用户名: 密码: 验证码:
基于降雪模型的图像轮廓提取方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一个非常重要的过程,轮廓提取直接影响到智能视觉系统中特别是模式识别的结果。作为经典图像分割方法,分水岭算法被广泛运用,却存在严重过分割问题。基于边缘的水平集方法可以自然地改变轮廓曲线的拓扑,在图像轮廓提取中广泛应用,但是却因大量的迭代计算导致了巨大的时间开销。
     本文针对上述的焦点问题进行了深入研究,主要内容有以下几点:
     1)自适应曲面进化降雪模型
     本文借鉴基于模拟降雪的图像分割新思想,探索具有图像区域特征引导下的图像轮廓曲线进化和符合人们视觉特性的图像轮廓提取方法。数据自适应的高斯核可以根据图像区域特征信息实现自适应的图像曲面进化,鉴于此,本文将数据自适应的高斯核引入降雪模型中,尝试模拟简单降雪模型,即自适应曲面进化降雪模型。与模拟降雪过程相似,基于降雪模型的地表曲面的进化隐含了地面轮廓曲线进化,并具有拓扑适应能力。这些讨论与研究为图像轮廓提取提供了新的研究思路。
     2)基于降雪模型自适应曲面进化的分水岭图像轮廓提取方法
     结合降雪模型自适应曲面进化的优点,本文进一步研究了基于降雪模型自适应曲面进化的分水岭图像轮廓提取方法。首先,在降雪模型自适应曲面进化机制下实现图像曲面进化,以平滑图像中大尺度细节信息,同时达到抑制噪声的效果。其次,原始图像的轮廓信息通过融合梯度与检测出来的边缘信息得以增强。最后,谷底填充被引入以控制分水岭分割区域,最终实现更符合人们视觉特性要求的轮廓提取。
     3)降雪模型自适应曲面进化机制下的水平集图像轮廓提取方法
     结合降雪模型的自适应曲面进化,文中研究了降雪模型自适应曲面进化机制下的水平集图像轮廓提取方法。基于降雪模型的自适应曲面进化机制,新方法可以将图像中隐含的重要特征信息得以展现。在传统水平集方法中,高斯滤波器被用来计算边缘指示算子,为了加以改进,在新方法中高斯滤波器被数据自适应曲面进化核函数取而代之。原始图像经过自适应的曲面进化处理后,可以得到其进化后的特征图像,基于特征图像水平集方法得以实现,从而实现轮廓提取。
     本文结合降雪模型,针对分水岭的过分割问题,研究了改进的分水岭轮廓提取新方法;在降雪模型的自适应进化机制下讨论了水平集轮廓提取新方法,实现了对经典方法的改进和创新。实验结果证明了新方法的优越性,新方法、新思路的提出进一步完善了基于分水岭和水平集的轮廓提取理论。
As a very important process, contour extraction directly affects the results in the intelligent vision system, especially pattern recognition. As a classical image segmentation method, watershed has been widely used, but existing serious over-segmentation problem. The level set method, which is based on the edge, can naturally change the topology of contour curve, so it is widely used in image contour extraction,however, large number of iterative calculation causes great time consuming.
     This paper studied these focus problems above, and main research work as follows:
     1) Adaptive surface evolution snow model
     Based on the new image segmentation idea of simulating snowfall, this paper focuses on exploring image contour extraction method, which fits on the people visual characteristics and has the image contour curved evolution guided by regional characteristics. According to the image regional characteristics information, data adaptive Gaussian kernel can realize adaptive image surface evolution, in view of this point, in this article data adaptive Gaussian kernel will be introduced into the snow model, simple snow model, i.e. adaptive evolutionary snow model surface, is proposed. And similar to the process of simulating snowfall, the ground surface evolution based on that new model, implies a simple surface contour evolution, and has the topological adaptability. These discussions and researches will provide some new ideas for image contour extraction.
     2) Watershed image contour extraction based on adaptive curved surface evolution of snow model
     Combined with the adaptive surface of snowfall model, watershed image contour extraction method based on snow model adaptive surface evolution is proposed in this paper. Firstly, image curved surface evolution is realized under adaptive curved surface evolution mechanism of snow model, to smoothing the large scale details information in the images, meanwhile suppressing noise effect. Secondly, the contour information of original image is enhanced through the fusion with the gradient and detected edge information. Finally, the bottom filling is introduced to control the watershed segmenting region, and realizing contour extraction,which can fit better with the people visual property requirements.
     3) Level set image contour extraction method under adaptive curved surface evolution mechanism of snow model
     Combined with adaptive curved surface evolution of snow model, a level set image contour extraction method under adaptive curved surface evolution mechanism of snow model is proposed in this paper. Based on adaptive curved surface evolution mechanism of snow model, the important feature information underlying the image in the can be shown. In traditional level set method, Gaussian filter is used to calculate edge operator, in order to improve the method, in the new method Gaussian filter is instead with the data adaptive curved surface evolution kernel function. The original image is processed by adaptive curved surface evolution, and then the evaluated characteristics image is obtained, based on the characteristics image level set method can be realized, so as to realize the contour extraction.
     Combined with the snow model, aiming at the over-segmentation, the improved watershed contour extraction method is proposed. Under the adaptive evolution mechanism of the snow model, a new level set contour extraction method is discussed, and the improvement and innovation with classical method is realized. The experimental and theoretical analysis proves the superiority of the new method, all of these new method and new ideas will further perfect the contour extraction theory based on the watershed and the level set.
引文
[1] [美]冈萨雷斯(Rafael C. Gonzalez, Richard E. Woods)著;阮秋琦,阮宇智等译.数字图像处理(第二版).北京.电子工业出版社. 2006. 1-617.
    [2]孙阳光,物体边缘轮廓提取新方法研究,华中科技大学,2009:1-125.
    [3]娄联堂,目标轮廓提取方法研究,华中科技大学,2005:1-149.
    [4] M.Kass, A.Witkin, D.Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, London, 1987, 1(4): 321-331.
    [5] D.Marr.视觉计算理论.姚国正等译.北京.科学出版社. 1988.
    [6] S.R.Gunn, M.S.Nixon. Global and local active contours for head boundary extraction. International Journal of Computer Vision, 1998, 30(1):43-54.
    [7] C.M.Chen, H.H.S.Lu, A.T.Hsiao. A dual-snake model of high Penetrability for ultrasound image boundary extraction. Ultrasound in Medical and Biology, 2001, 27(12):1651-1665.
    [8] Y.Y.Wong, P.C.Yuen, C.S.Tong. Segmented snake for contour detection. Pattern Recognition, 1998, 31(11):1669-1679.
    [9] N.Paraagios, R.Deriche. Geodesic active contours for supervised texture segmentation. Computer Vison and Pattern Recognition. 1999, 2:422-427.
    [10] O.Pujol, P.Radeva. Texture segmentation by Statistic deformable models. International Journal of Image and Graphics, 2004, 4(3):433-452.
    [11] N.Paragios, R.Deriche. Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, 2002, 46(3):223-247.
    [12] G.Tsechpenakis, K.Rapantzikos, N.Tsapatsoulis, S.Kollias. A snake model for object trackinging in natural sequences. Signal Processing-Image Communication, 2004, 19(3):219-238.
    [13] P.Delagnes, J,Benois, D.Barba. Active contours approach to object trackinging in image sequences with complex background. Pattern Recognition Letters, 1995, 16(2):171-178.
    [14] M.Gastaud, M.Barlaud, G.Aubert. Tracking video objects using active contours. IEEE Workshop on Motion and Vision Computing, 2002, 257:90-95.
    [15]周昌雄,基于活动轮廓模型的图像分割方法研究,南京航空航天大学博士学位论文, 2005年.
    [16]汤敏,汤杨,徐立中,王平安,夏德深,基于柱坐标B样条活动曲面模型的3D分割方法,计算机研究与发展, 2007, 44 (9): 1604-1611.
    [17]潘建江,数字图像分割及变形技术研究,浙江大学博士学位论文, 2004.
    [18]张宏伟,变形模型及其在医学图像分割中的应用研究,天津大学博士学位论文, 2006年.
    [19] Lei He, Zhigang Peng, Bryan Everding, Xun Wang, Chia Y. Han, Kenneth L. Weiss, William G. Wee, A comparative study of deformable contour methods on medical image segmentation, Image and Vision Computing, 2008, 26 (2): 141-163.
    [20]陈波,赖剑煌,用于图像分割的活动轮廓模型综述,中国图象图形学报, 2007, 12(1):11-20.
    [21]张丽飞,王东峰,时永刚,邹谋炎,基于形变模型的图像分割技术综述,电子与信息学报, 2003, 25(3): 395-403.
    [22]刘新,潘振宽,李新照,白洁,医学图像分割技术中变形模型方法的研究综述,计算机应用研究, 2006, (8): 14-18.
    [23] C.C.Tseng, M.Tsung. Quantum digital image Proeessing algorithms. In: Proc.16th IPPR Conference on Computer Vision, Graphics and Image Processing. Kinmen. 2003:827-834.
    [24] L.T.Lou, M.Y.Ding. Principle and approach of boundary extraction based on particle motion in quantum mechanics. Optical Engineering , 2007, 46(2):027005-l-027005-16.
    [25]邹柏贤,林京壤,图像轮廓提取方法研究,计算机工程与应用,2008 , 44(25):161-165.
    [26]朱文忠,一种基于VC实现数字图像的轮廓提取法,微计算机信息,2007 , 23(1-3):276-277,293.
    [27]姚庆梅,牛君,一种基于方向形态学的图像轮廓提取方法,山东大学学报(工学版),2005,35(4):47-50.
    [28]周寿军,陈武凡,王涌天,一种从X射线血管造影图像中自动分割冠状动脉的新方法,中国科学E辑:信息科学,2007,37(12): 1531-1543.
    [29]曹建农,基于可分解马尔科夫网的图像分割方法研究,武汉大学, 2005年.
    [30]王鹏伟,基于多尺度理论的图像分割方法研究,中国科学技术大学. 2007年.
    [31]李旭超,朱善安,朱胜利,基于小波域层次Markov模型的图像分割,中国图象图形学报, 2007, 12(2): 308-314.
    [32]汤敏,汤杨,徐立中,王平安,夏德深,基于柱坐标B样条活动曲面模型的3D分割.
    [33] Lei He, Zhigang Peng, Bryan Everding, Xun Wang, Chia Y. Han, Kenneth L. Weiss, William G. Wee, A comparative study of deformable contour
    [34] Anna Bosch, Xavier Muňoz, Robert Martí, Which is the best way to organize/ classify images by content? Image and Vision Computing, 2007, 25(6):778-791.
    [35] J. Alison Noble, Djamal Boukerroui, Ultrasound Image Segmentation: A Survey, IEEE Transaction on Medical Imaging, 2006, 25(8): 987-1010.
    [36]李旭超,朱善安,图像分割中的马尔可夫随机场方法综述,中国图象图形学报, 2007,12(5): 789-798.
    [37]劳丽,吴效明,朱学峰,模糊集理论在图像分割中的应用综述,中国体视学与图像分析, 2006, 11(3): 200-205.
    [38]郑晓曦,严俊龙,图像分割新方法综述,计算机与数字工程, 2007, 35(80):103-106.
    [39]牛君,李贻斌,宋锐,活动轮廓模型综述,杭州电子科技大学学报,2005,25(3):67-70.
    [40]吴凤和,基于计算机视觉测量技术的图像轮廓提取方法研究,计量学报,2007,28(1):18-22.
    [41]陈曾胜,周康源,胡跃辉,李传富,何力,基于Hermite样条轮廓模型的图像轮廓提取,中国科学技术大学学报,200535(2):245-249.
    [42]张伟伟,赵歆波,张涛,王凯,基于改进的GVF Snake模型CT图像轮廓提取技术,计算机工程与应用,2008, 44(5):206-208.
    [43]柴俊华,应骏,基于Canny算子的图像轮廓提取的改进方法,电视技术,2008,32(318):48-50.
    [44]孙吉红,姜合,杨春花,一种基于光切法的图像轮廓提取,计算机工程与应用,2003,18(3):80-82.
    [45]陈波,赖剑煌,基于水平集曲线演化的目标轮廓提取,计算机科学,2006,33(8):227-228.
    [46]罗红根,朱利民,丁汉,基于主动轮廓模型和水平集方法的图像分割技术,中国图象图形学报, 2006, 11(3): 301-309.
    [47] Jiasheng Hao, Qiang Wang, Watershed based level set evolution: a novel approach for MRA segmentation, Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, June 25-28, 2006, Luoyang, China, pp. 1372-1376.
    [48]章毓晋.图像工程(上册):图像处理与分析[M].北京:清华大学出版社, 1999:192-195.
    [49] Nilsson N J. Principles of artificial intelligence [M]. Tioga: Palo Alto, 1980.
    [50] Gerbrands J J. Segmentation of noisy images [D]. Delft University of Technology. The Netherlands, 1988.
    [51] Perez P., Blake A., Gangnet M. Jet Stream: probabilistic contour extraction with particle. Proceedings of International Conference on Computer Vision, Vancouver, 2001, II: 524-531.
    [52]樊鑫,梁德群.引入形状统计先验的轮廓提起的概率方法[J].计算机辅助设计与图形学学报, 2005, 17(4):829-833.
    [53] YANG J, LI X. Directional morphology and its application in boundary detection [J]. Image Processing and Application, 1995(2): 410.
    [54]王程,王润生. SAR图像直线提取[J].电子学报, 2003, 31(6):816-820.
    [55]李立春,冯卫东,于起峰.根据边缘梯度方向的十字丝目标快速自动检测[J].光学技术, 2004, 30(3):351-353.
    [56]张小虎,李由,李立春,等.一种基于梯度方向直方图的直线轮廓提取新方法[J].光学技术, 2006, 32(6):824-826.
    [57] S. Osher, J.A. Sethian, Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, Journal of Computational Physics. 1988,79:12–49.
    [58] Caselles V, Kimmel R, Sapiro G. Geodesic active contour[J]. International Journal of Computer Vision, 1997, 22(1):61-79.
    [59] J.A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge University, United Kingdom, 1999.
    [60] Chan T F, Vese L A. Active contours without edges [J]. IEEETransactions on Image Processing, 2001,10(2):266-277.
    [61]黄福珍,苏剑波.基于Level Set方法的人脸轮廓提取与跟踪[J].计算机学报, 2003, 26(4):491-496.
    [62] D.Terzopoulos, A.Witkin, M.Kass. Constraints on deformable models: recovering 3D shape and nonrigid motion. Artificial Intelligence, 1988, 36: 91-123.
    [63] A.A.Amini, T.E. Weymouth, R.C.Jain. Using dynamic Programming for solving variational Problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(9): 855-867.
    [64] Cohen L K. On active contour models and balloons. CVGIP: Image Understanding, 1991, 53(2): 211-218.
    [65] Seok-Woo Jang. Shaking snakes using color edge for contour extraction. International Conference on Image Processing, 2002, 9(2):817-820.
    [66] Xu C, Prince J L. Snakes, shapes and gradient vector flow. IEEE Transaction on Image Processing, 1998, 7(3):359-369.
    [67] R. Malladi, J.A. Sethian, B. Vemuri, Shape modeling with front propagation: a level set approach, IEEE Transactions on Pattern Analysis Machine Intelligence. 1995 (17):158–175.
    [68] K.Siddiqi, Y.B.Lauziere, A.Tannenbaum, S.W.Zucker. Area and length minimizing flows for shape segmentation. IEEE Transactions on Image Processing, 1998, 7(3): 433-443.
    [69] B.S.Morse, W.M.Liu, T.S.Yoo, K.Subramanian. Active contours using a constraint-based implicit representation. Computer Vision and Pattern Recognition. 2005:285-292.
    [70] A.C.Jalba, M.H.F.Wilkinson, J.B.T.M.Roerdink. CPM: A deformable model for shape recovery and segmentation based on charged Particles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10):1320-1335.
    [71] R.H.Yang, M.Mirmehdi, X.H.Xie. A charged active contour based on electrostatics. Advanced Concepts for Intelligent Vision Systerms, 2006, 4179:173-184.
    [72] X.H.Xie, M.Mirmehdi. MAC: Magnetostatic active contour model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(4):632-646.
    [73] D.P.DiVincenzo. Quantum computation. Science, 1995, 270(5234):255-261.
    [74] B.C.Sanders, L.C.L.Hollenberg, D.Edmundson, A.Edmundson. Visualizing a silicon quantum computer. New Journal of Physics, 2008,10(125005):1-20.
    [75] F.L.Yan, D.Ding.Two Avowable Quantum Communication Schemes. Communications in Theoretical Physics, 2008, 50(5):1109-1112.
    [76] Image processing using pulse-coupled neural networks[M].2nd ed. 2005.
    [77] Paul Fearing. The Computer Modelling of Fallen Snow. University of British Columbia, 2000, 1-256.
    [78] Bo Yu, Sheng Zheng. Linear Snow Accumulation Models and Applications. 2010 3rd International Congress on Image and Signal Processing. 2010, 734-737.
    [79]陈彦云,孙汉秋,郭百宁,吴恩华.自然雪景的构造和绘制.计算机学报, 2002, 25(9):916-922.
    [80]魏召才.融雪过程模拟及积雪特性分析研究.新疆大学, 2010:1-60.
    [81]伍艳莲,赵青松,刘金定.基于粒子系统的降雪过程模拟.西华大学学报(自然科学版). 2008, 27(1):91-96.
    [82]席建锋,李江,朱光耀,张贵平.公路风吹雪积雪力学原理与积雪深模型.吉林大学学报(工学版). 2006, 36(Supplement2):152-156.
    [83] T.B. Moeslund, C.B. Madsen, M. Aagaard, and D. Lerche. Modeling Falling and Accumulating Snow. Vision, Video and Graphics. 2005:1-8.
    [84] M. S. Langer, L. Zhang, A.W. Klein, A. Bhatia, J. Pereira, D. Rekhi. A spectral-particle hybrid method for rendering falling snow. Eurographics Symposium on Rendering. 2004:1-10.
    [85] McClung, D. and Schaerer, P. The Avalanche Handbook. The Moun-taineers, Seattle, Washington, 1993.
    [86] Daffern, T. Avalanche Safety for Skiers and Climbers. Rocky Mountain Books, Calgary, Alberta, 1992.
    [87] Magono, C. and Lee, C.“Meteorological Classification of Natural Snow Crystals”. Journal of the Faculty of Science ( Hokkaido University, Sapporo, Japan ), 2(4): 321-335, November 1996.
    [88] Sheng Zheng, Bart L. Kaptein, Emile A. Hendriks, Bangjun Lei, Bo Yu, Iterative Data Adaptive Anisotropic Image Filtering, 2010, submitted to Pattern Recognition Letters for publication.
    [89] Yu, W., Daniilidis, K., Sommer, G., Approximate orientation steerability based on angular Gaussians. IEEE Trans. Image Process. 2001. 10, 193-205.
    [90] Shlomo Greenberg, Daniel Kogan, Improved structure-adaptive anisotropic filter, Pattern Recognition Letters, 2006, 27: 59-65
    [91] Takeda, H.;Farsiu, S.;Milanfar, P. Kernel Regression for Image Processing and Reconstruction, IEEE Transactions on Image Processing, 2007, 16(2): 349-366.
    [92]冷美萍,鲍苏苏,孟祥玺,彭丰平.一种改进的分水岭分割算法.贵州师范大学学报(自然科学版). 2010, 28(1):62-65
    [93] Wei Hao, Sheng Zheng and Shuzhi Ye.“One Improved Watershed Transform for Medical Image Segmentation”. ICCASM 2010, V(3), pp.594-598.
    [94] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern Anal, Machine Intell, 1986, 8(6):679-698.
    [95]黎鑫.基于形态学梯度和分水岭的图像分割算法研究.华中科技大学. 2007:1-61.
    [96] A. Dasgupta, A. Raftery. Detecting features in spatial point processes with cluster via model-based clustering. J. Amer. Statist. Assoc. 1998, 93:294-302.
    [97] C.M. Li, C.Y. Xu, C.F. Gui, M.D. Fox, Level set evolution without reinitialization: a new variational formulation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2005, l(1):430–436.
    [98] Wei Hao, Sheng Zheng, Cuimei Guo, Yaocheng Xie. Level set contour extraction based on data-adaptive Gaussian smoother. CDC2010. 2010, V(25):11-15.
    [99] Yang, G.Z., Burger, P., Firmin, D.N., Underwood, S.R., Structure adaptive anisotropic filtering. Image Vision Comput. 1996, 14:135-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700