用户名: 密码: 验证码:
大埋深煤层开采地表变形规律及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济社会的快速发展,基础设施建设项目的加速实施,对能源矿产资源的需求量呈快速增长的趋势,尤其是煤炭资源被大量地开采,使得我国大量浅层煤炭矿区的资源面临枯竭,随着能源需求量的不断扩大和开采强度的不断加大,煤矿开采不断向深部延伸,由于深部开采条件下岩石处于高温高压的特殊环境,地应力、构造应力急剧增加,使得巷道及工作面围岩地质环境恶化、事故发生几率增加,由此引发的的上覆岩层及地表移动与变形给地面生产生活带来了极大的威胁,其造成的工程灾害的表现形式和频度明显不同于浅部。煤矿深部开采而导致的采空区上覆岩层及地表移动变形规律的理论问题和地表建筑地基安全稳定性问题将越来越突出,因此对大埋深采空区上覆岩层及地表的移动变形的研究具有重大理论意义和现实意义。
     本文以山西北部河东煤田某大采深煤矿采空区为研究对象,采用相似材料模拟试验,依据不同采深设计了两组模型:模型Ⅰ采深为741m,采厚为7m,模型Ⅱ采深为1143m,采厚为7.2m。在观测试验得出的大量数据基础上采用数理统计方法得出不同模型的不同移动变形曲线,以此来研究在不同采深影响下采空区对地表地基安全稳定性的影响态势,总结出在采深的影响下不同模型的上覆岩层的破坏发育规律及地表移动变形规律,以及不同模型在开采完成后所需要的稳定时间。
     为了更为全面的探讨采深和采厚对采空区上覆岩层及地表移动变形的影响,以及建筑荷载对老采空区地基稳定性的影响,本为还采用了数值模拟的方法对所研究问题进行了数值计算。随着计算机技术的进步,数值模拟方法在工程实践中获得了广泛的应用并取得了良好的技术经济效果。本文中,以建筑荷载大小、加载位置、采深及采厚为影响因素,设计出不同正交模型,全面研究建筑荷载的大小、加载位置、采厚及采深对采空区上覆岩层及地表移动变形的影响。
     采用相似材料模拟试验和ANSYA数值模拟相结合的方法,设计出适合河东煤田南北两个矿区的评价模型,综合考虑相似模拟和数值模拟结果,通过对不同模型的采动地表移动变形值和附加荷载作用下地表移动变形值的分析,参照相关的地基安全稳定性评价标准,给出河东煤田南北矿区采空区电力建筑地基安全稳定性评价,以期对这些地区的老采空区地表建筑物尤其是电力建筑物地基安全稳定性问题作出指导性意见。
With rapid economic and social development of our country, and accelerated the implementation of infrastructure construction projects, the demand for energy and mineral resources show a rapid growth trend, especially under the condition of coal resources exploitation. This makes our country a large number of shallow coal mine resources facing depletion. As energy demand continues to expand and mining intensity continued to. increase, coal mining is continue to be extended to the deep. Sharp increase in rock deep mining conditions in the special environment of high temperature and pressure, combined with the sudden development of stress and tectonic stress, make the roadway and face surrounding rock deterioration of geological environment and the accident probability increase. These arouse displacement and deformation from the overlying strata and ground posed a great threat to the ground, production and life, and the manifestation of the causes of engineering disasters and frequency significantly different from shallow. Goaf on the deep mining caused by overburden and surface movement and deformation of the theoretical issues and the security and stability of the surface building foundations will become increasingly salient, so the deformation of the overburden in the goaf of great depth and surface mobile the study has major theoretical and practical significance.
     This study based on Hedong coalfield of northern Shanxi, a large mining deep coal mine goaf, with the use of similar material simulation, designs two sets of models under different mining depth:model Ⅰ, the mining depth is741m, and the mining height is7m; model Ⅱ,the mining depth is1143m, and the mining height is7.3m. Large amounts of data based on observational trials derived, arrive at different models of mobile deformation curve, using mathematical statistical methods.And then to study the impact of trend of the goaf to security and stability on the surface and foundation under deferent mining depth. Also, summed up the damage development of the influence of deferent models and deformation law of surface movement under the influence of mining depth, as well as the stable time of the different models after the completion of mining.
     For more comprehensive discussion of the impact of mining depth and mining thick overburden in the goaf and surface movement and deformation, and construction loads on the old goaf foundation stability, this study also uses a numerical simulation to calculate the researched questions. With advances in computer technology, numerical simulation methods widely used in engineering practice shows a impressive consequent of technical and economic. This study, based on the construction loading size、loading position、mining depth and mining thickness of the influencing factors, designed different orthogonal model, and comprehensively study the influence that the size of building load, load location, mining height and mining depth impose on goaf rock and ground movement and deformation.
     Using similar material simulation test and ANSYA numerical simulation method of combining, design evaluation model for Hedong coalfield north and south of the two mines. With comprehensive consideration of similar and numerical simulation results, through the analysis of ground movement and deformation value under the action of mining surface movement and deformation values and additional loads of different models, and with reference to the foundations of security and stability evaluation criteria, provides an evaluation of safety and stability of goaf power building foundations in Hedong coalfield north-south mining area, In order to make guidance for buildings especially power building foundation surface stability safety in the old mined-out area of these areas.
引文
[1]邓喀中,张冬至,张周全.深部开采条件下地表沉陷预测及控制探讨[J].中国矿业大学学报,2000,29(1):52-55.
    [2]何国清.岩移预计的威布尔分布法.中国矿业学院学报,1988(1).
    [3]刘宝琛.矿山岩体力学概论.长沙:湖南科学技术出版社,1982.
    [4]邹友峰,马伟民,何国清.地表移动变形预计的粘弹性方法.见:全国矿山测量学术会议论文(内部资料,苏州),1986.
    [5]Berry D S and Sales T W. An Elastic Treatment of Groud Movement Due to Mining. J. Mech.. Phys Slids 9,1961,52-62.
    [6]Berry D S. Groud Movement Considered as An Elastic Phenomenon. Min. Engr 123,1963,28-41.
    [7]Salamon M D G. Rock Mechanics Of Underground Excavations, Advances in Rock Mechanics, Proc.3rd congr., Int. Soc. Rock Mech., Denver, 1B,1974,951-1099. Washington, DC: Nat. Aacd. Sci.
    [8]Avasthi J M and Harloff G J. Subsidence Associated with Single and Multicavities for Undergroud Coal Gasification, J. Engergy Resources Technol., Trans. Am. Soc. Mesh. Engrs 104,1982,99-104.
    [9]李增琪.使用富氏积分变换法计算开挖引起的地表移动.煤炭学报,1983,(2).
    [10]李增琪.使用富氏积分变换法计算开挖引起的地表移动之二——水平煤层空间问题.煤炭学报,1985,(1).
    [11]Choi D S and Dahi H D.Measurement and Prediction of Mine Subsidence over Room and Pillar in Three-Dimension, Proceedings Workshop on Subidence due to Underground Mining, S. S. Peng, ed., West Viginia University.Morgantown, WV,1981,34-47.
    [12]Siriwardane H J. A Numerical Procedure for Prediction of Subsidence Caused by Longwall Mining, Proceedings Fifth International Conference on Numerical Methods in Geomechanics, T. Kawamoto and Y. Ichikawa, eds., A. A. Balkema, Boston,1985,1595-1602.
    [13]Su D W H. Finite Element Modeling of Subsidence Induced by Underground Coal Mining:The Influence of Material Nonlinearity and Shearing Along Existing Planes of Weakness, Proceedings 10th International Conference on Ground Control in Mining, S. S. Peng, ed., West Viginia University, Morgantown, WV,1991,287-300.
    [14]赵金刚.太佳高速公路下伏采空区稳定性评价[D].西北大学,2010.
    [15]武志德.大刘煤矿采空区对公路工程影响的分析与研究[D].西安科技大学,2008.
    [16]张建强,杨昆,王予东等.煤矿采空区地段高压输电线路铁塔地基处理的研究[J].电网技术,2006,30(2):30-34.
    [17]胡青峰,崔希民,李春意等.开采沉陷对高耸建筑物的影响研究[J].煤炭工程,2010,8:89-92.
    [18]C.J. F. P. Jones and W. J. Spencer. The Implication of Mining Subsidence for Modern Highway structure, Large Grenuel Movements and Structures Proceedings, University of Wales Cardiff,1977: 515-526.
    [19]C.J.F. P. Jones and T. D. Rourke. Mining Subsidence Effects on Transportation Facilities, MIS.,1988(7):107-126.
    [20]Shand M. Sergeant. HighwayDamage, Due to Subsidence, MIS.,1988, (2):18-32-
    [21]M. C.Wang. Settlement Behavior of Footing Above a Void, PCGGE, New Orleans,1982:168-183.
    [22]陈海波,何万龙.古交电厂厂区采空区地基稳定性评价[J],电力勘测,1998,4:1-7.
    (23]王金庄,李永树.巨厚松散层下采煤地表移动规律的研究[J],煤炭学报,]997,(1):58-63.
    [24]高明中.急倾斜煤层开采岩移基本规律的模型试验[J].岩石力学与工程学报,2004,23(3):441-445.
    [25]崔广心.相似理论与模型试验.徐州:中国矿业大学出版社,1990.1-30.
    [26]林韵海实验岩石力学模拟研究.徐州:煤炭工业出版社,1984.1-109
    [27]刘秀英.采空区建筑地基稳定性分析的相似模拟试验研究[D].太原理工大学,2004.
    [28]何国清等.矿山开采沉陷学.徐州:中国矿业大学出版社,1994.
    [29]北京煤炭科学研究所.煤层覆岩破坏的基本规律.煤田地质与勘探,1997,6:36-92.
    [30]钱鸣高,刘听成.矿上压力及其控制.北京:煤炭工业出版社,1984.
    [31]邹友峰,邓喀中,马伟民.矿山开采沉陷工程.徐州:中国矿业大学出版社,2003.
    [32]刘秀英,张永波.采空区覆岩移动规律的相似模拟试验研究.太原理工大学,2004,35(1):29-31.
    [33]井彦林,李寅良,韩相超等.煤矿采空区建筑场地的稳定性分析[J],陕西煤炭,2002,12-16.
    [34]刘维民,李瑞锋等.论采空区对高速公路的影响及处理措施.公路与汽运[J],2002.
    [35]孙占法,刘迎全.采动对岩层移动破坏规律的数值模拟试验研究[J],科技开发情报与经济,2005,15(10):154-156.
    [36]王勖成,邵敏.有限单元法基本原理与数值方法.北京:清华大学出版社,1988.
    [37]徐次达,华伯浩.结构力学有限元理论、方法及程序.北京:水利水电出版社,1983.134-147.
    [38]龚晓南,王寿梅.结构分析中的非线性有限元.北京航空学院出版社,1986.141-163.
    [39]李红云,赵杜戌,孙雁ANSYS10.0基础及工程应用.北京:机械工业出版社,2008.
    [40]蔡美峰,何满潮,刘东燕.岩石力学与工程.北京:科学出版社,2002.180-230.
    [41]袁灯平,马金荣.利用ANSYS进行开采沉陷模拟分析[J],济南大学学报(自然科学板),2001,15(4):336-339.
    [42]刘贵,张华兴,徐乃忠.深部厚煤层条带开采地表沉陷规律模拟研究[J].矿山测量,2008,(1):53-55.
    [43]邹友峰,胡友键,郭增长.采动损害与防护.徐州:中国矿业大学出版社,1996.
    [44]邹友峰,邓喀中,马伟民.矿山开采沉陷工程.徐州:中国矿业大学出版社,2003.
    [45]郭广礼,邓喀中,王汉玉.采空区上方地基失稳机理和处理措施研究.矿山压力与顶板管理,2000,3:39-42.
    [46]郭广礼.老采空区上方建筑物地基稳定性及处理措施研究:[博士学位论文].徐州:中国矿业大学,1999.
    [47]郭广礼,邓喀中等.采空区上方建大型建筑物的地基沉降研究.中国矿业大学学报,1996,(2).
    [48]常西坤,郭惟嘉,闫卫玺.采煤沉陷区上方建设天然气管线基础稳定性研究[J].旷山测量,2008,(5):66-68.
    [49]张志沛,王芝银等.高速公路与下伏煤矿采空区的长期稳定性分析 西安科技大学学报.2005:415-419.
    [50]郭增长,下金庄,原东芳.煤矿塌陷区桥梁地基稳定性研究[J],焦作工学院学报(自然科学版),2000,19(6):462-466.
    [51]滕永海,张俊英.老采空区地基稳定性评价.煤炭学报,1995,(5).
    [52]国家煤炭工业局.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S].北京:煤炭工业出版社,2000.
    [53]中华人民共和国建设部.建筑地基基础设计规范[S].北京:中国建筑工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700