用户名: 密码: 验证码:
同极型磁轴承转子系统的磁场和动态性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过仿真分析和高速旋转试验研究了同极型磁悬浮轴承的磁场分布、功率损耗和系统动态性能,并与异极型磁悬浮轴承进行了比较。
     论文完成了同极型磁悬浮轴承的设计与制作,在原有试验装置的基础上,完成了同极型磁悬浮轴承转子系统的改造、安装和调试。采用有限元软件ANSYS详细分析了同极型磁悬浮轴承的二维磁力线分布、二维磁场分布和三维磁通密度矢量分布,并与异极型磁悬浮轴承进行了比较。详细计算了在不同频率下同极型和异极型两种结构磁悬浮轴承的功率损耗,并给出了功率损耗随交变电流频率变化的拟合曲线。分析了同极型磁悬浮轴承转子系统的模态频率和模态振型,完成了同极型和异极型磁悬浮轴承转子系统的高速旋转试验。
     研究结果表明,同极型磁悬浮轴承磁力线分布在同一方向,与转子轴线平行,耦合效应小,功率损耗小,并且具有良好的动态性能,与异极型磁悬浮轴承相比,在应用上更具优势。
Magnetic field distribution and power loss of homopolar active magnetic bearing (AMB) and dynamic performance of this system are investigated by finite element analysis and actual operation of the system, and compared with the heteropolar AMB system.
     Homopolar AMB is designed and made, and the homopolar AMB system has been built up based on the original heteropolar AMB system.2-D distribution of line of magnetic field and magnetic field and 3-D vector distribution of magnetic flux density of homopolar and heteropolar AMBs are analyzed by ANSYS software, Power losses of the two kinds of AMBs are calculated and the rule of power loss along with the change of rotation speed is achieved. Modal frequency and modal shape of the homopolar AMB system are also analyzed. Actual operation of the two kinds of ANB systems are carried out.
     The results show that line of magnetic force of homopolar AMB is parallel to the axis of rotor, coupling effect and power loss of homopolar AMB is smaller than heteropolar AMB, and dynamic performance of homopolar AMB system is better than the heteropolar AMB system.
引文
[1] Schweitzwr G,Bleuler H,Traxler A.Active Magnetic Bearings—Basics Properties and Application of Active Magnetic Bearings.Switzerland ETH:1994.
    [2]张德魁,赵雷,赵鸿滨.磁悬浮轴承内圆磨床电主轴及其控制。轴承,2000,11:11~13.
    [3] Schweiter G,Bleuler H,Traxler A. Active Magnetic Bearings―Basics,Properties and Application of Active magnetic Bearings. ETH,Switzerland,1994.
    [4]胡业发,周祖德,江征风著.磁力轴承的基础理论和应用.北京:机械工业出版社,2006.3.
    [5] Kemper H. Overhead suspension railway with wheel-less vehicles employing magnetic suspension from iron rails. Germ. Pat. Nos. ,1937(643316)and 1937(644302).
    [6]李书鹏,磁悬浮轴承系统的鲁棒H∞控制.[硕士学位论文],南京:南京航空航天大学,2007.
    [7]赵韩.王勇等径向电磁悬浮轴承结构设计与分析,农业机械学报,2005(7): Vol.36, No.7.
    [8]虞烈.电磁悬浮轴承及控制系统的设计原理及参数选择,轴承,2001(9):13~14.
    [9]张敬.混合式磁悬浮轴承及其控制系统的研究,[硕士学位论文],沈阳:沈阳工业大学,2005.
    [10]韩邦成,李也凡,贾宏光等.利用有限元法计算径向磁悬浮轴承性能.摩擦学学报,2004(3): Vol.24, No.2.
    [11]李黎川,丁玉成,卢秉恒.超精密磁悬浮工作台的一种低功耗磁悬浮设计,微细加工技术,2003: No.4.
    [12]陈立群,电磁轴承精度控制及其应用研究[博士学位论文],西安:西安交通大学工程与科学研究院润滑理论与轴承研究所,1999.
    [13] Kazuyuki Demachi, Akira Miura, Tetsuya Uchimoto and Kenzo Miya,Numerical Analysis of Rotation Loss of Superconducting Magnetic Bearings, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. I I, NO. I , MARCH 2001.
    [14] M. A. Pichot and M. D. Driga. Loss Reduction Strategies in Design of Magnetic Bearing Actuators for Vehicle Applications, IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 1, JANUARY 2005.
    [15] M. Saint Raymond,M. E. F. Kasarda,P. E. Allaire.Windage Power Loss Modeling of a Smooth Rotor Supported by Homopolar Active Magnetic Bearings,Journal of Tribology,APRIL 2008, Vol. 130 / 021101-1.
    [16] Han Wu1; Chunguang Xu1; Dingguo Xiao1; Juan Hao1. Magnetic Field Analysis and Optimal Design of Magnetic Bearing,Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation, 1666-70, 2009; Conference: 2009 IEEE International Conference on Mechatronics and Automation, 9-12 Aug. 2009, Changchun, China; Publisher: IEEE, Piscataway, NJ, USA.
    [17] M. E. F. Kasarda and P. E. Allaire,“Comparison of predicted and measured rotor losses in planar radial magnetic bearings,”ASME J. Tribol., vol. 40, no. 2, pp. 219–226, 1997.
    [18] P.E. Allaire, M. E. F. Kasarda, and L. K. Fujita,“Rotor power losses in planar radial magnetic bearings—effects of number of stator poles, air gap thickness, and magnetic flux density,”ASME J. Eng. Gas Turbines Power, vol. 121, pp. 691–696, 1999.
    [19] M.E.F. Kasarda, P. E. Allaire, E. H. Maslen, H. G. R. Brown, and G. T.Gillies,“High-speed rotor loss in a radial eight-pole magneticbearing:Part1—Analytical、empirical models and calculations,”ASME J. Eng.Gas Turbines Power, vol. 120, pp. 105–109, 1998.
    [20]——“High-speed rotor losses in a radial eight-pole magnetic bearing:Part 2—Analytical/empirical models and calculations,”ASME J. Eng.Gas Turbines Power, vol. 120, pp. 110–114, 1998.
    [21] R. B. Zmood, D. K. Anand, and J. A. Kirk,“The influence of eddy currents on magnetic actuator performance,”Proc. IEEE, vol. 75, pp.259–260, Feb. 1987.
    [22] D. C. Meeker, E. H. Maslen, and M. D. Noh,“An augmented circuit model for magnetic bearings including eddy currents, fringe, and leakage,”IEEE Trans. Magn., vol. 32, pp. 3219–3227, July 1996.
    [23] F. Matsumura and K. Hatake,“Relation between magnetic pole arrangement and magnetic loss in magnetic bearing,”in Proc. 3rd Int. Symp. Magnetic Bearing, Alexandria, VA, 1992, pp. 274–283.
    [24] M. A. Heald,“Magnetic braking: Improved theory,”Amer. J. Phys., vol.56, no. 6, pp. 521–528, 1988
    [25]苏云,郑益飞.超导技术在飞轮储能系统中的应用及前景,超导技术,cryo.&supercond.Vol.36 No.7.
    [26]曾励,汪通悦,徐龙祥,刘正埙.永磁电磁轴承产生悬浮力的机理研究,航空学报,Vol.20,No.3,May 2000.
    [27]徐亚雪,秦会斌,李方芳.磁悬浮轴承磁场分布的测量,杭州电子科技大学学报,Vo1.28,No.5 Oct,2008.
    [28]刘文洲,楚军,赵雷.电磁轴承磁场分析和优化设计,仪器仪表学报,2004.8.
    [29]张波.有限元法在主动磁悬浮轴承电磁场分析中的应用,电气开关,2004,No.6。
    [30]宁凡.一种新型的磁悬浮轴承磁场均匀性测试仪, 1004—373X(2007)13—152—02.
    [31] Perry Tsao ,Seth R. Sanders ,Gabriel RiskA .Self-sensing Homopolar Magnetic Bearing Analysis and Experimental Results, University of California, Berkeley,2007.
    [32] Ha-Yong Kim and Chong-Won Lee. Analysis of Eddy-Current Loss for Design of Small Active Magnetic Bearings With Solid Core and Rotor, IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 5, SEPTEMBER 2004.
    [33] Guang-Ren Duan, Senior Member, IEEE, Zhan-Yuan Wu, Chris Bingham, Member, IEEE, and David Howe. Robust Magnetic Bearing Control Using Stabilizing , IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 36, NO. 6, DECEMBER 2000.
    [34] Lembke.Torbjorn A. Core Loss Prediction and Measurement in Magnetic,IEEE,978-1-4244-4252-2/09/$25.00 ?2009 .
    [35] Pichot.Mark Allen. Design and Analysis of Passive Homopolar,IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 3, MARCH 2005.
    [36]孙明礼,胡仁喜,催海蓉. ANSYS10.0电磁学有限元分析实例指导教程,北京:机械工业出版社,2007.4
    [37]谢振宇,徐龙祥,李迎,等.控制参数对磁悬浮轴承转子系统动态特性的影响.航空动力学报,2004,19(2),174~178
    [38]张德魁,赵雷,赵鸿宾.电流响应速度及力响应速度对磁悬浮轴承系统性能的影响.清华大学学报(自然科学版),2001,6:23~26.
    [39]胡业发,周祖德,江征风.磁力轴承的基础理论与应用,北京:机械工业出版社,2006.3.
    [40]虞烈,可控磁悬浮转子系统,北京:科学出版社,2003.
    [41] Coello C A. An updated survey of GA based multiobjective optimization techniques [J]. ACM Computing Sruveys,2000,32:109-143.
    [42]谢德馨,杨仕友.工程电磁场数值分析与综合,北京:机械工业出版社,2008.8.
    [43]张朝晖.ANSYS11.0结构分析工程应用实例解析,北京:机械工业出版社,2008.1.
    [44]阎照文.ANSYS10.0工程电磁分析技术与实例详解,北京:中国水利水电出版社,2006.
    [45]梁灿斌.电磁学,北京:高等教育出版社,2004.5.
    [46]汤红卫,赵睿明.电磁场理论基础,北京:中国电力出版社,2009.
    [47] Khanniche, M. S. and Mamat Ibnhim, M.R. Condition monitoringof PWM voltage sourceinverters. In TENCON 2000, pp 295-299, 2000.
    [48] Lichuan Li,Linearizing Magnetic Bearing Actuators by Constant Current Sum, Constant Voltage Sum,and Constant Flux Sum,IEEE Transactions on Magnetic, Jan.1999, Vol.35, No.1, pp.528-535
    [49] Lin ,C.E Lin, K.G. Implementation and Control of the Magnetic Linear Actuation System, Instrumentation and Measurement Technology Conference, 2000. IMTC2000. Proceedings of the 17th IEEE , pp.1384-1387.
    [50] Carabelli S, Muzzarelli M, Maddaleno F. High-Efficiency Linear Power Amplifier for Active Magnetic Bearings, IEEE Transactions on Industrial electronics ,Vol.47,No.1 ,Feb.2000:pp. 17-24
    [51] Alexander Schulz, Manfred Schneeberger, Johann Wassermann,A Reliable Switching Amplifier for Active Magnetic Bearings Error Detection Strategies and Measurement Results,2004 lEEE International Conference on Industrial Technology ,Vol.2, pp.701-707.
    [52] Ahrens M, kucera L. Analatical calculation of fields, forces and losses of a radial magnetic bearing with a totaling rotor considering eddy currents.In:5th International Symposium on Magnetic Bearings, kanazawa, Japan, 1996.
    [53] Rutland N. K, Keogh P. S. Comparison of controller Designs for Attenuation of Vibration in Rotor-bearing System under Synchronous and Transient Conditions, Proc. of the 5th International Symposium on Magnetic Bearings,Kanazawa, Japan, 1996:107~112.
    [54] Hisatani M, Koizumi T. Adaptive Filtering for Unbalance Vibration Suppression, Proc. of the 5th International Symposium on Magnetic Bearings,Kanazawa, Japan, 1996:125~130.
    [55] Ueyama H, Fujimoto Y. Iron losses and windy losses of high rotational speed rotor suspended by magnetic bearings. In: 2nd international Symposium on Magnetic Bearings, 1990:12-14.
    [56] Wassermann, J. Schulz, A Schneeberger, M. Active magnetic bearings of high reliability. In Proc. of ICIT’03 - International Conference on Industrial Technology, pp 194-197, Maribor, Slovenia, Dec.2003. IEEE.
    [57]全标,杨小勇,赵雷.主动磁轴承损耗发热模型及计算方法,第14届全国反应堆结构力学会议,2006.
    [58]胡国良,任继文.ANSYS11.0有限元分析入门与提高,北京:国防工业出版社,2009.1.
    [59]高华.金属橡胶磁悬浮轴承组合支撑转子系统动力学特性研究,[硕士学位论文.,南京:南京航空航天大学,2009.
    [60]谢振宇,李克雷,赵钦泉等.带阻尼器磁悬浮轴承转子系统性能的实验分析.航空动力学报,2008,23(7):1312~1317..
    [61]谢振宇,王彤,张景亭等.磁悬浮金属橡胶环组合支撑系统的动态性能.航空动力学报,2009,24(2):378~384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700