in the liquefaction cycle, which consists of compressor、throttle valve、multi-flow heat exchanger. Considering the characteristics of natural gas resource, the author presents three flow process of mixed refrigerant cycle for small scale gas liquefaction plants, simulates and analyses the whole process based on the two steps before. Finally, the author chooses the process of turn round heat exchange mixed refrigerant cycle with propane precooling.
     In this thesis the working pressure analyze of turn round heat exchange mixed refrigerant cycle with propane precooling has been discussed. The author especially analyses the setting bases from the factors including: low working pressure refrigerant, high working pressure refrigerant, storing pressure. The author optimizes the process, using the minimum power of the compressor as the aim function.
     In this thesis, the orthogonal experiment design of the plate-fin heat exchanger which is important equipment in the liquefaction process has been done. The?result is carried out by the MATLAB programming .The optimum design Scheme is found by?visual analysis methods of orthogonal experiment design. Factors affecting degree are evaluated by variance analysis methods of orthogonal experiment design. The passage design model of local heat load balance is adopt. The author analyses which is The best passage arrangement.
     Finally, In this thesis, The header structure Fluid field distribution of Plate-fin heat exchanger is simulated using the commercial CFD code FLUENT. When the nozzle ratio and depth ratio is different,we can simulate different results. The simulated results show that the header structure has a large effect on fluid field.
引文
1龙泽智.我国液化天然气工业的现状及其发展动向.天然气工.1994,14(3):63~65
    2徐文,顾安忠.世界天然气液化技术发展的新动向.石油与天然气化工. 1994, 23(1): 31~35
    3阎光灿,王小霞.天然气液化技术.天然气与石油.2005(2):10~18
    4付道明,孙军,贺志刚,喻西崇.天然气欲处理和液化工艺技术的研究进展.石油与天然气化工.2004:240~244
    5杨克剑.中小型天然气液化装置及其应用.低温与超导,1996,24(2):54~58
    6 Kesten Dr. A Clean Fuel-LNG[J]. Messer SAIC. 2000(9):27~28
    7 Itaru Tamura,Toshihide Tanaka,Toshimasa Kagaja etc. Life Cycle CO2 Analysis of LNG and City Gas. Applied Energy.2001(68):301~319
    8成立.世界LNG市场现状及发展趋势.上海电力.2006(1):75~78
    9 N.G. Kirillov. Analysis of Modern Natural Gas Liquefaction Technologies. Chemical and Petroleum Engineering. 2004(7-8): 401~406
    10乔国发,李玉星,张孔明,李多金.我国液化天然气工业的现状及发展前景.油气储运.2005(24):1~4
    11余华强.世界天然气发展趋势与我国天然气工业的若干问题.天然气化工. 1994(6):37~40
    12曹文胜,鲁雪生,吴迎集.中国的天然气液化技术分析.能源与环境.2005(1):25~27
    13 L.F.Kuz’menko,A.L. Dovbish, R.V. Darbinyan, V.A. Peredel’skii and A.I. Lyapin, Efficient Natural Gas Liquefaction Plant Based on Agfcs by Using Open Klimnko Cycle. Chemical and Petroleum Engineering.2003(3-4): p216~220
    14张立希.陕西气田天然气液化工艺流程初探.西安石油学院学报. 1994,9(3):30~33
    15杨凤玲.中国为什么要发展液化天然气.经营及管理. 2005,365(7): 24~27
    16 Fundamentals of the Global LNG Industry,Petro-Economist Ltd,&Shell Gas&Shell Gas &Power,2001.3
    17葛敏,张宝隆.天然气液化工业的发展和上海LNG站的液化工艺.化学世界.2002年增刊:29~34
    18曹文胜,鲁雪声,石玉美,汪荣顺.小型天然气液化流程.天然气工业. 2005 (5):109~111
    19 Amos Avidan, David Messersmith, Bobby Martioez. LNG Liquefaction Technologies Moves Toward Greater Efficiencies, Lower Emissions. Oil & Gas Journal. 2002,8(19):60~68
    20先智伟.世界LNG装置现状及发展.天然气与石油. 2005,23(2):6~9
    21 Shi Y.M, Wang R.S, Zhang K.M, Wang B.Q., Gu A.Z, Lu X.S, The Effect of the Parameters on the Performance of LNG Process. Cryogenics and Refrigeration-Proceedings of ICCR.2003:184~187
    22贺宇,杨梅.液化天然气的应用和国际贸易.天然气与石油. 2005(2):1~5
    23 J Gauberthier,Etal. Efficiency Simplicity and Flexibility Key Factor for LNG Peakshaving Plant[J].Cryogenic Processes and Equipment.1984(3):19~22
    24 M.A.Barclay,D.F.Gongaware,K.Dalton and M.P. Skrzypkowski. Thermodynamic Cycle Selection for Distributed Natural Gas Liquefaction. J.Waynert et al.Transactions of the Cryogenic Engineering Conference-CEC(paper volume), Anchorage, Alaska, 2003.American Institute of Physics, 2004:75~82
    25 D.F. Gongaware, M.A. Barclay, J.A.Barclay and M.P. Skrzypkowski. Conversion of a Waste Gas to Llquid Natural Gas. J.Waynert et al.Transactions of the Cryogenic Engineering Conference-CEC(paper volume),Anchorage,Alaska, 2003. American Institute of Physics, 2004:83~90
    26 D.L.Andress and R.J.Watkins. Beauty of Simplicity:Phillips Optimized Cascade LNG Liquefaction Process. J.Waynert et al.Transactions of the Cryogenic Engineering Conference-CEC(paper volume),Anchorage,Alaska,2003.American Institute of Physics, 2004:91~98
    27位雅莉.天然气液化工艺模拟与分析.西南石油学院. 2004:12~13
    28焦安军,厉彦忠,陈曦.新型紧凑式低温换热器的研究与发展.低温与超导. Vol 29 No.1 2001:8~12
    29 [美]W.M.凯斯, A.L.伦敦著.宣益民,张厚雷译.紧凑式热交换器.北京:科学出版社. 1997.10:10~15
    30李庆生,杨建红. 2004中国天然气行业发展综述.国际石油经济. 2005,13(6):28~31
    31杨克剑,姚中良. 300L/h天然气液化装置的设计.天然气工业. 1994,14(2):84~85
    32曹金荣,李国林,常加贵,王清勋.我国LNG发展现状及拟建20万方装置的设想.油气田地面工程. 2005(2):53~54
    33王香增.天然气液化工艺技术研究及应用.石油与天然气化工. 2004,33(2):91~92
    34王保庆.天然气液化技术及其应用.天然气工业. 2004,24(7):92~95
    35牛刚,王经,黄玉华. 2×104m3/d天然气液化装置的设计及分析.天然气工业. 2002,22(3):92~95
    36徐文渊.小型液化天然气生产装置.石油与天然气化工.2005,34(3):161~164
    37顾安忠,曹文胜,中国液化天然气的发展.气体分离. 2005,(2):4~12
    38黄志光,汪荣顺,石玉美,顾安忠.小型天然气液化装置的研究现状与前景.低温工程.2002,(6):59~62
    39林文胜,顾安忠,朱刚.天然气液化装置的流程选择.真空与低温.2001,7(2):105~109
    40 Zhao D.Q, Wang L, Xiao F, Jiang W, Numerical Simulation on the Natural Gas Liquefaction Cycle Using Two Expanders. Cryogenics and Refrigeration-Proceeding of ICCR.2003:192~195
    41 Miyake H, Kishimoto N, Kakutani Y. Small Scale LNG FPSO for Marginal Gas Field. Proceedings of LNG. 1998(12)
    42 Naklie M. Mobil’s Floating LNG Plant. In: Proceeding of LNG-12, Perth, 1998
    43 Zhang Z, Li Y.Z.Numerical study on flow distribution in plate-fm heat exchangers [J].Academic Journal of Xi'an Jiaotong University . 2003,15 (2) : 162-165.
    44顾安忠,鲁雪生,汪荣顺等.液化天然气技术.第一版第一次.机械工业出版社,2004: 63~67 60~63 70~114
    45唐迎春,陈保东,王凯等. P-R方程在天然气热物性计算中的应用.石油化工高等学校学报. 2005,18(2):47~50
    46 Jaroslar Wurm, Kenneth Kountz,William E Liss. Small-scale Natuval Gas Liquefier Development. The 8th International Cryogenic Coference, 2002
    47 Kikawa Y, Nakamura M, Sugiyama S. Development of Liquefaction Process for Natural Gas. Journal of Chemical Engineering of Japan. 1997,30(4): 625~630
    48曹文胜,鲁雪生,顾安忠等.两种撬装型天然气液化流程的参比较.低温工程. 2005,147(5):36~39、52
    49吴贵生.试验设计与数据处理.第一版第一次.冶金工业出版社,1997:35~125
    50 Jiao. Anjun, Li. Yanzhong, Zhang. Rui, Chen. Chunzheng, Effect of header configuration on fluid flow maldistribution in plate-fin heat exchanger, Chemical Industry Press. 2003:907~ 912
    51 B.Zandi, J.Lewis, H.Lewis, M.Severson.Simplified modeling of complex compact heat exchanger systems. Institute of Electrical and Electronics Engineers Inc. Piscataway, United States. 2004:528~531
    52 Wang, Lieke; Sunden, Bengt Design methodology for multistream plate-fin heat exchangers in heat exchanger networks. Taylor and Francis Ltd.2001(22):3~11
    53 Wen.Jian,Li.Yanzhong,Zhou.Aimin,Zhang.Ke.Anexperimental and numerical investigation of flow patterns in the entrance of plate-fin heat exchanger. Elsevier Ltd, Oxford, OX5 1GB, United Kingdom.2006(49):1667~1678
    54 N. Gilbert, P. Roussel, G. Riddone, R. Moracchioli, L. Tavian. Performance Assessment of 239 Series Helium Sub-cooling Heat Exchangers for The Large Hadron Collider. CEC/ICMC. 2005:19~20
    55韩占忠,王敬,兰小平. FLUENT流体工程仿真计算实例与应用.第一版第二次.北京理工大学出版社,2005:1~26 285~306
    56 L.X.Jia, L.Wang. Cryogenic Engineering. 2000:135~179
    57王福军.计算流体动力学分析—CFD软件原理与应用.第一版第五次.清华大学出版社,2008:1~267

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700