用户名: 密码: 验证码:
华北克拉通中元古代基性岩墙群古地磁研究及其大地构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超大陆的聚合与裂解作为全球构造演化的最基本特征,从根本上控制了全球各大陆的构造演化和发展。Columbia完整的古大陆重建方案,目前仍然缺乏足够数量的可靠的古地磁数据。华北克拉通中元古代的古地磁极不仅数量有限,而且大多数来自于沉积地层,缺乏年代学约束,其构造解释仍然含有很大的不确定性。华北克拉通中元古代沉积岩中广泛分布有大量基性岩墙,近年来对这些基性岩墙获得了较好的年代学证据,基于这一进展,本文对华北克拉通中元古代基性岩墙进行系统的古地磁研究。
     在河北怀来、天津蓟县和河北宽城三个采区34个采点共采集古地磁岩心385块。样品的磁化率随温度变化曲线、等温剩磁获得等岩石磁学实验结果表明,岩墙的主要磁性矿物为磁铁矿。对退磁结果进行分离和分析,结果表明大部分样品具有双分量特征,低温分量多为现代场重磁化结果或粘滞剩磁,高温分量方向集中。目前,对宽城辛家庄研究区的岩墙获得了精确的U-Pb年龄为1325±5Ma,该剖面3条岩墙、10个采点(A10KC07-A10KC16)的高温分量B具有双极性,并表现出很好的对蹠关系,其平均方向在产状校正前和校正后分别为D=119.2°,I=27.0°,k=149.0,α_(95)=4.2°,N=9和D=86.3°,I=32.7°,k=116.1,α_(95)=4.8°,N=9。这一结果在95%置信水平下通过了McFadden&Lowes(1981)的B级倒转检验,表明样品中的高温分量方向很可能是原生剩磁方向,该基性岩墙很有可能记录了岩墙侵位时的古地磁场方向,其对应的极位置为14.2°N,196.7°E,α_(95)=4.8°,dp/dm=3.1°/5.4°,古纬度为17.8°。
     这一中元古代中期古地磁极KC的位置与前人在华北克拉通相邻时代地层中获得的古地磁极位置比较接近,说明华北克拉通在中元古代的1.35~1.32Ga期间一直位于中低纬度地带。将该磁极与1820~1265Ma期间各大陆视极移曲线或古地磁极进行对比分析,表明在1800~1320Ma期间,华北克拉通与Siberia、Baltica和Laurentia大陆很可能稳定的连接在一起,并保持一致的运动行迹。
As an essential feature of global tectonic evolution, the convergence andbreaking up of supercontinent fundamentally control the evolution and developmentof all the continents on the earth. The intact reconstruction model of Columbiasupercontinue is lack in sufficient reliable paleomagnetic data. The midproterozoicpaleomagnetic poles from the North China Craton are not sufficient and came fromsedimentary units, short of chronological restraint, so that they can't explaingeotectonic determinately. A mass of mafic dyke swarms spreaded in themidproterozoic sedimentary strata of the North China Craton. Recently, somegeologists have made chronological advances on these mafic dyke swarms.Consequently, we do systematic paleomagnetic research on the mafic dyke swarmsemplaced in the midproterozoic sedimentary strata of the North China Craton.
     Totally385paleomagnetic cores were collected from34sites seated in HuailaiCounty, Kuancheng County of Hebei Province and Jixian County of Tianjin. Wecarried out paleomagnetic and rock magnetic studies on these samples. The rusultsfrom rock magnetic experiments consisting of acquisition of isothermal remanentmagnetization (IRM) and k-T curve indicated that the main magnetic mineral wasmagnetite. Analysis and results of stepwise thermal demagnetization showed greatmajority samples had two components, with the low temperature componentremagnetized by the modern geomagnetic field. Recenntly,mafic dyke swarms inKuancheng County were precisely dated at1325±5Ma by U-Pb dating method. It'sworth noting that the high component B isolated from Xinjiazhuang profile inKuancheng County has double polarity and symmetrical character, with site-meandirections for10sites D=119.2°,I=27.0°,k=149.0,α_(95)=4.2°N=9,in geographiccoordinates and D=86.3°,I=32.7°,k=116.1,α_(95)=4.8°,N=9, in stratigraphiccoordinates respectively, corresponding to a paleopole at14.2°N,196.7°E,α_(95)=4.8°,dp/dm=3.1°/5.4°, and paleolatitude17.8°N.
     The position of the midproteromic paleomagnetic pole from this study draw nearto the position of other paleomagnetic poles from the mesoproterozic sedimentarybeds in the North China Craton, indicating the North China Craton was seated in themid-low latitudes during the midproterozoic period. Comparing this paleomagneticpole with the Apparent Polar Wander Path or paleomangnetic pole of other relatedcontinents during1820Ma to1265Ma, we propose that the North China Craton was connected with Siberia continent, Baltica continent and Laurentia continentconsistently, drifting together from1820Ma to1320Ma.
引文
[1] Buchan K L, Mertanen S, Park R G, et al. Comparing the drift of Laurentia and Baltica inthe Proterozoic: the importance of key paleomagnetic poles. Tectonophysics,2000,319:167-198.
    [2] Cao G Q, Zhang R C, Yang Z J, et al. Geological characteristics of the North China andTarim Cratons. In Cheng Y Q (Ed.), Outline of Regional Geology of China. GeologicalPublishing House, Beijing.1994,90-104.
    [3] Card K D. A review of the Superior province of the Canadian Shield, a product ofArchean accretion. Precambrian Research,1990,48:99-156.
    [4] Chen Y, Cogne J P, Courtillot V. Cretaceous paleomagnetic results from western Tibet andtectonic implications. Journal of Geophysical Research,1993a,98(B):17981~17999.
    [5] Chumakov N M, Elston D P. Paleomagnetic data, late Precambrian magnetostratigraphyand tectonic evolution of evolution China. Precambrian Research,1985,29:65-75.
    [6] Chumakov N M, Elston D P. The paradox of Late Proterozoic glaciations at low latitudes.Episodes,1989,12(2):115-120.
    [7] Collinson D W. Methods in Rock Magnetism and Paleomagnetism: techniques andInstrumaentation. Londaon, Chapman and Hall,1983.
    [8] Dalziel I W D. Antarctica: a tale of two supercontinents? Ann. Rev. Earth Planet, Sci,1992,20:501-526.
    [9] Condie K C. Breakup of a Paleoproterozoic supercontinent. Gondwana Res.2002,5:41-43.
    [10]Dalziel I W D. Pacific margins of Laurentia and East Antarctic-Australia as a conjugaterift pair: evidence and implications for an Eocambrican supercontinent. Geology,1991,19:119-122.
    [11]Dirks P H G M, Jelsma H A. Horizontal accretion and stabilization of the ArcheanZimbabwe Craton. Geology,1998,26(1):11-14.
    [12]Ernst, R. E., Buchan, K.L., Hamilton, M.A., et al. Integrated paleomagnetism and U-Pbgeochronology of mafic dikes of the eastern Anabar Shield region, Siberia: Implications forMesoproterozoic paleolatitude of Siberia and comparison with Laurentia. The Journal ofGeology,2000,108:381-401.
    [13]Fisher R A. Dispersion on a sphere. Proceedings of the Royal Society of London Series,1953, A217:295-305.
    [14]GoodwinA. Principles of Precambrian Geology. London:Academic Press,1996:51-121.
    [15]Halls H C, Li J,Davis D, et al.A precisely dated Proterozoic paleomagnetic pole from theNorth China Craton, and its relevance to paleocontinental reconstruction. Geophys.J.Int,2000,143:185-203.
    [16]Hoffman P F. The break-up of Rodinia, birth of Gondwana, true polar wander and thesnowball Earth. J. Afr. Earth Sci,1999,28:17-33.
    [17]Hogan J P, Gilbert M C. Timing of the final breakout of Laurentia. Abstracts withPrograms-Geological-Society of America,1997,29:432.
    [18]Hrouda F. Atechnique for the measurement of thermal changes of magnetic susceptibilityof weakly magnetic rocks by the CS-2apparatus and KL Y-2kappabridge. Geophys JournalInternational,1994,118:604~612.
    [19]Kirschvink J K. The least-squares line and plane and analysis of paleomagnetic data.Geophys. J. Roy. Astr. Soc,1980,62:699-718.
    [20]Kroner A, Cui W Y, Wang S Q, et al. Single zircon ages from high-grade rocks of theJianping Complex, Liaoning Province, NE China. J. Asian Earth Sci.1998,16:519-532.
    [21]Lin J L.The apparent polar wander paths for the North and South ChinaBlocks,Ph.D.thesis. Univ.Of Calf.Santa Barbara.1984:248pp.
    [22]Link PK,et al, Middle and later proterozoic stratified rocks of the westernU.S.Cordillera,Colorado Plateau,and basin and Range province[J].The Geology of North Amrica,1993,C-2:463-595.
    [23]Li Z X, Zhang L, Powell C McA. Positions of the East Asian cratons in theNeoproterozoic supercontinent Rodmia. Australian journal of Earth Sciences,1996,43:593-604.
    [24]Li Z X, Li X H, Kinny PD, et al. The breakup of Rodinia:Did it start with a mantle plumebeneath South China. Earth Planet.Sci.Lett,1999,173:171-181.
    [25]McElhinny M W, Lock J. Global paleomagnetic database supplement number one: updateto1992. Surveys in geophysics,1993,14:303-329.
    [26]McElhinny M W, McFadden P L. Paleomagnetism: continents and Oceans. AcademicPress, California,2000,1-386.
    [27]McElhinny M W. Statistical significance of the fold test in palaeomagnetism. Geophys. J.R. Astron. Soc,1964,8:338-340.
    [28]McFadden P L, McElhinny M W. Classification of the reversal test in palaeomagnetism.Geophys Journal International,1990,103:725~729.
    [29]Meert J G.Paleomagnetic evidence for a Paleo-Mesoproterozoic supercontinent Columbia.Gondwana Res,2002,5:207-216.
    [30]Moores E W. Southwest US-East Antarctic (SWEAT) connection: a hypothesis. Geology,1991,19:425-428.
    [31]Naqvi S M, Rogers J J W. Precambrian Geology of India. Oxford Univ. Press, Oxford.1987.223pp.
    [32]Pei.et.al. A Mesoproterozoic paleomagnetic pole from the Yangzhuang Formation, NorthChina and its tectonics implications. Precambrian Research,2006,151:1–13.
    [33]Peters C, Dekkers M J. Selected room temperature magnetic parameters as a function ofmineralogy, concentration and grain size. Physics and Chemistry of the Earth,2003,28:659-667.
    [34]Piper et al. Palaeomagnetism of Precambrian dyke swarms in the North China Shield: The1.8Ga LIP event and crustal consolidation in late Palaeoproterozoic times. Journal of AsianEarth Sciences,2011,41:504–524.
    [35]Pisarevsky S A, Sokolov S J. The magnetostratigraphy and a1780Ma palaeomagneticpole from the red sandstones of the Vazhinka River section, Karelia, Russia. Geophys. J. Int,2001,146:531-538.
    [36]Powell C McA, Li Z X, McElhinny M W, et al. Paleomagnetic constrains on timing of thePalaeomagnetism of Precambrian dyke swarms in the North China Shield: The1.8Ga LIPevent and crustal consolidation in late Palaeoproterozoic times Neoproterozoic breakup ofRodinia and the Cambrian fromation of Gondwana. Geology,1993,21:889-892.
    [37]Rogers J,Santosh M. Configuration of Columbia, a Mesoproterozoic Supercontinent.Gondwana Res,2002,5:5-22.
    [38]Thompson R, Oldfield F. Environmental magnetism. London:Allen and Unwin,1986.
    [39]Van der Voo, R. Phanerozoic paleomagnetic poles from Europe and North America andcomparisons with continental reconstructions. Rev. Geophys,1990,28:167-206.
    [40]Van Velzen A J, Dekkers M J. The incorporation of thermal methods in mineralmagnetism of loess-paleosol sequence: a brief overiew. Chinese Science Bulletin,1999,44(suppl.l):53~63.
    [41]Wang H Z, Zhang S H, He G Q. China and Mongolia. In Selley R C, Cocks L R M,Plimer I R, eds., Encyclopedia of geology. Elsevier, Oxford,2005. Vol.1:345-358.
    [42]Wang H Z,Li X,Mei S L,et al.Pangaea cycles,Earth’s Rhythms and possible earthexpansion.In: Wang H Z, Jahn B, Mei S L, et al. Proc.30thIntern.Geol.Congr.1, Utrecht:International Scientific Publications,1997:111-128.
    [43]Wiledr SA,Zhao G C,SUN M.Development of the North China Craton during the lateArchaean and its final amalgamation at1.8Ga:some speculations on its position within aglobal Paleoproterozoic supercontinent[J].Gondwana Research,2002,5:85-94.
    [44]Wingate M T D, Pisarevsky S A, Evans D A D. Rodinia connections between Australiaand Laurentia: no SWEAT, no AUSWUS? Terra Nova,2002,14:121-128.
    [45]Zhang H M, Zhang W Z. Paleomagnetic data, late Precambrian magnetostratigraphy andtectonic evolution of eastern China.Precambrian Research,1985,29:65-75.
    [46]Zhang S H, Li Z X, Wu H C. New Precambrican palaeomagnetic results provide tightconstraint on the position of the North China Block relative to Laurentia in Rodinia.Precambrian Research,2005, in review.
    [47]Zhang Shuan-Hong, Yue Zhao, M. Santosh. Mid-Mesoproterozoic bimodal magmaticrocks in the northern North China Craton: Implications for magmatism related to breakupof the Columbia supercontinent. Precambrian Research,2011: in press.
    [48]Zhang Shuan-hong,Yue Zhao, Zhen-Yu Yang, Zhe-Feng He, Hai Wu. The1.35GaDiabase sills from the northern North China Craton: Implications for breakup of theColumbia(Nuna) supercontinent. Earth and Planetary Science Letters,288.2009,588-600.
    [49]Zhao G C, Cawood P A, Wilde S A, et al. Review of global2.1-1.8Ga orogens:Implications for a pre-Rodinia supercontinent. Earth Sci.Rev,2002a,59:125-162.
    [50]Zhao G C,Sun M, Wilde S A,et al. A Paleo-Mesoproterozoic supercontinent:assembly,growth and breakup. Earth-Science Review,2004,67:91-123.
    [51]Zhao G C, Sun M, Wilde S A. Did South America and West Africa marry and divorce orwas it a long-lasting relationship? Gondwana Res,2002b,5:591-596.
    [52]Zhao G C, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in theNorth China Craton: lithological, geochemical, structural and P-T path constraints andtectonic evolution. Precambrian Res,2001a,107:45-73.
    [53]敖红,邓成龙.磁性矿物的磁学鉴别方法回顾.地球物理学进展,2007,22(2):432~442.
    [54]白瑾.华北陆台北缘前寒武纪地质及铅锌成矿作用.北京:地质出版社,1993:1-132.
    [55]陈晋镳,张惠民,朱士兴,等.蓟县震旦亚界的研究,前寒武地质研究-中国震旦亚界.天津:科学技术出版社,1980:56-114.
    [56]陈衍景.熊耳群和西阳河群的构造背景.地质论评,1992,38:325-333.
    [57]崔盛芹,李锦蓉,孙家树等.华北陆块北缘构造运动序列及区域构造格局.北京:地质出版社,2000.
    [58]崔盛芹,李锦蓉,吴珍汉,等.燕山地区中新生代陆内造山作用.北京:地质出版社,2002:1-385.
    [59]方大钧,朱志文,郭亚滨.苏北地区上前寒武系古地磁研究及我国南北方上前寒武系对比.地质科学,1983,(4):324-336.
    [60]高荣繁,范义青.辽东半岛南部晚前寒武纪古地磁初步研究.沈阳地质矿产研究所所刊,1980,第6号:122-140.
    [61]郭敬辉,翟明国.华北克拉通桑干地区高压麻粒岩变质作用的Sm-Nd年代学.科学通报,2000,45(19):2055-2061.
    [62]郭敬辉,翟明国,许荣华.华北桑干地区大规模麻粒岩相变质作用的时代:锆石U-Pb年代学.中国科学(D辑),2002,32(1):10-18.
    [63]韩以贵.豫西地区熊耳群火山岩板块构造背景分析-地球化学和岩石学的新证据.中国地质大学(北京)硕士论文,2003:1-71.
    [64]河北省地质矿产局.河北省北京市天津市区域地质志.北京:地质出版社,1989:1-741.
    [65]李怀坤等.侵入下马岭组的基性岩墙的锆石和斜锆石U-Pb精确定年-对华北中元古界地层划分方案的约束.地质通报,2009,28卷10期:13960-14004.
    [66]李江海,侯贵廷,黄雄南,等.华北克拉通对前寒武纪超大陆旋回的基本制约.岩石学报,2001,17(2):177-186.
    [67]林金录.蓟县中、上元古界剖面的古地磁结果.科学通报,1988,33:207-210.
    [68]陆松年,杨春亮,李怀坤,等.华北古大陆与哥伦比亚超大陆.地学前缘,2002,9(4):225-233.
    [69]裴军令等.华北中元古界古地磁测试新结果与Columbia超级大陆研究.地质通报,2005,24卷6期:496-498.
    [70]乔秀夫,高林志.华北中新元古代及早古生代地震灾变事件及与Rodinia的关系.科学通报,1999,44(16):1753-1757.
    [71]乔秀夫.青白口群地层学研究.地质科学,1976,3:246-265.
    [72]唐克东.中朝板块北侧褶皱带构造演化及成矿规律.北京大学出版社,1992:1-277.
    [73]王长尧.燕山常州沟早期古河流的厘定与古地理特征及其演化.前寒武纪地质,1986:243-256.
    [74]王鸿祯,等.中国及邻区大地构造划分和构造发展阶段.见:王鸿祯,等.中国及邻区构造古地理和生物古地理.北京:中国地质大学出版社,1990:3-34.
    [75]王荃,刘雪亚,李锦铁.中国华夏与安加拉古陆间的板块构造.北京大学出版社.1991:1-151.
    [76]吴汉宁等.古地磁学在石油勘探中的应用-地磁大气空间研究及应用.北京:地震出版社,1996.
    [77]吴怀春等.华北地台蓟县杨庄组古地磁新结果及其大地构造意义.科学通报,2005,50(13):1370-1376.
    [78]吴怀春.华北蓟县地区中元古界古地磁研究及其古大陆再造意义.中国地质大学(北京)博士论文,2005,1-142.
    [79]吴怀春,张世红,韩以贵.白垩纪以来中国西部地体运动的古地磁证据和问题.地学前缘.2002,9(4):355~369.
    [80]张世红,王鸿祯.古大陆再造的回顾与展望.地址评论,2002,48(2):198-231.
    [81]徐备.华北板块北缘元古代年代地层格架及其形成过程.现代地质,1999,2:219-220.
    [82]阎国翰,牟保磊,许保良等.燕辽-阴山三叠纪碱性侵入岩年代学和Sr, Nd, Pb同位素特征及意义.中国科学(D辑),2000,30(4):383-387.
    [83]阎玉忠,刘志礼.中国北方燕山盆地长城纪生物群落和古环境关系探讨.微体古生物学报,1998,15(3):249-266.
    [84]袁学诚.古地磁学原理及其应用.北京:地质出版社,1991:25-49.
    [85]张世红,李海燕.地磁学、古地磁学和环境磁学的研究新进展.第32届国际地质大会学科总结和评述.现代地质,2004,18(4):415~422.
    [86]张世红,李正祥,吴怀春,等.华北地台新元古代古地磁研究新成果及其古地理意义.中国科学(D辑),2000,30(增刊):138-147.
    [87]张世红.古地磁学的历史回顾和现状-兼论学科发展和人才培养问题.长春科技大学学报,2000,30(专辑):112-121.
    [88]张惠民.华北蓟县元古界长城系串岭沟组岩石的古地磁再研究.物探与化探,1995b,19(2):135-141.
    [89]张惠民,张文治, Elston D P.华北蓟县中、上元古界古地磁研究.地球物理学报,1991,34(5):602-615.
    [90]张文治,李普.中国蓟县震旦亚界的古地磁特征.中国地质科学院院报.天津地质矿产研究所分刊,1980,1(1):111-122.
    [91]赵国春,孙敏, Wilde S A.华北克拉通基底构造单元特征及早元古代拼合.中国科学(D辑).2002b,7:538-549.
    [92]赵国春,孙敏, Wilde S A.早-中元古代Columbia超级大陆研究进展.科学通报,2002a,47(18):1361-1364.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700