用户名: 密码: 验证码:
黑龙江省伊春—鹤岗地区花岗岩的时代与成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伊春-鹤岗地区位于西伯利亚板块和华北板块之间的兴蒙造山带东段的松嫩地块上,经历了古亚洲洋构造域和太平洋构造域的演化历史。明确研究区花岗岩的形成时代和成因,对讨论东北地区的构造演化具有十分重要意义。基于此,我们对该区花岗岩进行了详细的岩相学、年代学、地球化学及锆石Hf同位素研究。厘定了花岗岩形成时代及期次,详细阐述了中-晚二叠世、早-中三叠世和晚三叠世花岗岩的岩石学和地球化学特征,探讨了其成因和形成的构造背景。
     1.花岗岩岩石组合、形成时代及期次划分
     研究区丰茂林场以东花岗岩基形成于晚二叠世(264~260Ma),岩石类型主要为一系列结构不同呈相变关系的二长花岗岩,并被少量早-中三叠世(244~234Ma)的花岗闪长岩、二长花岗岩和晚三叠世花岗斑岩(210Ma)侵入;丰茂林场以西为一套中粗粒或粗粒二长花岗岩-含斑或似斑状中粗粒黑云母二长花岗岩,形成于晚三叠世(212~210Ma)。
     根据本文测定结果并结合已有的年代学资料,将研究区伊春-鹤岗的花岗质岩浆活动分为三期:中-晚二叠世(266~259Ma)、早-中三叠世(244~231Ma)和晚三叠世(222~200Ma)。
     2.花岗岩的地球化学特征
     地球化学研究显示,中-晚二叠世、早-中三叠世和晚三叠世三期花岗岩均为高钾钙碱性系列,绝大部分样品的A/CNK≤1.1,落入准铝质-弱过铝质系列,且P2O5的含量随SiO2含量增加而减少;结合晚三叠世花岗岩的(87Sr/86Sr)i的变化范围多在0.7052~0.7133之间,认为研究区花岗岩多属I型,个别岩石具有I-S过渡型花岗岩的特征。三期花岗岩具有相似的微量元素标准化曲线型式和强烈亏损Nb、Ta、Sr、P、Ti元素的特征,但稀土元素配分模式和Sr、Yb的含量表现出了明显的不同。中-晚二叠世花岗岩多属于喜马拉雅型花岗岩,早-中三叠世花岗岩高Sr低Yb的地球化学特征显示其属埃达克质岩石,晚三叠世花岗岩多落入浙闽-南岭型花岗岩区域内。
     3.花岗岩成因及形成的构造背景
     三期花岗岩具有相同或相似的岩浆源区性质。锆石Lu-Hf同位素数据显示中-晚二叠世、早-中三叠世和晚三叠世三期花岗岩的εHf(t)值变化范围都较大,分别为-12.93~5.71、-8.07~3.34、-7.74~3.61,εHf(t)有正有负的变化反映至少存在两种性质不同的源区;结合晚三叠世花岗岩的(87Sr/86Sr)i的变化范围多在0.7052~0.71332之间,εNd(t)值多介于-7.1~+2.1之间,认为岩浆源区物质存在古老物质和新生玄武质地壳的混合。根据本文的模拟结果及结合前人的研究成果我们认为岩浆源区主要为新增生的玄武质地壳物质,并有古老地壳物质参与熔融,但不同花岗岩混入老物质的比例有所不同。
     综合研究认为,研究区中-晚二叠世花岗岩形成于华北板块与松嫩地块碰撞过程中;早-中三叠世花岗岩岩浆起源于加厚地壳,形成于两大板块碰撞后的继续挤压造山阶段;晚三叠世花岗岩与古亚洲洋闭合造山后岩石圈伸展体制有关。三期花岗岩很好的演绎了板块碰撞拼合,致使地壳加厚造山,以及造山后岩石圈伸展、造山带崩塌的地质演化过程。
The Yichun-Hegang area lies within the Songnen block at the eastern segment of the Xing'anMongolian orogenic belt between the Siberian plate and the North China plate. This area saw theevolution of both the Paleo-Asian Ocean tectonic and the Pacific tectonic. The accuraterecognition of age and origin of the granite in this area can play an important role in discussingthe tectonic evolution of the Northeast of China. Therefore, it’s very significant to discuss indetail on the petrography, geochronology, geochemistry and zircon Hf isotopic characteristics ofthe granite. According to data in this paper, the author determine the ages and stages of the graniteformed in different period, discuss their petrologic and geochemical characteristics, as well astheir the tectonic background.
     1. Rock association, geochronology and the stages of the the granitic rock
     The granite batholith, to the east of the Fengmao Forest Farm, formed at the Late Permianperiod and includes predominantly a series of monzogranite with Phase relationship and differenttexture. The monzonitic granite was intruded by the Early-middle Triassic granodiorite andmonzogranite (244~234Ma), as well as the Late Triassic granite porphyry (210Ma). Granites tothe west of the Fengmao Forest Farm mainly include medium to coarse grained monzogranite andporphyritic biotite monzogranite emplaced in the Late Triassic (211~210Ma).
     According to the zircon U-Pb dating and existing geochronologic data, the graniticmagmatism in Yichun-Hegang region can be grouped into such three stages as middle-late Permian (266~259Ma), early-middle Triassic (244~231Ma), and late Triassic (222~200Ma).
     2. Geochemistry of the granite
     Geochemical characteristics of the granitic rocks show that all the three stages of middle-latePermian,early-middle Triassic and late Triassic granites belong to the high-K calc-alkaline series.Most samples are met aluminous to slightly per aluminous with A/CNK values of not more than1.1, and the P2O5content decreased as increasing of SiO2content, their (87Sr/86Sr)ivary in a widerange from0.7052to0.71332, suggest that these granites mostly belong to I-type granites, andindividual rocks have chemical characteristics that are transitional between I-and S-type granites.These three stage of granites are of similar trace elements composition and commonly depleted inNb, Ta, Sr, P, Ti. However, they present obviously different REE patterns and Sr, Yb contents. Themiddle-late Permian granitoid belongs to the Himalayan-type granite; the early-middle Triassicgranitoid has higher contents of Sr, lower contents of Yb and belongs to adakite; the Late Triassicgranitoid plots in the Zhejiang and Fujian-Nanling type granites field.
     3. Petrogenesis and tectonic setting of the granite
     Three stage granites have the common or similar magma source. The Lu-Hf isotopic datashow that εHf(t) values of middle-late Permian, early-middle Triassic, and late Triassic granitesrange from-12.93to5.71, from-8.07to3.34, and from-7.74to3.61, respectively. The changesof εHf(t) values (between positive and negative) reflect that there are at least two different magmasource region. That the εNd(t) values change from-7.1to2.1, together the fact that the (87Sr/86Sr)iratios of the late Triassic granite between is from0.7052to0.71332and mostly between-7.1~2.1, suggest the mixture of ancient material and the new basaltic crust. Based on the simulationresults and previous research data, the author concludes that the magma was mainly derived fromnew the basaltic crust, and with contribution of old crustal material, but the mixture proportion ofold material are different in different period of granites.
     Comprehensive studies indicate that the middle-late Permian granite was related to collisionof the North China plate with the Songnen block. The early-middle Triassic granite was originatedfrom the thickened crust and formed in the orogenic process post-collision of different plates. The late Triassic granite was resulted from continuous collision and extension after closure of thePaleo-Asian Ocean. The geological evolution process of this area, including collision-inducedcrustal thickening and orogeny, subsequent lithospheric extension as well as orogenic beltcollapse can best be interpreted from the three stages of granites.
引文
[1]陈骏,王鹤年.地球化学[M].北京:科学出版社,2004.
    [2]崔革,于静秋,高艳秋,等.黑龙江省东部晚石炭-晚白垩世地层的古地磁特征及其地质意义[J].黑龙江地质,1991,2(2):41–49.
    [3]邓晋福,刘厚祥,赵海玲,等.燕辽地区燕山期火成岩与造山模型现代地质[J].1996,10(2):137–147.
    [4]董申保,沈其韩.中国变质地质图[M].北京出版社,1986.
    [5]董申保.近代花岗岩的研究回顾[J].高校地质学报,1995,1(2):1–12.
    [6]方文昌.吉林省花岗岩类及成矿作用[M].1992,长春:吉林科学技术出版社.
    [7]付长亮,孙德有,张兴洲,等.吉林珲春三叠纪高镁闪长岩的发现及地质意义[J].岩石学报,2010,26(4):1089–1102.
    [8]高晓峰.东北地区中生代火成岩Sr-Nd-Pb同位素填图及其对区域构造演化的制约
    [D].广州:中国科学院广州地球化学研究所博士学位论文,2007.
    [9]葛文春,吴福元,周长勇,等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005,50(12):1239–1247.
    [10]葛文春,吴福元,周长勇,等.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005,21(3):749–762.
    [11]韩宝福,何国琦,王式洸.后碰撞幔源岩浆活动、底垫作用及准噶尔盆地基底的性质[J].1999,29(1):16-21.
    [12]韩振哲,赵海玲,苏士杰,等.小兴安岭东南金山屯一带晚三叠世二长花岗岩成因及其地质意义[J].现代地质,2008,22(2):197–206.
    [13]韩振哲.小兴安岭东南段早中生代花岗岩类时空演化特征与多金属成矿[D].北京:中国地质大学(北京)博士学位论文,2011.
    [14]黑龙江省地质矿产局.黑龙江省区域地质志[J].北京:地质出版社.1993.
    [15]黑龙江省地质矿产局.黑龙江省岩石地层[M].北京:中国地质大学出版社,1997.
    [16]洪大卫,王式洸,谢锡林,等.兴蒙造山带正ε(Nd,t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2000,7(2):441–456.
    [17]胡芳芳,范宏瑞,杨进辉,等.胶东文登长山南花岗闪长岩体的岩浆混合成因:闪长质包体及寄主岩石的地球化学、Sr-Nd同位素和锆石Hf同位证据[J].岩石学报,2005,21(3):569–586.
    [18]黄宝春,周烑秀,朱日祥.从古地磁研究看中国大陆形成与演化过程[J].地学前缘,2008,15(3):348–359.
    [19]黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2):117–135.
    [20]黄汲清,任纪舜,姜春发,等.中国大地构造及其演化(1/400万中国大地构造图简要说明)[M].北京:科学出版社,1980.
    [21]黄映聪.佳木斯地块古生代变质作用与构造演化[D].长春:吉林大学博士学位论文,2009.
    [22]吉林省地矿局.吉林省区域地质志[M].北京:地质出版社,1988.
    [23]颉颃强,苗来成,陈福坤,等.黑龙江东南部穆棱地区“麻山群”的特征及花岗岩锆石SHRIMP U-Pb定年[J].地质通报,2008,27(12):2127–2137.
    [24]李昌年.火成岩微量元素岩石学[M].武汉:中国地质大学出版社,1992.
    [25]李锦轶,高立明,孙桂华,等.内蒙古东部双井子中三叠世同碰撞壳源花岗岩及其对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报,2007,23(3):565–582.
    [26]李旭平,焦丽香,郑青道,等.黑龙江桦南地区黑龙江杂岩锆石U-Pb定年[J].岩石学报,2009,25(08):1909–1916.
    [27]李旭平,孔凡梅,郑庆道,等.黑龙江萝北地区黑龙江杂岩年代学研究[J].岩石学报,2010,26(07):2015–2024.
    [28]李之彤,赵春荆.黑龙江省东部楚山兴凯期花岗闪长岩体的特征和成因[J].岩石学报,1987,3(1):3–16
    [29]李之彤,朱群.吉黑东部花岗岩类的稳定同位素组成[J].岩石矿物学杂志,2001,20(3):353–358.
    [30]利亚霍维奇.B.B.地幔花岗岩类岩石.1988《国外地质科学》编辑部译.国外地质科学,1990,(5):1–18.
    [31]刘宝山,马永强,吕军,等.伊春地区上游新村晚三叠世二长花岗岩体成因及就位机制[J].地质与资源,2005,14(3):170–175.
    [32]刘建峰,迟效国,董春艳,等.小兴安岭东部早古生代花岗岩的发现及其构造意义[J].地质通报,2008,27(4):534–544.
    [33]刘建峰.小兴安岭东部早古生代花岗岩地球化学特征及其构造意义[D].长春:吉林大学硕士学位论文,2006.
    [34]刘永江,张兴洲,金巍,等.东北地区晚古生代区域构造演化[J].中国地质,2010,37(4):943–951.
    [35]柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[D].西安:西北大学地质系,2004.
    [36]栾慧敏,张海驲,陈乐国..黑龙江省伊春-延寿地区加里东期花岗岩的发现及其成因和构造成岩模式.见:李之彤主编.中国北方花岗岩及其成矿作用论文集[M].北京:地质出版社:1991,76–82.
    [37]马昌前,王人镜,邱家骧.花岗质岩浆起源和多次岩浆混合的标志-以北京周口店岩体为例[J].地质评价.1992,38(2):109–118.
    [38]孟恩,许文良,杨德彬,等.佳木斯地块东缘及东南缘二叠纪火山作用:锆石U-Pb年代学、地球化学及其构造意义[J].科学通报,2008,53(8):956–965.
    [39]孟恩.黑龙江省东部晚古生代-早中生代构造演化:碎屑锆石与火山事件的制约[D].长春:吉林大学博士学位论文,2011.
    [40]邱家骧,林景仟.岩石化学[M].北京:地质出版社,1993.
    [41]任纪舜,牛宝贵,刘志刚.软碰撞、叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85–93.
    [42]任纪舜.中国大陆构造研究的重大进展[J].地质论评,1995,41(4):386–387.
    [43]尚庆华.北方造山带内蒙古中、东部地区二叠纪放射虫的发现及意义[J].科学通报,2004,49(24):2574–2579.
    [44]邵济安,何国琦等.华北北部在古亚洲洋域与太平洋域构造叠加过程中的地质作用[J].中国科学D辑,1997,27:390–394.
    [45]邵济安,张履桥.大兴安岭中生代伸展造山过程中的岩浆作用[J].地学前缘,1999,6(4):339–346.
    [46]宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):6–30.
    [47]隋振民,葛文春,吴福元,等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007b,23(2):461–480.
    [48]孙德有,吴福元,高山.小兴安岭东部清水岩体的锆石激光探针U-Pb年龄测定[J].地球学报,2004b,25(2):213–218.
    [49]孙德有,吴福元,张艳斌,等.西拉木伦河–长春–延吉板块缝合带的最后闭合时间——来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004a,34(2):174–181.
    [50]孙德有.吉中—辽北地区显生宙花岗岩的时代、地球化学特征与构造背景[D].西安:西北大学博士后研究工作报告,2005.
    [51]孙德有.张广才岭中生代花岗岩的时代、地球化学特征与构造背景[D].长春:吉林大学博士学位论文,2001.
    [52]孙革.中国吉林天桥岭晚三叠世植物群[M].长春:吉林科学技术出版社.1993.
    [53]王成文,金巍,张兴洲,等.东北及邻区晚古生代大地构造属性新认识[J].地层学杂志,2008,32(2):119–136.
    [54]王成文,孙妖武,李宁,等.中国东北及邻区晚古生代地层分布规律的大地构造意义[J].中国科学,2008,39(10):1429–1437.
    [55]王枫.黑龙江省东部张广才岭群新兴组:岩石组合、时代及其构造意义[D].长春:吉林大学硕士学位论文,2010.
    [56]王荃,刘雪亚,李锦轶.中国华夏与安加拉古陆间的板块构造[J].中国北方板块构造丛书(4).北京:北京大学出版社,1991,1–151.
    [57]王涛.花岗岩研究与大陆动力学[J].地学前缘(中国地质大学,北京),2007,7(增刊):137–146.
    [58]王晓蕊.辽西早白垩世四合屯组火山岩地球化学研究[D].西安:西北大学地质系,2005.
    [59]吴福元,SWILDE,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443–452.
    [60]吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘(中国地质大学,北京),2003,10(3):51–60.
    [61]吴福元,江博明,林强.中国北方造山带造山后花岗岩的同位素特点与地壳生长意义[J].科学通报,1997,42(20):2188–2192.
    [62]吴福元,李献华,杨进辉,等.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217–1238.
    [63]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181–189.
    [64]吴福元,叶茂,张世红.中国满洲里—绥芬河地学断面域的地球动力模型[J].地球科学-中国地质大学学报,1995,20:535–539.
    [65]武仁.吉林浑江煤田小营子组[J].地层学杂志,1987,11(3):218–223.
    [66]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589–1604.
    [67] Wilde,S.A.,吴福元,张兴洲.中国东北麻山杂岩晚泛非期变质的锆石SHRIMP年龄证据及全球大陆再造意义[J].地球化学,2001,30(1):35–50.
    [68]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法[M].北京:地质出版社,2002.
    [69]谢鸣谦.拼贴板块构造及其驱动机理—中国东北及其邻区的大地构造演化.北京,科学出版社,2000.
    [70]许保良,王式洸,闫国翰,等.燕山地区碱性-过碱性A型花岗岩系-岩石学、岩石成因学及其地球动力学意义[J].岩石圈地质科学,1994,1(20):1–19.
    [71]叶惠文,张兴洲,周裕文.从蓝片岩及蛇绿岩特点看满洲里-绥化河断面岩石圈结构与演化[J].中国满洲里-绥芬河地学断面域内岩石圈结构及其演化的地质研究.北京:地震出版社,1994,83.
    [72]袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析[J].科学通报,2003,48(14):1511–1520.
    [73]张旗,王焰,熊小林,等.埃达克岩和花岗岩:挑战与机遇[M].中国大地出版社,2008.
    [74]张旗,王元龙,金惟俊,等.造山前、造山和造山后花岗岩的识别[J].地质通报,2008,27(1):1–18.
    [75]张维,简平,刘敦一,等.内蒙古中部打茂旗地区三叠纪花岗岩和钾玄岩的地球化学、年代学和Hf同位素特征[J].地质通报,2010,29(6):821–832.
    [76]张兴洲,杨宝俊,吴福元,等.中国兴蒙—吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816–823.
    [77]张艳斌.延边地区花岗质岩浆活动的同位素地质年代学格架[D].长春:吉林大学博士学位论文,2002.
    [78]张贻侠,孙运生,张兴洲,等.中国满洲里-绥芬河地学断面1:1000000说明书[M].北京:地质出版社,1998.
    [79]张昱.黑龙江省东部早中生代火成岩构造组合及其大地构造演化[D].北京:中国地质大学(北京)博士学位论文,2008.
    [80]章永梅,张华锋,刘文灿,等.内蒙古中部四子王旗大庙岩体时代及成因[J].岩石学报,2009,25(12):3165–3181.
    [81]赵春荆,彭玉鲸,党增欣,等.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社,1996,1–186.
    [82]赵寒冬.东北地区小兴安岭南段—张广才岭北段古生代火成岩组合与构造演化[D].北京:中国地质大学博士学位论文,2009.
    [83]赵葵东,蒋少涌,朱金初,等.桂东北花山-姑婆山侵入杂岩体和暗色包体的锆石微区Hf同位素组成及其成岩指示意义[J].中国科学,2009,54(23):3716–3725.
    [84]赵越,杨振宇,马醒华.东亚大地构造发展的重要转折[J].地质科学,1994,29(2):105–119.
    [85]赵振华,周玲棣.我国某些富碱侵入岩的稀土元素地球化学[J].中国科学(D辑),1994,24(10):1109–1120.
    [86] Andersen,T. Correction of common lead in U-Pb analyses that do not report204Pb[J].Chemical Geology,2002,192:59–79.
    [87] Bowen,N.L.The evolution of igneous rocks,Princeton, New Jersey, Princeton[M]. UniversityPress,1976.
    [88] Boynton, W.V.,1984. Geochemistry of the rare earth elements: meteorite studies. In:Henderson, P.(Ed.), Rare Earth Element Geochemistry. Developments in Geochemistry.Elsevier, Amsterdam–New York,63–l14.
    [89] Castro,A.,Moreno-Ventas,I., and de la Rosa,J.D. H-type (Hybrid) granitoids: a proposedrevision of the granite-type classification and nomenclature[J]. Earth Science Reuiews,1991,31:237–253.
    [90] Chappell,B.W.Aluminium saturation in I-and S-type granites and the characterization offractionated haplogranites[J]. Lithos,1999,46:535–551.
    [91] Depaolo,D.J.A neodymium and strontium isotopic study of the Mesozoic calc-alkalinegranitic batholiths of the Sierra Nevada and Peninsular Ranges,California[J].Journal ofGeophysical Research,1981,86(B11):10470–10488.
    [92] Eby,G.N. Mount Johnson, Quebec:An example of silicate liquid immiscibility?[J].Geology,1979,7:491–494.
    [93] Griffin,W.L.,Wang, X.,Jackson,S.E.,et al.Zircon geochemistry and magma mixing,SEChina:In-si-tu analysis of Hf isotopes,Tonglu and Pingtan igneous complexes[J].Lithos,2002,61:237–269.
    [94] Guo,F.,Fan,W.M.,Gao,X.F., et al. Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks inNE China:Constrainrts on tectonic framework and Phanerozoic crustalgrowth[J].Lithos,2010,120:563-578.
    [95] Isozali,Y. Jurasswic accretion tectonics of Japan [J]. The Island Arc.,1997,6:25–51
    [96] Jahn,B.M., Wu,F.Y and Chen,B. Massive granitoid generation in Central Asia:Nd isotopeevidence and implication for continental growth in the Phanerozoic Episodes[J].2000,23(2):82–92.
    [97]Jahn,B.M., Wu,F.Y and Hong,D.W. Important crustal gruwth in the Phanerozoic: isotopicevidence of granitoids from east-central Asia[J]. Journal of Earth System Science,2000,109:5–20.
    [98] Jahn,B.M., Wu,F.Y, Lo,C.H., et al. Crust-mantle interaction induced by deep subduction ofthe continental crust: geochemical and Sr-Nd isotopic evidence from post-collisionalmafic–ultramafic intrusions of the northern Dabie complex, central China[J].ChemicalGeology,1999,157(1-2):119–146.
    [99] Li,X.H.,Liang, X.R.,Sun,M.,et al.Precise206Pb/238U age determination on zircons by laserablation microprobe-inductively coupled plasma-mass spectrometry using continuous linearablation[J].Chemical Geology,2001,175:209–219.
    [100] Loiselle,M.C., and Wones, D.R.Characteristics and origin of anorogenic granites [J].Geological Society of America Abstracts with Programs,1979,11:468.
    [101] Pankhurst,R.J., Hole,M.J. and Brook,M.Isotope evidence for the origin of Andean granites[J].Earth and Environmental Science Transactions of the Royal Society ofEdinburgh,1988,79:123-133.
    [102] Philotts,A.R. Silicate liquid immiscibility:its probable extent and petrogeneticsignificance[J]. American Journal of Science,1976,276:1147–1177.
    [103] Pitcher,W.S. The Nature and Origin of Granite[M]. London:Blackie, Glasgow,1993.
    [104] Sun,S.S. and McDonough,W.F., Chmical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes. In: Saunder A D and Norry M J. ed.,Magmatism in Ocean Basins[J]. Geological Special publication,1989,(44):313–345.
    [105] Taylor,S.R. and Mclennan,S.M. The Continental Crust: Its Composition and Evolution[M].Blackwell Scientific Publish,1985.
    [106] Thiéblemont,D.,Tegyey,M.,1994.Une discrimination géochimique desroches différenciées té moin de la diversit é d’ origine et de situation tectonique des magmascalco-alcalins.Comptes Rendusde l’Académiedes Sciences Paris,319:87–94.
    [107] White,A.J.R. and Chappell,B.W.,1977.超变质作用和花岗岩类的成因.尹积勋译.见:花岗岩的成因,地质部宜昌地质矿产研究所,1981:3–14
    [108] Wilde,S.A., Wu,F.Y and Zhang,X.Z., Late Pan-African magmatism in northeastern China:SHRIMP U-Pb zircon evidence from granitoids in the Jiamusi Massif[J].PrecambrianResearch,2003,122(1-4):311–327.
    [109] Wu,F.Y, Jahn,B.M., Wilde, S.A., et al. Phanerozoic crustal growth:U-Pb and Sr-Ndisotopic evidence from the granites in northeatern China[J]. Tectonophysics,2000,328,89–113.
    [110] Wu,F.Y, Sun,D.Y., Li,H.M., et al.The nature of basement beneath the Songliao Basin in NEChina: Geocheical and isotopic constraints[J]. Physics ang Chemistry of Earth,2001,26(9-10):793–803.
    [111] Wu,F.Y,Jahn,B.M.,Wilde,S.A.,et al.Highly fractionated I-type granites in NE China(I):Geochronology and petrogenesis[J].Lithos,2003a,66:241–273.
    [112] Wu,F.Y,Jahn,B.M.,Wilde,S.A.,et al. Highly fractionated I-type granites in NEChina(II):Isotopic geochemistry and implications for crustal growth in thePhanerozoic[J].Lithos,2003b,67:191–204.
    [113] Wu,F.Y,Sun,D.Y.,Ge,W.C., et al. Geochronology of the Phanerozoic granitoids innortheastern China[J]. Journal of Asian Earth Sciences,2011,41:1–30.
    [114] Wu,F.Y,Sun,D.Y.,Jahn,B.M.,et al.A Jurassic garnet-bearing granitic pluton from NE Chinashowing tetrad REE patterns [J].Journal of Asian Earth Sciences,2004,23:731–744.
    [115] Wu,F.Y,Sun,D.Y.,Li,H.M., et al.. A-type granites in northeastern China: age andgeochemical constraints on their petrogenesis[J].Chemical Geology,2002,187:143–173.
    [116] Wu,F.Y.,Yang,J.H.,Lo,C.H.,et al.. The Heilongjiang Group:A Jurassic accretionary complexin the Jiamusi Massif at the western Pacific margin of northeastern China [J].The Island Arc,2007,16(1):156–172.
    [117] Yang JH,Wu FY,Shao JA,et al.Constraints on the timing of uplift of the Yanshan Fold andThrust Belt,North China[J].Earth and Planetary Science Letters,2006,246:336–352.
    [118] Yang JH,Wu FY,Wilde SA,et al.Tracing magma mixing in granite genesis:In situ U-Pbdating and Hf isotope analysis of zircons[J].Contrib.Mineral.Petrol.,2007,153:177~190.
    [119] Zhang Y.B., Wu,F.Y.,Wilde S.A., et al. Zircon U-Pb ages and tectonic implications of ‘EarlyPaleozoic’ granitoids at Yanbian, Jilin Province, northeast China[J]. Island Arc,2004,13:484–505.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700