用户名: 密码: 验证码:
粗煤泥流态化浮选柱试验研究与流场分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤泥分选问题成为影响精煤产率提高的主要瓶颈。大直径重介旋流器的大量应用,在提高选煤厂处理量的同时,也一定程度上增加了煤泥的含量,增加了煤泥处理工艺的负担。煤泥分选过程中,选煤厂一般都是采用分级入选的工艺流程,细煤泥采用浮选机、浮选柱等浮选的方法进行回收;而粗煤泥主要采用螺旋分选机、煤泥重介旋流器、干扰床分选机和水介旋流器等重选设备进行回收,这些设备在选煤厂粗煤泥分选过程中,取得了一定的成效。而流态化浮选柱能够实现煤泥混合入选,其分选机理是利用在浮选柱内引入上升水流来扩展浮选柱的分选粒度上限。运用这一分选理念研发的流态化浮选柱是一种结构简单、分选效果较好的新型设备,对于我国选煤技术的发展和选煤厂煤泥处理工艺流程的简化具有十分重要的意义。
     本论文将浮选柱与干扰床分选机原理有机的结合在一起,基于课题组前期在粗煤泥上升气泡流重浮耦合分选理论研究的基础上,将上升流引入浮选过程,设计了新型流态化浮选柱。进行了流场实验室模型机设计、数值模拟、实验室试验和相关流体动力学分选机理的研究。流态化浮选柱单相、气-液两相流场数值模拟表明:粗煤泥流态化浮选柱实验室模型机内部速度矢量分布均匀、湍流云图能够在分选区形成稳定的湍流强度、气相分布均匀能够满足煤泥分选所需的流场环境,且为了有更好的气相均匀性气含率应保持30%-40%之间为宜;在对分选机理的研究中,将气泡与颗粒看成一个整体来进行分析,得出了气泡-颗粒结合体自由上浮末速和干扰上浮末速的计算公式,分析了颗粒的密度、粒度、入料浓度对分选效果的影响,得出了较高的入料浓度有助于粗煤泥宽粒级入选。通过对屯兰矿和东曲矿2-Omm粒级粗煤泥分选试验研究,结果表明:对屯兰矿煤泥分选精煤产率可达82.79%、灰分为12.20%,东曲矿煤泥分选精煤产率可达64.88%、灰分为11.14%。证明了上升气泡流重浮耦合分选理论与技术能够实现宽粒级煤泥的不分级混合入选,为简化选煤厂煤泥分选工艺流程提供了新的技术途径。
The separation of slime has become the key point affecting the clean coal yield. Application of a great deal of dense-media cyclones of large diameter has improved the productivity, and also increased the slime content and complicated coal processing technology. For the coal separation without one directly using sophisticated equipment, the process for cleaning classified feed is general in Coal Preparation Plant. While Fluidized Flotation Column can realize the slime mixed selection. And the mechanism of separation is to introduce a rising water to extend the upper limit of the flotation column. The Fluidized Flotation" Column researched and exploited on this mechanism is a very simple and efficient processing equipment, additionally its research is only at the beginning all of world. For our country, it is very significant to the development of coal cleaning technology and the simplification of the slime separation process by launching this type of fluidized-bed Flotation Column.
     This paper are designing a new fluidized-bed flotation column which combines the advantages of the column with the teetering-bed separator and utilizes the up flow air bubbles concept. There are four stages, such as the initial conception, numerical simulation, design of the laboratory model machine, laboratory tests and hydrodynamics sorting mechanism. We have conducted the sorting tests which had usee the different proportion of coarse slime samples from Abram and Dongqu. And the yield of the Abram sample plant concentrate could reach82.79%, with12.20%ash; the Dongqu was64.88%, with11.14%ash. The results show that the Fluidized Flotation Column has reached its assumption of early design and can realize slime mixed selecting without grading basically, while it is also showing that some of the structure parameters of the column needs further optimized. At the same time for the separation of the mechanism of study which assumed bubble and particle as a whole concludes calculation formulas of the last free floating rate and the last speed of the interference floating of the bubble-particle acceptors, and there is analysising the influences of the separation index on particle density, particle size and concentration.The research indicates that the technology of fluidized bed flotation has great meaning in solving the problem of coal separation, realizing mix flotation of coals,and simplifying the process flow of coals in coal preparation plant. A new separating theory of rising bubble has been proved to be of great meaning on solving the problem of coal separation through test and theoretical analysis.
引文
[1]陈泉源,张径生.浮选柱的研究与应用[J].矿冶工程,2000,20(3):1-5.
    [2]PierreBouti,TremblayRemi.ColumnflotationCoofCanada[P].Canada:US3339730,1967-06-19.
    [3]MichaelJ.Mankosa.Eriez.Eriez-hydrofloatcoaseflotation-hydrofloatoncoal[J].Metallic ore dressing abroad.2005,42(2).
    [4]Ityokumbul M T.Miner.Metall Process 1996,(13):36.
    [5]彭守清,浮选柱的发展和应用[s].湖南有色金属,1998,14(2):14-19.
    [6]张希伙,充填式浮选柱选别萤石的试验研究,河北理工大学硕十学位论文,2005.
    [7]杨琳琳.环形充气浮选机的研制[D].昆明:昆明理工大学,2008.
    [8]顾芳珍,陈国桓.化工设备设计基础[M].天津:天津大学出版社,1994,74-90.
    [9]Dobby G.S,Finch J.A.浮选柱按比例放大与模拟[J].国外金属矿选矿,1988,(1):41-50.
    [10]周立,钟宏.从发明专利看浮选柱的研究与发展[J].矿业工程,2008,6(5):33-35.
    [11]沈止吕,卢世杰,张跃君.KYz—B浮选柱气液两相流数值模拟与试验研究[J].有色金属(选矿),2008,(4):28-31.
    [12]刘炯天,张敏,刘焕彬等.格筛充填浮选柱浮选流体的速度场分布[J].中国矿业大学学报,2007,36(5):578-581.
    [13]余龙舟.浮选柱泡沫层厚度的自动检测与控制[D].昆明:昆明理工大学,2008.
    [14]张兴昌.CPT浮选柱工作原理及应用[J].有色金属(选矿部分),2003,(2):22-23.
    [15]朱友益,张强。卢寿慈.浮选柱技术的研究现状及发展趋势[J].冶金矿山设计与建设,1996,(4):3-7.
    [16]张兴吕.CPT浮选柱工作原理及应用[J].有色金属(选矿部分),2003,(2):22-24.
    [17]刘炯天.旋流~静态微泡柱分选方法及应用(之一)[J].选煤技术,2000.(1):42-44.
    [18]刘炯天.旋流一静态微泡柱分选方法及应用(之二)[JJ.选煤技术,2000,(2):1-4.
    [19]刘炯天.旋流一静态微泡柱分选方法及应用(之二)[J].选煤技术,2000,(3):1-4.
    [20]樊晓鹏.CCF浮选柱在金川铜镍硫化物选矿中的应用研究田[D].西安:长安大学,2006.
    [21]王金玮,刘学军,张晓峰.CCF浮选柱与BF浮选机在钼精选中的差异[J].现代矿业,2011,(5):1-2.
    [22]卢世杰.KYZ型浮选机机理研究[J]..有色金属,2002,(1):1-3.
    [23]沈政吕等.KYZ-E型浮选柱研究报告[R].北就矿冶研究总院,2002,07.
    [24]E.S.Gaddis,A.Vogelpohl. Bubble formation in quiescent liquids under constant flow conditions[J].Chemical Engineering Science,1986,41(1):97-105.
    [25]N.W.Geary,R.G.Rice.Bubble size prediction for rigid and flexible spargers[J].Alche Journal,1991, 37(2):161-168.
    [26]Yang D C.Column Flotatcon'88. Toroton,1988.257.
    [27]卢寿慈.浮选原理[M].北京:冶金工业出版社,1959:120-132.
    [28]黄孔宣.译.浮选柱粗选.国外金属矿选矿,1992,29(5):10-14.
    [29]刘凡非,梁殿印,冉红想.磁浮选柱脉冲功率电源研究[J].有色金属(选矿部分),2006,(6):42-45.
    [30]许天易,尹强.浮选柱发展综述[J].矿业科学技术,1996,(2):41-45,48.
    [31]李定或,丁一刚,吴元欣.充填浮选柱的混合传质特性及操作参数I理论分析及试验原理.中国有色金属学报,1995,5(1):18-22.
    [32]丁一刚,李定或,吴元欣.充填浮选柱的混合传质特性及操作参数II模拟研究及选矿试验.中国有色金属学报,1995,5(2):31-37.
    [33]李冬莲,等.充填式浮选柱充气性能研究[J].中国矿业,1999,3:58-61.
    [34]陈冬香.浮选柱的发展与应用[J].选煤技术,2007,2:13-15.
    [35]王福军.计算流体动力学分析—CFD软件原理与应用.北京:清华大学出版社,2004.
    [36]章本照,印建安,张宏基.流体力学数值方法.北京:机械工业出版社,2003.6.
    [37]RubinstinJ.and BadenieorV,New aspeets in the theory and Praetice of flotation, Proceeding of the XLX Internation Mineral Processing congress, Vol.13, ChaPter.18,113-116.
    [38]JamesonG.J,A new concept in flotation column design, column flotation 1988, Chapter.30,281-285.
    [39]韩占忠,王敬,兰小平FLUENT流体工程仿真计算实例与应用.北京:北京理工出版社,2004.6.
    [40]Hanjalic.K, Advanced turbulence closure models:a view of current status and future prospects, International Journal of Heat and Fluid Flow.1994,15(3):178-203.
    [41]Shih.T.H, Liou.W. W, Shabbir.A, et a), A New k-e Eddy-Viscosity Model for High Reynolds Number Turbulent Flows-Model Development and Validation.Computers Fluids, 1995:24(3):227-238.
    [42]Jongen T, Simulation and Modeling of Turbulent Incompressible Flows. PhD thesis, EPF Lausanne, Lausanne, Switzerland,1992.
    [43JPai.S.I.Two-phase flows. Vieweg,1977.
    [44]马根娣等.气液两相流概述.北京:力学进展.1986,16(1).
    [45]章本照,印建安,张宏基流体力学数值方法.北京:机械工业出版社,2003.06.
    [46]Fluent Inc., Fluent User's Guide.Fluent Inc.2003.
    [47]H.Schlichting.Boundry layer theory,8th ed.McGrawhill. New Yokr,1977.
    [48]H.K.Versteeg, W.Malalasekera.An Introduetion to Computational Fluid Dynamies:The Finite Volume Method, Wiley, New York,1995.
    [49]P.Bradshaw, T.Cebeei, J.H.White.Engineering Caleulation Methods for Turbulent Flow. Academic Press, London,1981.
    [50]周晓四.重力选矿技术[M].冶金工业出版社,2006:6-32.
    [51]V.S. Patwardhan, C. Tien. Sedimentation and liquid fluidization of solid particles of different sizes and densities[J]. Chem. Eng. Sci.1998:1051-1060.
    [52]A. Chen, J.R. Grace, N. Epstein, C.J. Lim. Steady state hydrodynamic model for continuous particle classification in a liquid fluidized[J]. Fluidization, United Engineering Foundation, New York,2001: 413-420.
    [53]Mohammad Asif, Ahmed A. Ibrahim. Minimum fluidization velocity and defluidization behavior of binary-solid liquid-fluidizeds[J]. Powder Technology,2002, (28)2:241-254.
    [54]谢广元.选矿学[M].徐州:中国矿业大学山版社.2001:103-115.
    [55]李延锋.液固流化床粗煤泥分选机理与应用研究[D].徐州:中国矿业大学.2008.10.
    [56]M·曼科萨.借助空气的浮选水力重选机的应用[J].国外金属矿选矿.2005.02:31-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700