用户名: 密码: 验证码:
碱溶酸析沉淀法制备纳米腐植酸的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米材料技术的发展,产生了一种新型多功能精细有机材料-纳米腐植酸,其粒径大小1-100nm之间。鉴于腐植酸的特有性能,未来纳米腐植酸有望应用于农业、工业及医疗等领域。根据风化煤的品位以及对产物的要求,本论文着重讨论了纳米腐植酸制备工艺和晶粒调整剂在制备中的多重作用,采用碱溶酸析沉淀法配加高剪切技术制备纳米腐植酸粉体,论文首先对碱溶酸析沉淀法配加高剪切技术制备纳米腐植酸的工艺进行研究,在制备工艺研究中,通过单因素和正交实验,分别筛选出晶粒调整剂(单用、复配)、前驱体最优优工艺条件及干燥方式;然后研究了纳米腐植酸对苯、甲苯有机废气的吸附性能;最后,通过抗菌实验,研究了纳米腐植酸对大肠杆菌、金黄色葡萄球菌的抗菌性能。主要研究结果如下:
     (1)以风化煤为原料,采用碱溶酸析沉淀法配加高剪切技术制备纳米腐植酸工艺是可行的,最优工艺条件为:反应时间150min,反应温度60℃,氨水浓度25.00%,固液比1:10,剪切速度为2800r/min,晶粒调整剂为A12和A17复配(比例为1:2),其用量为1.5%o,真空干燥(0.08MP),干燥温度为100℃,干燥时间为4h。
     (2)采用X-衍射(XRD)、扫描电镜(SEM)、红外光谱(FTIR)、原子力显微镜(AFM)、凝胶色谱分析仪(GPC)、激光粒度分析仪、热重分析(TGA)、比表面积分析仪(BET)等手段对纳米腐植酸进行表征;结果表明:(a)粒径分布集中,结晶完好,实验采用超声震荡方式对产物分散,极大改善了粉体的团聚及产品的粒径,平均粒径为60nm,比表面积110.31m2/g,数均相对分子量为119;(b)与腐植酸相比,纳米腐植酸的化学结构发生变化,增加了新的官能团及活性位点,其表面形态光滑,形状呈球状,具有良好的耐热性能。
     (3)纳米腐植酸对纯组分的吸附平衡与Langmuir方程基本吻合,其对甲苯的吸附能力要比苯高,通过多组分吸附的实验可知,在苯、甲苯多组分的条件下,已被纳米腐植酸吸附的苯组分,可由吸附能力较强的甲苯组分置换,在热力学模型的基础上的IAST方程,预测平均误差小于10%,对有机废气吸附总量的预测误差5%左右。
     (4)抗菌实验结果表明:纳米腐植酸对大肠杆菌及金黄色葡萄球菌均具有较好的抗菌性,对两种细菌的抑菌率分别为99.1%和98.6%,且抗菌性能还具有一定的持久性。
With the nanoscale material technology development, Nanoscale humic acid of a new multifunctional fine organic material is born with particle size between1~100nm. In view of specific property of humic acid, nanoscale humic acid is expected to be used in agricultural, industrial and medical treatment in the future. This paper is focused on the preparation of nanometer technology and the application of crystalling adjusting agent in the preparation of nanoscale organic material. According to the grade of the weathered coal and the requirements of the product, the nanoscale humic acid was prepared by the alkali-solution and acid-isolation and higher shearring technology, firstly, the paper studies the preparation of nanoscale humic acid by the alkali-solution and acid-isolation and higher shearring technology, in the preparation technology research, the optimum condition to prepare nanoscale humic acid such as crystalling adjusting agent(single and blend), the optimum body precursor process conditions and drying method was obtained through single factor and orthogonal experiment. Secondly, the penetration curve of the nanoscale humic acid adsorption benzene, toluene mixed gas was studied and the dynamics theory of adsorption equilibrium was forecast. Finally, the antibacterial property was achieved by antibacterial experiment of nanoscale humic acid to escherichia coli, staphylococcus aureus. The main research results are as follows:
     (1) The preparing process of nanoscale humic acid is feasible by alkali-solution and acid-isolation and higher shearring technology using weathered coal as raw materials, and the optimum process conditions are as follows:the reaction time was150min, the reaction temperature was60℃, ammonia concentration was25.00%, the solid-to-liquid ratio was1:10, the shear rate was2800r/min, the addition amount of crystalling adjusting agent for lauryl benzene sulfonic acid sodium (LAS) and A17(ratio of1:2) was1.5‰of the total reaction solution, vacuum drying was0.08MP, drying temperature was100℃, the drying time was4h.
     (2) The nanoscale humic acid were characterized by XRD, SEM, FTIR, AFM, GPC, laser particle size analyzer, thermogravimetric analysis (TGA), and specific surface area analyzer; The results showed that:(a) the nanoscale humic acid had narrow diameter distribution and good crystallization, and ultrasonic shock way was used for the dispersion of the product, which had greatly improved conglomeration of the powder and product particle size, furthermore, the average particle size was60nm, the specific surface area was110.31m2/g, and relative molecular weight was119.(b) the chemical structure of nanoscale humic acid was changed, and the new functional group and the active site increased, meanwhile, surface morphology of the product with spherical structure became smooth, and the product had a good anti-heat performance.
     (3) Adsorption equilibrium of pure component on nanoscale humic acid was basically accord with Langmuir equation, and adsorption capacity of toluene is better than that of benzene, for the multicomponent adsorption, adsorption phenomenon tend to be complex because of interaction and competition between the various components, the results showed that the adsorbed benzene component had been replaced by toluene component with stronger adsorption capacity, and IAST equation was formed on the basis of the thermodynamic models, the average prediction error was less than10%, the prediction error of the total amount was only5%or so.
     (4) Antibacterial experiment results indicated that:the nanoscale humic acid have good antibacterial property to colon bacillus and staphylococcus aureus, two kinds of bacteria in the antibacterial rate were99.1%and98.6%, and antibacterial properties still has certain permanence.
引文
[1]邹静,王芳辉,朱红等.风化煤中腐植酸的提取研究[J].化工时刊,2006,20(6):10-12
    [2]王高伟,胡光洲,孔倩等.煤炭腐植酸的基本性能及其工农业应用[J].煤炭技术,2007,26(11):111-113
    [3]Brownell,J.R.,Nordstrom,,Evaluation of toxicity of the pesticides, chlorpyrifos and arsenic,in the presence of compost humic substances in aqueous systems [J]. Journal of Hazardous MaterialsB 103,2008:93-105
    [4]刘光灿.陕西某地泥炭腐植酸提取工艺的研究[J].广州化工,2011,39(4):83-85
    [5]张水花,李宝才,张惠芬等.年轻褐煤H2O2降解生产黄腐酸工艺[J].化学工程,2010,38(4):85-88
    [6]武美燕,蒿若超,田小海等.添加纳米碳缓释肥对超级杂交水稻产量和氮肥利用率的影响[J].杂交水稻,2010,25(4):86-90
    [7]赵鑫,李津,杜思钦.季铵化腐植酸的合成及其性能的研究[J].工业水处理,2009,20(9):17-19
    [8]陈彰旭,郑炳云,李先学等.采用模板法制备纳米材料的研究进展[J].化工进展,2010,29(1):94-99
    [9]Mathieu Pedrot, Ange Le. Boudec, Me Lanie Davranche, et al. How does organic matter constrain the nature, size and availability of nanoparticles for biological reduction [J]. Jouranl of Colloid and Interface Science,2011,359:75-85
    [10]B.I.Olu-Owolabi.D.B.Poola, E.I.Unuabonah. Removal of Cu2+ and Cd2+ from aqueous solution by bentonite clay modified with binary mixture goethite and humic acid[J]. Water Air Soil Pollut,2010,211:459-474
    [11]Jiajuan Li, Ying Li, Xiaomin Yan, et al. Sorption of atrazine onto humic acids coated nanoparticles[J]. Colloids and Surfaces A:Physicochemical Engineering Aspects,2009,347:90-96
    [12]Jianfeng Wu, Qichu Xu, Tao Bai. Adsorption behavior of some radionuclides on the chinese weathered coal[J]. Applied Radiation and Isotopes,2007,65:901-909
    [13]Konstantions Chassapis, Maria Roulia, Georgia Nika. Fe(m)-humate complexes from megalopolis peaty lignite:A novel eco-friendly fertilizer [J]. Fuel,2010,89:1480-1484
    [14]Yan Wang, Baoyu Gao, Xiuming Xu, et al. The effect of total hardness and ionic strength on the coagulation performance and kinetics of aluminum salts to remove humic acid[J]. Chemical Engineering Journal,2011,160:150-156
    [15]G.Brunetti, C.Plaza, C.E.Clapp, et al. Compositional and functional features of humic acids from organic amendments and amended soils in minnesota, USA[J]. Soil Biology and Biochemistry,2007,39:1355-1365
    [16]Mahesh B, Pallavi S, Veda R. Preperation and characterization of nanocrystalline La2O3 by the method of reverse microemulsion and the instrumental analysis[J]. Matter Lett,2003,57:1604-1611
    [17]张学才,张德祥.我国腐植酸及其工农业应用[J].中国煤炭,2000,26(12):13-18
    [18]李浩浩,李贵桐,林启美,张宝贵.风化煤腐植酸的活化技术与土壤改良效果[D].[博士学位论文].北京:中国农业大学,2006
    [19]赫婧,颜丽,杨凯等.不同来源腐植酸的组成和性质的研究[J].土壤通报,2003,39(4):343-345
    [20]Jian P,Dai J,Grajales S,et al.Completely aqueous procedure for the growth of ploymer brushes on polmeric substrates[J]. Langmuir,2007,23(23):11360-11365
    [21]周廷刚,王瑛,郭达志.陕西焦坪低变质烟煤硝酸氧解制取硝基腐植酸研究[J].煤炭科学与技术,1999,27(3):189-211
    [22]Grasso D,Chin Y P.Structural and behavioral characteristics of a commercial humic and atural dissolved aquatic organic matter[J].chemosphere,1990,21:1181-1198
    [23]C.Karunakaran,G.Abiramasundari,P.Gomathisankar. Preparation and characterization of ZnO-TiO2 nanocomposite for photocatalytic disinfection of bacteria and detoxification of cyanide under visible light[J]. Materials Research Bulletin,2011,46:1586-1592
    [24]Dengjun Wang, Lingyang Chu, Marcos Paradelo, et al. Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column:Effects of Cu, ionic strength, and ionic composition[J]. Journal of Colloid and Interface Science 360 (2011) 398-407
    [25]A B U L B.M.GIASUDDIN,SUSHILR.KANEL,ANDHEECHULC H O I. Adsorption of Humic Acid onto Nanoscale Zerovalent Iron and Its Effect on Arsenic Removalt[J]. Environ. Sci. Technol.2007,41,2022-2027
    [26]Luciano Carlos, Mariano Cipollone, Delia B. Soria, et al. The effect of humic acid binding to magnetite nanoparticles on the photogeneration of reactive oxygen species[J]. Separation and Purification Technology,2011,45:2689-2695
    [27]Ilwon Ko, Allen P.Davis, Ju-Yong Kim, et al. Effect of contact order on the adsorption of inorganic arsenic species onto hematite in the presence of humic acid[J]. Journal of Hazardous Materials,2007,141:53-60
    [28]Xialin Hu, Qiqing Chen, Lei Jiang, et al. Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish[J]. Environmental Pollution,2011,159:1151-1158
    [29]Pinhua Rao, Mark S.H. Mak, Tongzhou Liu, et al. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses[J]. Chemosphere,2009,75:156-162
    [30]Qian Wang, Naman Cissoko, Mi Zhou, et al. Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe0) nanoparticles[J].Physics and Chemistry of the Earth,2011,36:442-446
    [31]Zhen Zhang, Qiaohui Shen, Naman Cissoko, et al. Catalytic dechlorination of 2,4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid[J] Journal of Hazardous Materials,2010,182:252-258
    [32]Man Zhang, Feng He, Dongye Zhao, et al. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles:Effects of sorption, surfactants,and natural organic matter[J]. Water research,2011,45,:2401-2414
    [33]John D.Atkinson, Maria E.Fortunato, Seyed A.Dastgheib. Synthesis and characterization of iron-impregnated porous carbon spheres prepared by ultrasonic spray pyrolysis[J]. CARBON,2011,49:587-598
    [34]Naman Cissoko, Zhen Zhang, Jinghui Zhang, et al. Removal of Cr(VI) from simulative contaminated groundwater by iron metal[J]. Process Safety and Environmental Protection,2009,87:395-400
    [35]Zhen Zhang, Naman Cissoko, JingjingWo, et al. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni-Fe nanoparticles in the presence of humic acid[J]. Journal of Hazardous Materials,2009,165:78-86
    [36]Daniel C.W. Tsang, Nigel J.D. Graham, Irene M.C. LO. Humic acid aggregation in zero-valent iron systems and its effects on trichloroethylene removal[J]. Chemosphere,2009,75:1338-1343
    [37]Mark S.H. Mak, Pinhua Raol, Irene M.C. Lo. Effects of hardness and alkalinity on the removal of arsenic(V) from humic acid-deficient and humic acid-rich groundwater by zero-valent iron[J]. Water Research,2009,43:4296-4304
    [38]Emmanuil S. Tsimas, Konstantina Tyrovola, Nikolaos P. Xekoukoulotakis, et al. Simultaneous photocatalytic oxidation of As(III) and humic acid in aqueous TiO2 suspensions[J]. Journal of Hazardous Materials,2009,169:376-385
    [39]Minghua Li, C.P. Huang. Stability of oxidized single-walled carbon nanotubes in the presence of simple electrolytes and humic acid[J]. CARBON,2010,48:4527-4534
    [40]LEONID G.AKIM1, PHILIPPE SCHMITT-KOPPLIN,GEORGE W. BAILEY. Reductive splitting of humic substances with dry hydrogen iodide[J]. Org. Geochem,1998,28(5): 325-336
    [41]Jir l Kuc erl k, Daniela S" mejkalova', Hana C echlovska', et al. New insights into aggregation and conformational behaviour of humic substances:Application of high resolution ultrasonic spectroscopy[J]. Organic Geochemistry,2007,38:2098-2110
    [42]G Brunetti, C. Plaz, C.E. Clapp, N. et al. Compositional and functional features of humic acids from organic amendments and amended soils in Minnesota,USA[J]. Soil Biology & Biochemistry,2007,39:1355-1365
    [43]A.-V.Jung, V.Chanudet, J.Ghanbaj. Coagulation of humic substances and dissolved organic matter with a ferric salt:An electron energy loss spectroscopy investigation[J]. Water Research,2005,39:3849-3862
    [44]B. Donkova·P.Vasileva·D.Nihtianova, N.Velichkova· P.Stefanov· D.Mehandjiev. Synthesis, characterization, and catalytic application of Au/ZnO nanocomposites prepared by coprecipitation[J]. J Mater Sci,2011,46:7134-7143
    [45]Na Li,Xiaoling Zhang, Shutang Chen,et al. Synthesis and characterization of CdS nanoparticles in the presence of oleic acid as solvent and stabilizer[J]. Journal of Physics and Chemistry of Solids,2011,72:1195-1198
    [46]R.S. Lei, M.P. Wang, Z. Li, et al. Disclination dipoles observation and nanocrystallization mechanism in ball milled Cu-Nb powders[J]. Materials Letters,2011,65:3044-3046
    [47]Mitsukazu Ochi, Daisuke Nii, Miyuki Harada. Preparation of epoxy/zirconia hybrid materials via in situ polymerization using zirconium alkoxide coordinated with acid anhydride[J]. Materials Chemistry and Physics,2011,129:424-432
    [48]曹艳霞,郑国栋,徐纪平.反渗透复合材料界面改性及其性能的影响研究[J].高分子材料科学与工程,2004,20(6):138-141
    [49]肖进新,赵振国.表面活性剂应用原理[M].北京:化学工业出版社,2002
    [50]郑平主编.煤炭腐植酸的生产和应用[M].北京:化学工业出版社,1991
    [51]张常书.生化腐植酸在绿色环保肥料开发中的应用研究[J].腐植酸,2003,(1):23-26
    [52]刘加龙.原料煤的预处理对腐植酸性质及其制剂的影响[J].腐植酸,1999,(4),39-41
    [53]李善祥.腐植酸的研究与开发进展[J].腐植酸,1999,(2):3-6
    [54]马欣秀,赵宏波.我国泥炭、褐煤和风化煤的资源优势及其应用领域[J].中国煤炭,2004,30(9):47-50
    [55]孟宪明.我国泥炭资源的储量、特征与保护利用对策[J].自然资源学报,2006,21(4):567-574
    [56]Konstantinos Chassapis, Maria Roulia, Georgia Nika. Fe(III)-humate complexes from Megalopolis peaty lignite:A novel eco-friendly fertilizer [J]. Fuel,2010,89:1480-1484
    [57]Jianfeng Wu, Qichu Xu, Tao Bai. Adsorption behavior of some radionuclides on the Chinese weathered coal[J]. Applied Radiation and Isotopes,2007,65:901-909
    [58]Jiajuan Lu, Ying Li, Xiaomin Yan, et al. Sorption of atrazine onto humic acids (HAs) coated nanoparticles[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2009,347: 90-96
    [59]J. Peuravuori, P. Zbankova, K. Pihlaj. Aspects of structural features in lignite and lignite humic acids[J]. Fuel Processing Technology,2006,87:829-839
    [60]Ruey-An Doong, Yen-Jung Lai. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid[J]. Water Research,2005,39:2309-2318
    [61]Jan Willem Foppena, Yunus Liem, Jack Schijven. Effect of humic acid on the attachment of Escherichia coli in columns of goethite-coated sand[J]. Water Research,2008,42: 211-219
    [62]李丽.不同级分腐植酸的分子结构特征及其对菲的吸附行为的影响[D].[博士学位论文].广州:中国科学院研究生院,2003
    [63]秦淑平.不同利用方式下黄泥中腐植酸物质的组成、结构特征及其对有机污染物的 吸附行为[M].[硕士学位论文].南京:南京工业大学,2005
    [64]马晓芳.超细氢氧化镁制备的研究[M].[硕士学位论文].郑州:郑州大学,2010
    [65]宋晓,崔平,杨敏.风化煤催化氧解制备腐植酸[J].安徽工业大学学报,2007,24(2):163-168
    [66]焦元刚.从风化煤中提取黄腐酸[M].[硕士学位论文].北京:北京交通大学,2006
    [67]刘宏伟.从风化煤中提取药用腐植酸[M].[硕士学位论文].天津:天津大学,2002
    [68]张夫道,赵秉强,张骏等.纳米肥料研究进展与前景[J].植物营养与肥料学报,2002,8(2):254-255
    [69]Huan Li,Yiying Jin,Yongfeng Nie. Application of alkaline treatment for sludge decrement and humic recovery[J]. Bioresource Technology,2009,64:145-149
    [70]李同家,张士伟.酸法腐植酸的研制及应用实验[J].蓄电池技术,2000,(2),33-34
    [71]T.S.Anirudhan,P.S.Suchithra,P.G.Radhakrishnan.Synthesis and characterization of humic acid immobilized-polymer/getonite composites and their ability to absorb basic dyes from aqueous solution[J]. Applied Clay Science,2009,45:336-342
    [72]解田,段永华.以风化煤为原料制取腐植酸盐的工艺研究[J].内蒙古石油化工2008,(5),4-5
    [73]Malek A, Farooq S.Comparison of isotherm models for hydrocarbon adsorption on activated carbon[J].AIChE Journal,1996,42(11):3191-3292
    [74]周霞萍.腐植酸应用中的化学基础[M].北京:化学工业出版社,2007,1:147-159
    [75]王亚军,王威,陈国华等.准格尔旗风化煤中提取腐植酸的工艺研究[J].内蒙古石油化工,2010,20(11):3-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700