用户名: 密码: 验证码:
毫米波末制导雷达DBS成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反舰导弹历经四代发展,已经成为攻击敌方军舰的主战武器。雷达末制导是反舰导弹广泛采用的末制导方式。如何快速获取舰船目标的雷达图像一直是制约反舰导弹末制导雷达探测识别性能的难题。本文围绕毫米波末制导雷达成像技术,深入研究了反舰导弹末制导阶段的多普勒波束锐化(DBS)参数设计、多普勒参数估计及DBS成像算法,论文的研究内容如下所示:
     在第一章中,介绍了反舰导弹在近半个世纪的世界局部战争中的重要性,并详细论述了反舰导弹末制导雷达技术,然后引出DBS的概念。接下来对DBS成像算法和多普勒参数估计的研究现状进行了概括。最后介绍了本文的主要工作。
     第二章围绕DBS技术应用在反舰导弹末制导雷达中的参数设计问题展开研究。首先,介绍了DBS的工作原理,并总结了反舰导弹末制导阶段的典型弹道。然后,针对反舰导弹末制导雷达DBS成像的特点,详细研究了斜距平面和地距平面内的距离分辨率和方位分辨率、波束扫描速度和脉冲重复频率的参数设计问题,并给出了设计流程与设计实例。
     第三章研究了末制导雷达多普勒参数估计技术。首先,采用相关函数法估计基带多普勒中心频率。其次,针对末制导雷达大斜视DBS成像时存在多普勒中心模糊的问题,基于大斜视角条件下距离徙动的近似线性特征,提出采用基于Radon变换的方法对多普勒中心模糊数进行估计,并与能量重心法进行了对比分析。再次,研究了多普勒调频率的直接解算方法。仿真验证了上述方法的可行性。
     第四章研究了末制导雷达DBS成像技术。首先,考虑到末制导雷达的实时成像需求,分析了基于解调的方位快速合成算法——频谱分析算法,对其在大斜视DBS成像中的适用性进行了深入研究。其次,针对大斜视DBS成像的方位分辨力空变性问题,在脉冲重复频率不变约束下采用预滤波与频域插值实现了锐化比恒定,并在此基础上提出了方位分辨力空变性校正方法。再次,针对末制导雷达大范围扫描DBS成像问题,研究了子图像几何校正和拼接技术。最终,对大斜视角、大范围扫描DBS成像进行全流程仿真,验证了上述技术的可行性。
     在结束语中,归纳了论文的研究内容,对研究成果进行了归纳,并展望了需要完善的内容。
After successive developments of four generations, anti-ship missile has become one of the main weapons to attack enemies’warships. For terminal guidance of anti-ship missiles, radar terminal guidance is a widely-used solution. However, how to quickly obtain 2-D high-resolution radar images of warships remains to be a difficult problem, which limits the detection and recognition performances of anti-ship missile’s terminal guidance radar. This thesis focuses on radar imaging techniques of millimeter-wave anti-ship terminal guidance radar, and systematically studies the DBS (Doppler Beam Sharpening) parameter design, Doppler parameter estimation and DBS imaging algorithms during the terminal guidance period of an anti-ship missile. The main work is outlined as follows.
     In the introduction, The role of anti-ship missiles in modern high-tech regional wars is clarified, with an emphasis on radar terminal guidance techniques of anti-ship missiles by which the concept of DBS is introduced. Then, the state of the art of DBS imaging and Doppler parameter estimation techniques is summarized. The major work of the whole thesis is described at last.
     Chapter 2 focuses on the parameter design of DBS concerning the application of DBS into anti-ship missile terminal guidance radar. At first, the operation principle of DBS is introduced. Then, typical terminal trajectories of anti-ship missiles are summarized and analyzed. Thirdly, according to the characteristics of DBS imaging in the terminal guidance radar of anti-ship missile, the parameter design of range resolutions and azimuth resolutions both on the slant range plane and the ground range plane, the PRF (pulse repetition frequency) and the beam scanning speed, etc., are studied in detail.
     Chapter 3 studies the methods of Doppler parameter estimation. Firstly, the correlation function method is adopted to estimate the base-band Doppler centroid. Secondly, to solve the Doppler centroid ambiguity due to DBS imaging at great forward-squint angle, it is proposed that Radon transform be applied to estimate the Doppler centroid based on the approximate linear characteristic of the range migration under the condition of great forward-squint angle. Meanwhile, the Radon based method is compared with the energy center method. Thirdly, the estimation algorithms of Doppler frequency rate are discussed. Simulation results verify the validity of the methods above.
     Chapter 4 studies the imaging algorithm of DBS. First of all, given the requirement of real-time DBS imaging for missile borne radar, the fast azimuth synthesis method based on Dechirp– SPECAN, i.e., spectral analysis algorithm - is analyzed, and the adaptability of SPECAN to DBS imaging in great squint situation is deeply researched. Secondly, to solve the problem of the spatial variation of the azimuth resolution in great-squint DBS imaging, under the constraint of invariant PRF, the pre-filtering method and the frequency-domain interpolation method are utilized to lock the sharpening ratio, based on which the method of azimuth resolution modification is proposed. Thirdly, to solve the problem of imaging wide region using scan DBS technique, the sub-image geometric correction and stitching techniques are researched. Finally, the whole-flow simulation for great squint, wide region scan DBS imaging is conducted to verify the validation of the techniques above.
     In the end, the whole work of this thesis is summarized, and some conclusions are presented. In addition, some directions for further research are pointed out at last.
引文
[1]颜仲新,杨祖快,刘鼎臣.反舰导弹搜捕方式的变革与发展[J].飞航导弹,2002(9):48~51
    [2]吴立杰,颜仲新,刘鼎臣.反舰导弹扩展选择图搜捕方式探讨[J].制导与引信,2003,24(4):22~26
    [3]吴强,姜玉宪.反舰导弹综合突防技术[J].北京航空航天大学,2004,30(12): 1212~1215
    [4]宋万忠.无人机载毫米波合成孔径雷达技术.电讯技术,2002,42(6):4~7
    [5]李道京,张麟兮,俞卞章.主动雷达成像导引头几个问题的研究[J].现代雷达,2003(5):12~15
    [6]郑晓双.机载合成孔径雷达运动补偿技术研究[D].北京:中国科学院电子学研究所,2007:37~38
    [7] Santa Barbara.Signal Based Motion Compensation for Synthetic Aperture Radar.Final Report,Los Angles:TSC-B022-I99-0024,June,1999
    [8]郭修煌.精确制导技术[M].北京:国防工业出版社,1999
    [9]李世忠,李相平,李亚昆等.毫米波导引头的技术特点及发展趋势[J].制导与引信,2007,28(1):11~15
    [10]毕士龙译.自主制导炸弹导引头[J].飞航导弹,1991(7):61~62
    [11] Lan G. Cumming,Frank H. Wong.合成孔径雷达成像—算法与实现[M].北京:电子工业出版社,2007
    [12]李悦丽.弹载合成孔径雷达成像技术研究[D].长沙:国防科技大学,2008.
    [13]黄晓芳.反舰导弹雷达导引头成像算法研究[硕士论文].西安:西安电子科技大学,2006.
    [14]孙兵,周荫清,李天池等.环扫SAR的快速聚焦成像算法[J].北京航空航天大学学报,2007,33(7):830~806
    [15] Madsen S.Nrvang.Estimating the Doppler Centroid of SAR Data[J].IEEE Transactions on Aerospace and Electronic Systems,1989,AES-25(2):134~140
    [16] Yu Weidong and Zhu Zhaoda.Comparison of Doppler Centroid Estimation Methods in SAR[C].Proceedings of the IEEE 1997 National Aerospace and Electronics Conference, Nanjing,1997:1015~1018
    [17]于明成,许稼,彭应宁.SAR多普勒中心快速解模糊的新方法[J].信号处理,2005,21(4A):503~505
    [18] Bamler Richard and Runge Hartmut.PRF-Ambiguity Resolving by WavelengthDiversity[J].IEEE Transactions on Geoscience and Remote Sensing,1991,29(6):997~1003
    [19] Wong Frank and Cumming Ian G.A Combined SAR Doppler Centroid Estimation Scheme Based upon Signal Phase[J] . IEEE Transactions on Geoscience and Remote Sensing,1996,4(3):696~707
    [20]潘凤艳,邢孟道,廖桂生.解多普勒中心模糊的一种新方法[J].雷达科学与技术,2003,1(2):109~113
    [21]谢华英,赵宏钟,付强.基于Radon变换的大前斜视SAR多普勒参数估计方法[J].信号处理,2009,25(2):210~215
    [22]王凡,余定峰,卢昕.机载SAR多普勒中心估计和调频率估计算法的实现[J].设计与研发,2007
    [23]李绍滨,刘银中.机载SAR原始回波数据多普勒参数估计的比较[J].哈尔滨工业大学学报,2006,38(11):1910~1914
    [24]周荫清.机载脉冲多普勒雷达DBS技术[J].航空学报,1988,9(12):574~581
    [25] Tobin M . Real Time Simultaneous SAR/GMTI in a Tactical Airborne Environment[A].European Conference on Synthetic Aperture Radar.1996,63~66.
    [26]齐全国,王翠珍等.光与雷达遥感协作及其农业应用[J].电波科学学报,2004,19(4):399~404
    [27]宋雪岩,李真芳,保铮等.大斜视DBS成像[J].现代雷达,2004,26(1):30~33
    [28]张直中.多普勒波束锐化(DBS)理论和实践中若干问题的探讨[J].现代雷达,1991,13(2):1~12
    [29]万红进.一种DBS预处理器的设计[J].火控雷达技术,2008,37(4):94~97
    [30]魏红亮,李明.机械扫描雷达DBS模式下的锐化比恒定技术研究[J].火控雷达技术,2009,38(2):14~18
    [31]刘寅,吴顺君.扫描方式下DBS子图像拼接算法[J].雷达科学与技术,2005,3(2):91~95
    [32] Novak L.M,Halversen S.D,Owirka G.Jand Hiett M.Effects of Polarization and Resolution on SAR ATR [J].IEEE Transactions on Aerospace and Electronic Systems,1997,33(1):102~116
    [33] Novak L.M,Owirka G.J.and Weaver A.L.Automatic Target Recognition Using Enhanced Resolution SAR Data[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(1):157~175
    [34] Hodgson Jeremy A. and Lee David W.Terminal Guidance Using a Doppler Beam Sharpening Radar[C].AIAA GuidanceNavigation, and Control Conference and Exhibit, Texas, AIAA paper 2003-5796
    [35]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005年4月
    [36] Giorgio Franceschetti , Riccardo Lanari . Synthetic Aperture RADAR PROCESSING Boca Raton London New York Washington,D.C.CRC Press,1999
    [37]郭微光,梁甸农,董臻等.一种基于机载SAR原始回波的多普勒参数估计方法[J].国防科学技术大学学报.2003,25(3):41~44
    [38]刘国庆,黄顺吉.星载SAR多普勒质心估计的新方法-幅度相关法[J].电子科学学刊,1994,16(1):67~70
    [39]朱振波,汤子跃,张亚标,蒋兴舟.基于Radon变换的双站SAR多普勒参数估计[J].电子与信息学报.2008,25(2):210~215
    [40]郑力文,吕孝雷,邢孟道.一种无人机大斜视SAR成像方法[J].雷达科学与技术,2007,5(6):431~435
    [41] Albert Moreira,Josef Mittermayer,Rolf Scheiber.Extended Chirp Scaling Algorithm for Air- and Space-borne SAR Data Processing in Stripmap and ScanSAR Imaging Modes[J].IEEE Trans Geoscience and Remote Sensing,,1996,34(5):1123-1136
    [42]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法[J].西安电子科技大学学报,2000,27(1):93~96
    [43]邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐[J].电子学报,2001,29(12A):1807~1811
    [44]邹海丽.Burst模式合成孔径雷达成像算法研究[D].南京:南京航空航天大学,2008:18
    [45]刘光炎.斜视及前视合成孔径雷达系统的成像与算法研究[D].成都:电子科技大学,2002
    [46] Xiaobing Sun,Tai Soon Yeo,Chengbo Zhang,Yihui Lu,and Pang Shyan Kooi,Time-Varying Step-Transform Algorithm for High Squint SAR Imaging,IEEE Trans.Geosci.Remote Sens.Vol37,no.6,1999(11):2668-2677
    [47] Duan Shizhong and Li Junxian,High Squint SAR Processing Using Modified Extended Chirp Scaling.Processdings of the First International Conference on Innovative. Computing,Information and Control,2006:358-361
    [48]张长权,孙文峰.机载SAR图像定位精度分析[J].空军雷达学院学报,2007,21(4):263~265
    [49]孙文峰,陈安,邓海涛,俞根苗.一种新的机载SAR图像几何校正和定位算法[J].电子学报,2007,35(3):553~556
    [50]刘碧丹,王岩飞,韩松.距离徙动校正和斜地变换的实时算法研究[J].电子与信息学报,2009,31(5):1099~1102
    [51]颜仲新,刘鼎臣,胡海.反舰导弹飞行弹道探讨[J].飞航导弹,2002(2):33~36
    [52]袁孝康.星载合成孔径雷达导论[M].北京:国防工业出版社,2005
    [53]宋大伟.机械扫描雷达DBS成像技术研究[D].西安:西安电子科技大学,2007:1
    [54]于明成.合成孔径雷达参数估计及信号仿真新方法研究[D].北京:清华大学,2006.
    [55]陈克俊,郝佳新.弹道导弹弹道机动突防问题探讨[J].
    [56]毛士艺,李少洪,黄永红,陈远知.机载PD雷达DBS实时成像研究[J].电子学报,2000,28(3):32~34
    [57]张庆文,张剑云.多普勒波束锐化运动补偿方法的研究[J].航空学报,1994,15(11):1348~1356
    [58]王宏远,危嵩,孙文.DBS高分辨成像及动目标轨迹处理[J].电波科学学报,2005,20(5):637~641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700