用户名: 密码: 验证码:
高寒草地不同演替阶段植被变化和土壤碳氮磷的生态化学计量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在青藏高原黄河源区,选择高寒草地退化演替的四个阶段:禾草嵩草草地群落,矮嵩草草地群落,小嵩草草地群落与杂类草黑土滩群落和三种不同程度的围栏样地的恢复演替为研究对象。通过对各演替阶段群落植被物种、生物量、盖度、重要值和各种生态指数的测量,同时对土壤中有机碳、全氮、全磷含量及其生态化学计量比进行研究,得到以下结果:
     (1)在高寒草地退化演替的四个时期三个阶段中,群落植被的变化情况为:群落先是以禾草和嵩草为绝对优势种,生态优势度高,均匀度低,随着退化演替的进行,地上生物量、盖度逐渐下降,禾草嵩草重要值降低,杂类草开始入侵,杂类草重要值增加,群落物种数目增加,多样性指数得到提高,当演替变成杂类草黑土滩群落阶段时,群落变成以杂类草为绝对优势种,原生植被几乎消失,生物多样性和均匀度又回落,生态优势度升高。群落结构变得单一,生态、生产和生活功能丧失。
     (2)土壤养分流失,有机质、全氮含量随演替的进行而下降,随土层深度的加深而降低;全磷在演替初期下降,后来变化不显著;土壤有机质、全氮和C:N值与地上生物量表现出良好的相关性。
     (3)高寒草地的退化演替过程中,土壤养分具有较高的C:N比和较低的N:P比,且在不同的演替阶段具有不同的CNP生态化学计量比,表明高寒草地的退化演替过程中表现为N素的限制。确定青藏高原高寒草地退化其土壤养分的阈值为C:N>10且N:P>8。
     (4)高寒退化草地围栏封育能显著的提高草地群落的地上生物量、盖度,能很好的改善草地土壤养分状况,土壤有机质、全氮、全磷都得到了提高,对高寒草地的恢复具有重要作用。
In the Yellow River source region of Qinghai-Tibet Plateau, we selected four alpine grassland stages of degradation succession: gramineae grass-Kobresia humilis community, Kobresia humilis community, Kobresia pygmaea community and the forbs-black soil beach community, and three different enclosed levels of recovery succession, as the research object. Used ecological method to measure vegetation species, biomass, coverage, important value and variety of eco-index in the various successional stages of community, while research content and ecological stoichiometry of the soil organic carbon, total nitrogen and total phosphorus.
     The following results were obtained:
     (1) Vegetation changes of communities in the three stages and four periods of alpine grassland degradation succession were:firstly, gramineae and Kobresia were the predominant species of community, had high ecological advantages. With the degradation succession of alpine grassland, aboveground biomass and coverage were decreased, important value of gramineae and Kobresia were gradually decreased, forbs began to invade the communities, important value of the forbs were increased, the number of species were increased, diversity index were increased, when the communities changed into forbs-black soil beach communities, forbs become the predominant species, native vegetation almost disappeared, biological diversity and evenness were decreased, communities structure become unitary. Function of ecology, production and life of alpine grassland were reduced.
     (2) The loss of soil nutrients, organic matter and total nitrogen content were decreased with succession and soil depth; Total phosphorus were decreased in the early stage of succession, and later did not change significantly; Soil organic matter, total N and C:N value showed a good correlation with the aboveground biomass scale.
     (3) The soil nutrients had a higher C:N ratio and low N:P ratio in degradation succession process of the alpine grassland, and had different the CNP ecological stoichiometry in different successional stages. It showed that the alpine degradation grassland performanced the limit of N in the succession process. Make sure the soil nutrient threshold of alpine degradation grassland were:C:N>10and N:P>8.
     (4) Grassland enclosure of alpine degradation grassland could significantly improve the aboveground biomass and coverage, could well improve the situation of grassland soil nutrients, improved soil organic matter, total nitrogen, total phosphorus, and played an important role in recovery and maintain of alpine grassland in Qinghai-Tibet Pleteau.
引文
[1]Agren G I. Stoichiometry and nutrition of plant growth in natural communities[J]. Annual Review of Ecology Evolution and Systematics,2008,39:153-170.
    [2]Benoit C, Nicolass B, Francois C. A cyclical but asynchronous pattern of fine root and woody biomass production in a hard-wood forest of southern Quebec and its relationships with annual variation of temperature and nutrient availability[J]. Plant and Soil,2003,250(1):49-57.
    [3]Berendse F. Competition between plant populations with different rooting depths. I. Theoretical considerations [J]. Oecologia,1979,43:19-26.
    [4]Cernusak L A, Winter K, Turner B L. Leaf nitrogen to phosphorus ratios of tropical trees: experimental assessment of physiological and environmental controls[J]. New Phytologist,2009,185:770-779.
    [5]Cleveland C C, Liptzin D. C:N:P stoichiometry in soil:is there a "Redfield ratio" for the microbial biomass[J]. Biogeochemistry,2007,85:235-252.
    [6]Cpick J C, Grime J P. Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology [J]. New Phytol,1987,107:403-414.
    [7]Elser J J, Bracken M E S, Cleland E E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems [J], Ecology Letters,2007,10:1135-1142.
    [8]Elser J J, Sterner R W, Gorokhova. Biological stoichiometry from genes to ecosystems [J]. Ecology Letters,2000,3(6):540-550.
    [9]Elser J J, Acharya K, Kyle M. Growth rate stoichiometry couplings in diverse biota [J]. Ecology Letters,2003,6:936-943.
    [10]Elser J J, Sterner R W, Gorokhova E. Biolog ical stoichiometry from genes to ecosystems [J]. Ecology Letters,2000,3:540-550.
    [11]Farrish K W. Spatial and temporal fine-root distribution in three Louisiana forest soil[J]. Soil Science Society of America Journal,1991,55:1752-1757.
    [12]Goldman J C, Caron D A, Dennett M R. Regulations of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio[J]. Limnology and Oceanography,1987,32:1239-1252.
    [13]Gren G I. Stoichiometry and nutrition of plant growth in nature communities [J]. Annual Review of Ecology, Evolution, and Systematics,2008,39:153-170.
    [14]Gsewell S. N P ratios in terrestrial plants:variation and functional significance[J]. New Phytologist,2004,164:243-266.
    [15]Han W X, Fang J Y, Guo D L. Leaf nitro gen and phosphorus stoichiometry across 753 terrestrial plant species in China [J]. New Phytologist,2005,168(2):377-385.
    [16]Hans W P and Timothy F S. Scalingup:the nextchallenge in environmental microbiology [J]. Environmental Microbiology,2003,5(11):1025-1038.
    [17]He J S, Fang J Y, Wang Z H. Stoichiometry and largescale patter ns of leaf carbon and nitrogen in the grasslands of China [J]. Oecologia,2006,149 (1):115-122.
    [18]Herbert D A, Williams M, Rastetter E B. A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate landuse abandonment [J]. Biogeochemistry,2003,65(1):121-150.
    [19]Isabelle K, Colin D R, Hubert T. Impact of cattle on soil physical properties and nutrient concentrations in overland flow from pasture in Ireland[J]. Agriculture Ecosystems and Environment,2006,113:378-390.
    [20]Kooijman S A L M. The stoichiometry of animal energetic[J]. Journal of Theoretical Bio log y,1995,177:139-149.
    [21]Matzek V, Vitousek P M.N:P stoichiometry and protein: RNA ratios in vascular plants: an evaluation of the growth rate hypothesis[J]. Ecology Letters,2009,12:765-771.
    [22]McGroddy M E, Daufresne T, Hedin L O. Scaling of C:N:P stoichiometry in forests worldwide:Implications of terrestrial Redfield type ratios[J]. Ecology,2004,85: 2390-2401.
    [23]Michaels A F. The ratios of life [J]. Science,2003,300:906-907.
    [24]Millikin C S, Bledsoe C S. Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in the northern Sierra Nevada foothills of California[J]. Plant and Soil,1999,214:27-38.
    [25]Moen R A, Pasto r J, Cohen Y. Antler growth and extinction of Irish elk [J]. Evolutionary Ecology Research,1999,1:235-249.
    [26]Oliveira R S, Bezerra L, Davidson E A. Deep root function in soil water dynamics in cerrado savannas of central Brazil[J]. Functional Ecology,2005,19:574-581.
    [27]Peters D P C. Plant species dominance at a grassland-shrubland ecotone:An individual-based gap dynamics model of herba-ceous and woody species[J]. Ecological Modelling,2002,152:5-32.
    [28]Powell G L, Whisenant B K. Comparison of three lasers for dental instrument sterilization [J]. Lasers Surg Med,1991,11:69-71.
    [29]Pu M, Mitohell R J, Jones R H. Root ditribution of two tree species under a heterogeneous nutrient environment[J]. Journal of Applied Ecology,1997,34:645-656.
    [30]Richard D B, Angela C J, David L J. Soilmicrobial community patterns related to the history and intensity of grazing in submontane ecosystems [J]. SoilBiology andBiochemistry,2001,33:1653-1664
    [31]Schenk H. Vertical vegetation structure below:Scaling from root to globe[J]. Progress in Botany,2005,66:341-373.
    [32]Seherr S J. Soil degradation:A threat to developing-country food security by 2020? Vision 2020[J]. Food, Agriculture, and the Environment Discussion Paper,1999,27: 14-25.
    [33]Shang Z H, Ma Y S, Long R J, Ding L M. Effect of fencing, artificial seeding and abandonment on vegetation composition and dynamics of "black soil land" in the headwaters of the Yangtze and the Yellow rivers of the Qinghai tibetan plateau[J]. Land degradation & development,2008,19:554-563.
    [34]Sterner R W, Elser J J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere [M]. Princeton:Princeton University Press,2002:1-50.
    [35]Sterner R W, George N B. Carbon, nitrogen, and phosphorus stoichiometry of cyprinid fishes [J]. Ecology,2000,81:127-140.
    [36]Sterner R W, Hessen D O. Algal nutrient limitation and the nutrition of aquatic herbivores [J]. Annual Review of Ecology and Systematic,1994,25:1-29.
    [37]Tessier J T, Raynal D J. Use of nitrogen to phosphorus ratios in plant tissue as indicator of nutrient limitation and nitrogen Saturation[J]. Journal of Applied Ecology,2003,40: 523-534.
    [38]Tian H Q, Chen G S, Zhang C. Pattern and variation of C : N: P ratios in China's soils:a synthesis of observational data[J]. Biogeochemistry,2010,98:139-151.
    [39]Vitousek P M. Nutrient Cycling and Limitation: Hawaii as a Model System[M] Princeton:Princeton University Press,2004.
    [40]Vogt K A, Vogt D J, Palmiotto P A. Review of root dynamics in forest ecosystems grouped by climatic forest type and spe-cies[J]. Plant and Soil,1996,187:159-219.
    [41]Wang C H, Xing X R, Han X G. Advances in study of factors affecting soil N mineralization in grassland ecosystems[J]. Chinese Journal of Applied Ecology,2004,15: 2184-2188.
    [42]Wang C T, Cao G M, Wang Q L, Jing Z C, Ding L M, Long R J. Changes in plant biomass and species composition of alpine Kobresia meadows along altitudinal gradient on the Qinghai Tibetan Plateau[J]. Sci China Ser C-Life Sci,2008,51(1):86-94.
    [43]Wang C T, Long R J, Wang Q J. Effects of altitudinal gradients on the relationship between plant species diversity and productivity on alpine meadow, Qinghai-Tibetan plateau[J]. Australian Journal of Botany,2007,55(2):110-117.
    [44]Wang C T, Long R J, Wang Q L, Jing Z C, Du Y G.. Effects of soil resources on species composition, plant diversity, and plant biomass in an alpine meadow, Qinghai Tibetan Plateau[J]. Israel Journal of Ecology & Evolution,2008,53:205-222.
    [45]Wang Y F, Chen Z Z, Tieszen L T. Distribution of soil organic carbon in the major grasslands Xilinguole. Inner Mongolia[J], China. Acta Phytoecologica Sinica,1998,22: 545-551.
    [46]Yu Q, Chen Q, Elser J J. Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability [J]. Ecology Letters,2010,13:1390-1399.
    [47]Zhang L X, Bai Y F, Han X G. Differential responses of N:P stoiehiometry of Leymus chinens is and Carexkors hinskyi to N additions in a steppe ecosystem in Nei Mongol [J]. Acta Botanica Sinica,2004,46:259-270.
    [48]曹广民,杜岩功,梁东营,王启兰,王长庭.高寒嵩草草甸的被动与主动退化分异特征及其发生机理[J].山地学报,2007,25(6):641-648.
    [49]曹广民,龙瑞军,张法伟,林丽,李以康,梁东营.三江源地区退化高寒草矮嵩草草甸剥蚀坑的成因[J].草原与草坪,2010,30(2):16-21.
    [50]曹广民,龙瑞军.放牧高寒嵩草草甸的稳定性及自我维持机制[J].中国农业气象,2009,30(4):553-559.
    [51]曹广民,龙瑞军.三江源区“黑土滩”型退化草地自然恢复的瓶颈及解决途径[J].草地学报.2009,17(1):4-9.
    [52]陈伏生,胡小飞,葛刚.城市地被植物动脉叶片氮磷化学计量比和养分在吸收效率[J].草业学报,2007,16(8):47-54.
    [53]陈国明.三江源地区“黑土滩”退化草地现状及治理对策[J].四川草原,2005,10:37-39.
    [54]陈亚明,吴自立,朱兴运.禾草嵩草型高山草地的磷循环[J].草业学报,1995,4(2):75-80.
    [55]陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社,2000.
    [56]程建中,李心清,刘钟龄,胡璐,黄代宽.中国北方草地植物群落碳、氮元素组成空间变化及其与土壤地球化学变化的关系[J].地球化学,2008,37(3):265-272.
    [57]道尔吉帕拉木,集约化草原畜牧业[M].北京:中国农业科技出版社.1996.
    [58]邓自发,谢晓玲,王启基.高寒小嵩草草甸种子库和种子雨动态分析[J].应用与 环境生物学报,2003,9(1):7-10.
    [59]董晓玉,傅华,李旭东,牛得草,郭丁,李晓东.放牧与围封对黄土高原典型草原植物生物量及其碳氮磷贮量的影响[J].草业学报,2010,19(2):175-182.
    [60]杜国祯,王刚.甘南亚高山草甸人工草地的演替和质量变化[J].植物学报1995,37:306-313.
    [61]杜岩功,曹广民,王启兰.放牧对高寒草甸地表特征和土壤物理性状的影响[J].山地学报,2007,25(3):338-343.
    [62]樊江文,钟华平,梁飚,石培礼,于贵瑞.草地生态系统碳储量及其影响因素[J].中国草地,2003,25(6):51-58.
    [63]高三平,李俊祥,徐明策.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征[J].生态学报,2007,27(3):947-952.
    [64]关世英.不同牧压梯度对草原土壤养分的影响初析.草原生态系统研究(第五集)[M].北京:科学出版社,1997.
    [65]郭继勋,仲伟彦.羊草草原植物土壤之间主要营养元素动态的研究[J].植物生态学报,1994,18(1):17-22.
    [66]韩立辉,尚占环,任国华,王彦龙,马玉寿,李希来,龙瑞军.青藏高原‘黑土滩’退化草地植物和土壤对秃斑面积变化的响应[J].草业学报,2011,20(1):1-6.
    [67]何亚婷,刘文治,党高弟.秦岭亚高山草甸30种草本植物的碳、氮分布研究[J].草业科学,2008,25(10):1-5.
    [68]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    [69]贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1):2-6.
    [70]侯扶江,常生华,于应文,林慧龙.放牧家畜的践踏作用研究评述[J].生态学报,2004,24(4):784-789.
    [71]侯扶江,南志标,肖金玉,常生华.重牧退化草地的植被、土壤及其耦合特征[J].应用生态学报,2002,13(8):915-922.
    [72]侯扶江,肖金玉,南志标.黄土高原退耕地的生态恢复[J].应用生态学报,2002,13(8):923-929.
    [73]黄国宏.黄土高原自然植被演替过程中的植物特征与土壤元素动态[J].植物学报,2002,44(8):990-998.
    [74]解宪丽,孙波,周慧珍,李忠佩,李安波.中国土壤有机碳密度和储量的估算与空间分布分析[J].土壤学报,2004,41(1):35-43.
    [75]金峰,杨浩,赵其国.土壤有机碳储量及影响因素研究进展[J].土壤,2000, 32(1):11-17.
    [76]兰玉蓉.青海三江源区生态恢复需要解决的几个问题[J].国土与自然资源研究,2005,3(2):51-52.
    [77]李博.中国北方草地退化及其防治对策[J].中国农业科学,1997,30(6):1-9.
    [78]李金花,李镇清,任继周.放牧对草原植物的影响的研究[J].草业学报,2002,11(1):4-11.
    [79]李明峰,董云社,齐玉春,耿元波.温带草原土地利用变化对土壤碳氮含量的影响[J].中国草地.2005,27(1):1-6.
    [80]李鹏,赵忠,李占斌.植被根系与生态环境相互作用机制研究进展[J].西北林学院学报,2002,17(2):26-32.
    [81]李文龙,苏敏,李自珍.甘南高寒草地放牧系统生态风险的AHP决策分析及管理对策[J].草业学报,2010,19(3):22-28.
    [82]李希来.高寒草甸草地与其退化产物‘黑土滩’生物多样性及其群落特征的初步研究[J].草业科学.1996,13(2):21-23.
    [83]李希来.青藏高原“黑土滩”形成的自然因素与生物学机制[J].草业科学,2002,19(1):20-22.
    [84]李玉霖,孟庆涛,赵学勇.科尔沁沙地流动沙丘植被恢复过程中群落组成及植物多样性演变特征[J].草业学报,2007,16(6):54-61.
    [85]梁建生,张建华,曹显祖.根系环境温度变化对根系吸水和叶片蒸腾的影响[J].植物学报,1998,40(12):1152-1158.
    [86]林慧龙,龙瑞军,任继周.放牧侵蚀研究回顾与展望[J].生态学杂志,2008,27(12):2222-2227.
    [87]林慧龙,王钊奇,尚占环.江河源区“黑土滩”退化草地秃斑与鼠洞的分形特征[J].草地学报,2010,18(4):477-484.
    [88]刘兵草场管理措施和草场退化对高寒草地土壤养分元素分布的影响[硕士论文].成都,中国科学院成都生物研究所,2006.
    [89]刘伟,王启基,王溪.高寒草甸“黑土型”退化草地的成因和生态过程[J].草地学报,1999,7(4):300-307.
    [90]刘兴元,龙瑞军,尚占环.草地生态系统服务功能及其价值评估方法研究[J].草业学报,2011,20(1):167-174.
    [91]龙瑞军.青藏高原草地生态系统服务功能及其生物组分特征刍议[J].科技导报,2007,25(9):26-28.
    [92]逯庆章,王鸿运.人工种草治理“黑土滩”模式的构思与探讨[J].青海草业,2007,16(3):18-21.
    [93]马克平,刘玉明.生物群落多样性的测度方法Ⅰ.α多样性的测度方法(下)[J].生物多样性,1994,2(4):231-239.
    [94]马玉寿,郎百宁,王启基.“黑土型”退化草地研究工作的回顾与展望[J].草业科学,1999,16(2):5-9.
    [95]马玉寿,郎百宁,李青云.江河源区高寒退化草地恢复与重建技术研究[J].草业科学,2002,19(9):1-5.
    [96]马玉寿,尚占环,施建军.黄河源区‘黑土滩’型退化草地群落类型多样性及其群落结构研究[J].草业科学,2006,23(12):6-11.
    [97]马玉寿,张自和,董全民.恢复生态学在‘黑土型’退化草地植被改建中的应用[J].甘肃农业大学学报.2007,42(2):91-97.
    [98]曲浩,赵学勇,赵哈林.陆地生态系统凋落物分解研究进展[J].草业科学,2010,27(8):44-51.
    [99]任继周,草地农业生态学[M].北京:中国农业出版社,1995.
    [100]任继周.草业科学的研究方法[M].北京:中国农业出版社,1998.
    [101]尚占环,丁玲玲,龙瑞军.江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系[J].草业学报,2007,16(1):34-40.
    [102]尚占环,姬秋梅,多吉顿珠,后源,郭旭生,丁路明,龙瑞军.西藏“一江两河”农区草业发展探讨[J].草业科学,2009,26(8):141-146.
    [103]尚占环,龙瑞军,马玉寿,丁路明.青藏高原“黑土滩”次生毒杂草群落成体植株与幼苗空间异质性及相似性分析[J].植物生态学报,2008,32(5):1157-1165.
    [104]尚占环,龙瑞军.青藏高原“黑土滩”退化草地成因与恢复问题的研究评述[J].生态学杂志,2005,24(6):652-656.
    [105]尚占环,姚爱兴,龙瑞军.干旱区山地植物群落物种多样性与生产力关系分析[J].干旱区研究,2005,22(1):74-78.
    [106]邵月红,潘剑君,许信旺,米高奇.浅谈土壤有机碳密度及储量的估算方法[J].土壤通报,2006,37(5):1007-1011.
    [107]沈振西,周兴民,陈佐忠.高寒矮嵩草草甸植物类群对模拟降水和施氮的响应[J].植物生态学报,2002,26(3):288-294.
    [108]石德军,李希来,杨力军.不同退化程度“黑土滩”草地群落特征的变化及其恢复对策[J].草业科学,2006,23(7):1-3.
    [109]斯日古楞,李志军.应用草原综合技术推进家庭牧场建设提高畜牧业经济质量和效益[J].内蒙古科技与经济.2006,9:61-62.
    [110]孙飞达,龙瑞军,郭正刚,刘伟,干友民,陈文业.鼠类活动对高寒草甸植物群落及土壤环境的影响[J].草业科学,2011,28(1):146-151.
    [111]孙小弟,王彦龙.不同退化程度高寒草甸草地生物量及土壤养分差异.青海畜牧兽医杂志,2008,38(3):6-8.
    [112]王长庭,龙瑞军,曹广民,王启兰,丁路明,施建军.三江源地区主要草地类型土壤碳氮沿海拔变化特征及其影响因素[J].植物生态学报,2006,30(3):441-449.
    [113]王长庭,龙瑞军,丁路明.高寒草甸不同草地类型功能群多样性及组成对植物群落生产力的影响[J].生物多样性,2004,12(4):403-409.
    [114]王长庭,龙瑞军,王启基.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J].草业学报,2005,14(4):15-20.
    [115]王长庭,龙瑞军,曹广民,王启兰,景增春,施建军.高寒草甸不同类型草地土壤养分与物种多样性—生产力关系[J].土壤学报,2008,39(1):1-8.
    [116]王长庭,龙瑞军,丁路明.青藏高原高寒草地草甸基本特征的研究[J].2004,21(8):16-19.
    [117]王长庭,龙瑞军,王根绪,刘伟,王启兰,张莉,吴鹏飞.高寒草甸群落地表植被特征与土壤理化性状、土壤微生物之间的相关性研究[J].草业学报,2010,19(6):25-34.
    [118]王长庭,龙瑞军,王启兰,曹广民,施建军,杜岩功.放牧扰动下高寒草地草甸植物多样性、生产力对土壤养分条件变化的响应[J].生态学报,2008,28(9):4144-4152.
    [119]王长庭,王启兰,景增春,冯秉福,杜岩功,龙瑞军,曹广民.不同放牧梯度下高寒小嵩草草甸植被根系和土壤理化特征的变化[J].草业学报,2008,17(5):9-15.
    [120]王根绪,程国栋,沈永平.青藏高原草地土壤有机碳库及其全球意义[J].冰川冻土,2002,24(6):693-700.
    [121]王根绪,程国栋.江河源区的草地资源特征与草地生态变化[J].中国沙漠,2001,21(2):101-107.
    [122]王堃,洪绂曾,宗锦耀.三江源地区草地资源现状及持续利用途径[J],草地学报,2005,13:28-47.
    [123]王启基,来德珍,景增春.三江源区资源与生态环境现状及可持续发展[J].兰州大学学报(自然科学版),2005,41(4):50-55.
    [124]王启基,王文颖,邓自发.青海海北地区高山嵩草草甸植物群落生物量动脉及能量分配[J].植物生态学报,1998,22(3):222-230.
    [125]王启基,周兴民,张堰青,等.高寒小嵩草草原化草甸植物群落结构特征及其生物量[J].植物生态学报,1995,19(3):225-235.
    [126]王启兰,王长庭,杜岩功.放牧对高寒嵩草草甸土壤微生物量碳的影响及其与土 壤环境的关系[J].草业学报,2008,17(2):39-46.
    [127]王炜,刘钟龄,郝敦元.内蒙古草原退化群落恢复演替的研究Ⅰ:退化草原的基本特征与恢复演替动力[J].植物生态学报,1996,20(5):449-459.
    [128]王勋,朱练峰,戴廷波.不同环境和基因型条件下水稻植株的糖氮比变化及其与产量形成的关系[J].中国稻米,2008(6):11-15.
    [129]韦兰英,上官周平.黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系[J].生态学报,2006,26(11):3740-3748.
    [130]蔚俊,龙瑞军,高新才,李文卿,尚占环.甘肃甘南地区草畜平衡现状与发展对策[J].草原与草坪,2007,3:52-56.
    [131]吴统贵,吴明,刘丽.杭州湾滨海湿地3种草本植物叶片N、P化学计量学的季节变化[J].植物生态学报,2010,34(1):23-28.
    [132]吴雅琼,刘国华,傅伯杰.青藏高原土壤有机碳密度垂直分布研究[J].环境科学学报,2008,28(2):362-367.
    [133]薛利红,杨林章,范小晖.基于碳氮代谢的水稻氮含量及碳氮比光谱估测[J].作物学报,2006,32(3):430-435.
    [134]阎恩荣,王希华,郭明.浙江天童常绿阔叶林、常绿针叶林与落叶阔叶林的CNP化学计量特征[J].植物生态学报,2010,34(1):48-57.
    [135]杨成德,龙瑞军,陈秀蓉,满元荣,徐长林,惠婧婧.东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征[J].草业学报,2007,16(4):62-68.
    [136]杨成德,龙瑞军,陈秀蓉,徐长林,王进明.东祁连山不同高寒草地类型土壤表层碳、氮、磷密度特征[J].中国草地学报,2008,30(1):1-5.
    [137]杨惠敏,王冬梅.草-畜环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展[J].草业学报,2011,20(2):244-252.
    [138]杨阔,黄建辉,董丹.青藏高原草地植物群落冠层叶片氮磷化学计量学分析[J].植物生态学报,2010,34(1):17-22.
    [139]杨利民,韩梅,李建东.松嫩平原主要草地群落放牧退化演替阶段的划分[J].草地学报,1996,4(4):281-287.
    [140]杨渺,李贤伟,张健.植被覆盖变化过程中土壤有机碳库动态及其影响因素研究进展[J].草业学报,2007,16(4):126-138.
    [141]杨婷婷,吴新宏,王加亭,李鹏,石红霄.中国草地生态系统碳储量估算.干旱区资源与环境,2002,26(3):127-130.
    [142]叶鑫,周华坤,赵新全,温军,陈哲,段吉闯.草地生态系统健康研究述评.草业科学,2011,28(4):549-560.
    [143]曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报, 2005,29(6):1007-1019.
    [144]张金霞,曹广民,周党卫.高寒矮嵩草草甸大气-土壤-植被-动物系统碳素储量及碳素循环[J].生态学报,2003,3(4):627-635.
    [145]张丽霞,白永飞,韩兴国.内蒙古典型草原生态系统中N素添加对羊草和黄囊苔草N:P化学计量学特征的影响[J].植物学报,2004,46(3):259-270.
    [146]张全发,郑重,金义兴.植物群落演替与土壤发展之间的关系[J].武汉植物学研究,1990,8(4):325-334.
    [147]张小川,蔡蔚祺,徐琪.草原生态系统土壤植被组分中氮磷钾钙和镁的循环[J].土壤学报,1990,27(2):140-150.
    [148]赵景学,祁彪,多吉顿珠,尚占环.短期围栏封育对藏北3类退化高寒草地群落特征的影响[J].草业科学,2011,28(1):59-62.
    [149]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1983.
    [150]周华坤,周立,赵新全.江河源区‘黑土滩’型退化草场的形成过程与综合治理[J].生态学杂志,2003,22(5):51-55.
    [151]周兴民.中国嵩草草甸[M].北京:科学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700