用户名: 密码: 验证码:
黑龙江松江Cu-W-Zn多金属矿床特征及成矿条件
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松江Cu-W-Zn多金属矿床发现较早,目前还在开采,主要以Cu为主,现在面临着资源危机的困境,因此加强对该区深部及周边的成矿预测具有非常重要的意义。
     研究区位于黑龙江宾县境内,大地构造位置上处于小兴安岭-松嫩地块滨东隆起带东南缘玉泉断陷内,夹于松嫩盆地和伊春-延寿造山带之间。区域内广泛分布二叠系,岩浆侵入活动频繁而强烈,印支晚期和燕山中期的中酸性-酸性侵入岩侵入二叠系碳酸盐地层,使得该区大量分布矽卡岩;构造上主要发育NE向复式背斜及向斜,NE向挤压-剪切断层和NW向拉张断层。以上的地质背景使得区内很多矿床(矿点)出现在NE向复背斜与NW向断裂的交切部位,其中就包括松江Cu-W-Zn多金属矿床。
     松江Cu-W-Zn多金属矽卡岩型矿床的概要性研究和总结被许多学者在文献和著作中提及,但是研究资料较老,矿床特征认识深度不够,地球化学资料不够丰富及缺乏具体讨论,使得对成矿条件、找矿方向等方面的研究相对缺少较详细的依据。本论文从成矿地质背景分析入手,深入研究矿床地质特征、地球化学特征、成矿地质条件及其控矿机制等,明确矿床成因,综合研究分析以期对矿床周边具有相似地质背景地区的找矿指明方向。
Songjiang Cu-W-Zn deposit is located in bin county, Heilongjiang Province,tectonically in Yuquan faulted basin of the southeastern margin of Xiao Xing'anrange-Songnen massif uplift belt which trapped in east of Songnen basin and west ofYichun orogenic belt. This region is an important mineral ore province in China.However, it has convenient transportation and four distinct seasons. It’s suitable tocarry out geological work in Summer and Autumn because of cold and dry weather inwinter that often covered with snow. Besides, it has dense forest cover and excellenteconomic development. The main industry is agriculture and forestry, rich in mineralresources and mining industry is developed.
     The research mainly works on geological background, geochemistry, physicaland chemical environment and Metallogenic Conditions of Songjiang Cu-W-Znpolymetallic deposit, combined of all aspect of analysis and studies about typicalskarn deposits home and abroad, fingers out genetic types and discusses the origin ofore-forming metals and metallogenic mechanism. Base on all above, comprehensiveregional geophysical and geochemical data in order to evaluate the similarmetallogenic areas’s prospecting surrounding the deposit.
     Strata exposed in the region consist of Devonian, Permian, Jurassic, lowerPaleogene and wide distributed Quaternary. According to the lithology, formation andgeochemical characteristics analysis, the metallogenetic favorable strata are mainlylower Triassic Jiaojietun group, Tumenling group and middle Jurassic Taiantun group.Technically, the deposit has been found48Cu-Zn ore bodies that No.8orebody is thelargest and followed by No.17orebody,15W ore bodies that are all unexposed andNo.51orebody is the largest,21small.Mo ore bodies that overlapping in W orebodies.
     Structure in the region mainly formed into series of NE trending structural sytemincluding fold belt, compressive and shear compressive fracture zones during the latePaleozoic Hercynian movements that is squeezed from NW and SE direction. The Songjiang deposit is hosted near the contact zone between granodiorite and Jiaojietungroup and Tumen group wall rock, control by Pinshan-Quanxiao complex anticline.
     The deposit is mainly divided into Cu-Zn orebody and W-Mo orebody. It’smineralization mainly occurs as Automorphic-hypautomorphic granular texturemetasomatic dissolution texture grid texture and disseminated structure, net veinedstructure, crumb structure and banded structure. Ore mineral assemblage is relativelycomplex, mostly pyrite, bornite, sphalerite, galena, pyrite, magnetite, magnetic pyrite,scheelite, slightly chalcocite, tetrahedrite, molybdenite, marcasite, arsenopyrite,bismuth, copper, lead and so on. Secondary assemblage is malachite, azurite,chalcocite and so on. Gangue assemblage mostly is garnet and diopside, mainly ishedenbergite, wollastonite, tremolite, idocrase, scapolite and actinolite, slightly isbiotite, chlorite, quartz and calcite. Alteration consists of mainly is skarnized,silicification, carbonation, sericitization, feldspathization, chloritization, epidotizationand so on, among which skarnized, silicification, carbonation, sericitization areclosely associated with mineralization.
     Songjiang deposit has typical characteristics of contact metasomatic genesis,specifically divided into diorite-skarn type deposits. The geochemical analysisindicates that granodiorite is closely related to mineralization, is the origin of heat andprovides mineral resource, and belong to peraluminous calc-alkaline series.Granodiorite, skarn and wall marble has strong comparability in rhondrite-normalizedREE patterns and trace element spider patterns by normalized against primitivemantle, which could be use to analysis the orgin of ore element. The deposit has anobvious mineralizing zonation from Granodiorite to wall rocks. Thechondrite-normalized REE patterns of Granodiorite, skarn and marble show a greatcommparability. However, the W and Mo elements mainly originate from granodiorite,and the Pb elements mainly come from carbonate. While the Cu, Zn elements mayoriginate from both, but the Cu elements tend to come from the latter more, the Znelements tend to come from the former more. This can explain the obviously mineralzonation from the granodiorite to carbonate:Mo-W, Fe-Cu, Cu-Pb-Zn and Pb-Znmineralization in Songjiang polymetallic deposit.
     Results from geochemical analysis indicate that the deposit formationenvironment is an active continental margin. REE chondrite-normalized distributioncurve is right tilting, implying the strong fracturation of LEE and extremely depletedin HEE. Trace element analysis shows the enrichment large ion lithophile elements (LILE), depleted in Nb、Ta、REE high field strength elements (HFSE), inferring atypical island arc and active continental marginal characteristics.
     The granodiorite dating results indicates15measuring point of zirconage206Pb/238U age values ranged from178±2-191±2Ma, the206Pb/238U weighted meanage should be184±2Ma(MSWD=6.4), representing the formation age ofgranodiorite.According to the dating results, mineralization and intrusion of thedeposit formed round1.8Ga.
     Combined with ore-forming geological background, geology and geochemicalcharacteristics, we inferred ore forming process of the Songjiang Cu-W-Znpolymetallic deposit that late Indosinian movement (227-175Ma) in LateTriassic-early Jurassic, the ancient Asia tectonic belt begain to switching Pacifictectonic belt, extension is transferred to extrusion of tectonic environment, the easternPacific plate Jia Musi-Khanka block was subducted and collided in the area to formeda series of structural fracture, which at the same time to erupt lots of intense magmaactivitives and mineralization. The Songjiang Cu-W-Zn polymetallic deposit was theresult and was the specific mineralization model of the tectonic environment situation.
     Study the specific characteristics, to integrate geophysical with geochemical dataof the deposit, particularly to study on the1:50000area stream sediment surveyresults, we totally mark out8abnormal combinate areas in Songjiang region.Gong-08-Hs-8anomaly was reflected by existing deposit, and Gong-08-Hs-4anomalywas caused by ccurrent ore, and Gong-08-Hs-5, Gong-08-Hs-6, Gong-08-Hs-7maybe the undiscovered orebodies that to prospect in future in this target areas.
引文
[1] Anne-Sylvie Andre-Mayer,Jacques Leon Leroy,Laurent Bailly,Alain Chauvet,EricMarcoux,Luminita Grancea,Fernando Llosa,Juan Rosas. Boiling and vertical mineralizationzoning: a case study from the Apacheta low-sulfdation epithermal gold-silver deposit,southern Peru[J]. Mineralium Depos ita (2002)37:452-464
    [2] Bau Michael. REE mobility during hydrothermal and metamorphic fluid rock interaction andthe significance of the oxidation state of europium [J]. Chemical Geology,1991,93(3-4):219.
    [3] Boynton W V. Geochemistry of the rare earth elements: meterorite studies: In: HendersonP(ed),Rare earth element geochemistry[J]. Elservier,1984:63-114
    [4] Dengjun,Sunzhongshi,Wangqingfei,et al. Crust mantle structure and gold enrichmentmechanismof mantle fluid system[J].Chinese journal of geochemistry,2003,22(3):263-270.
    [5] Dengjun,Wangqingfei,Sunzhongshi. Origin of gold bearing fluid and its initiative localizationmechanism in Xiadian gold deposit,Shandong province[J].Chinese Journal of geochemistry.2002,21(3):282-288.
    [6] Einaudi M.T.,Meinert L.D.,and Newberry R.J. Skarn deposits [J]. Econ. Geol.,1981,75:317-391.
    [7] Fu-yuan Wu, Bor-ming Jahn, Simon A. Wilde et al. Highly fractionated I-type granites in NEChina (II): isotopic geochemistry and implications for crustal growth in the Phanerozoic[J].Lithos,2003,67:191-204
    [8] Hanson G N. Rare earth elements in petrogenetic studies of igneous systems [J].Ann. Rev.Earth&Planet Sci,1980,8:371.
    [9] Irber W. The lanthanide tetrad effect and its correlation with K/Rb,Eu/Eu*,Sr/Eu,Y/Ho,and Zr/Hf of evolving peraluminous granite suites[J]. Geochimica et Cosmochimica Acta,1999.63:489-508
    [10] Kelemen P B, Hangh j K,Greene A R. One view of the geochemistry of subduction-relatedmagmatic arcs,with an emphasis on primitive andesite and lower crust. Treat Geochem,2003,3:593-659
    [11] Rickwood PC. Boundary lines within petrologic diagrams which use oxides of major andminor elements[J]. Lithos,1989.22:247-263
    [12] Roberts M P,Clements J D.Origin of high-potassium,calc-alkaline,I-type granitoids[J].Geology,1993,21:825-825.
    [13] Sun SS, McDonough WF. Chemical and isotopic systematics of oceanic basalts:Imoplications for mantle composition and Processes[J]. Journal of the Geological SocietySpecial publications,1989.42:313-345
    [14]常印佛,刘学圭.关于层控式矽卡岩型矿床-以安徽省内下扬子坳陷中一些矿床为例[J].矿床地质,1983,2(1):11-19.
    [15]陈根文,夏斌,肖振宇等.浅成低温热液矿床特征及在我国的找矿方向[J].地质与资源,2001,10(3):165-171
    [16]陈文明,党泽发.论中国斑岩、矽卡岩型铜、钼矿床的形成与地壳演化的关系[J].大地构造与成矿学.1989,13(3):214-225.
    [17]陈学义.弓棚子白钨矿矿床赋存规律[J].黑龙江冶金地质,1980,(1):1-12.
    [18]陈毓川.矿床的成矿系列研究现状与趋势[J].地质与勘探,1997,33(1):21-25.
    [19]迟祥.松江铜锌矿床成矿规律及周边隐伏矿体的成矿预测[J].矿产与地质,1999,(04):204-207.
    [20]邓军,杨立强,丁式江等.矿源系统地质-地球化学例析[J].现代地质,2000,14(2):165-172.
    [21]郭文魁.中国接触交代型铜矿分布观律及成矿条件初步探讨[J].1957,8:1-6
    [22]韩振新,郝政平,侯敏.小兴安岭地区与加里东期花岗岩类有关的矿床成矿系列[J].矿床地质,1995,14(4):293-302
    [23]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].黑龙江人民出版社,2004
    [24]郝立波,戚长谋.地球化学原理[M].北京:地质出版社,2004.
    [25]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社.1993.
    [26]黑龙江省地质矿产局.区域地质志与区域矿产总结[M].2004.
    [27]侯敏,杜恒芳.小兴安岭南段-张广才岭成矿带主要金属矿床成矿系列的划分及区域成矿规律[J].黑龙江地质,1998,9(3):10-16
    [28]黄华盛.矽卡岩矿床的研究现状[J].地学前缘,1994,l(3):105-109
    [29]康永孚,李崇佑.中国钨矿床地质特征、类型及其分布[J].矿床地质.1991,10(1):214-22
    [30]李红阳,侯增谦.初论幔柱构造成矿体系[J].矿床地质,1998,17(3):247-255.
    [31]李黎明.接触交代型矿床接触带及岩浆上隆构造的力场分析[J].1988(05):8-10
    [32]林强,葛文春,孙德有.中国东北地区中生代火山岩的大地构造意义[J]. SCIENTIAGEOLOGICA SINICA,1998,33(2):129-139
    [33]凌其聪,刘丛强.层控夕卡岩型矿床成矿系统的元素活动性及质量迁移-以铜陵冬瓜山铜矿床为例[J].矿物学报,2003,23(1):37-44.
    [34]刘建峰.小兴安岭东部早古生代花岗岩地球化学特征及其构造意义[D].硕士论文.2006.吉林大学
    [35]龙汉春.从实例看斑岩-矽卡岩-热液-层控成矿模式及其研究意义[J].大地构造与成矿学.1983,7(2):110-116
    [36]毛德宝,赵更新,席忠等. Cu-Mo-Pb-Zn-Ag-Au成矿系统的地质特征及其研究意义[J].地质调查与研究,2003,26(4):213-220.
    [37]祁进平,陈衍景,Franco Pirajno.东北地区浅成低温热液矿床的地质特征和构造背景[J].矿物岩石,2005,25(2):47-59.
    [38]邱家骧,林景仟.岩石化学[M].北京:地质出版社,1991.
    [39]邱检生,王德滋,任启江.山东厪南金场矽卡岩型金铜矿床地质地球化学征及矿床成因[J].矿床地质.1996,4:330-340
    [40]任云生,牛军平,雷恩等.吉林四平三家子钨矿床地质与地球化学特征及成因[J].吉林大学学报(地球科学版),2010,(02):315-320.
    [41]芮宗瑶,王龙生,王义天.成矿系统的始态、终态及其过程[J].矿床地质,2002,21(2):137-148
    [42]孙德有,吴福元,高山.小兴安岭东部清水岩体的锆石激光U-Pb年龄测定[J].地球学报,2004,25(2):213-218.
    [43]孙德有,吴福元,高山.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘,2005,12(2):263-275
    [44]孙加鹏,张兴洲,杨宝俊.张广才岭岩石圈结构及盆岭构造[J].长春科技大学学报,1999,29(1):25-28
    [45]谭成印.黑龙江省主要金属矿产构造-成矿系统基本特征[D].中国地质大学(北京),博士,2009:221-222.
    [46]王学平,魏民,杨丽沛等.中国接触交代型铜矿床品位、吨位模型[J].1999,18(1):67-70
    [47]王中刚,于学元,赵振华等.稀土元素地球化学[M].北京:科学出版社,1989,223-224
    [48]吴国学,刘连登.浅成热液金矿研究综述[J].世界地质,2001,3(20):114-161
    [49]杨坤光,杨巍然.碰撞后的造山过程及造山带巨量花岗岩的成因[J].地质科技情报.1997,4:16-22
    [50]杨学明等译,(英) Hugh R.Rollison著.岩石地球化学[M].中国科学技术大学出版社,2000:40-166.
    [51]杨言辰等.小兴安岭-张广才岭成矿带斑岩型钼矿床岩石地球化学特征及其年代学研究[J].岩石学报,2012,28(02):379-389
    [52]姚凤良,孙丰月等.矿床学教程[M].北京:地质出版社,2006:1-254.
    [53]叶松青,李守义.矿产勘查学[M].北京:地质出版社,2011.
    [54]尹冰川,冉清昌.小兴安岭-张广才岭地区区域成矿演化[J].矿床地质,1997,16(3):237-242
    [55]应汉龙.浅成低温热液金矿床的全球背景[J].贵金属地质,1999,8(4):241-250.
    [56]翟裕生.矽卡岩矿床研究的若干问题[J].矿产地质,1985:46-53.
    [57]翟裕生.论成矿系统[J].地学前缘,1999,6(1):13-28.
    [58]翟裕生,彭润民,邓军等.成矿系统分析与新类型矿床预测[J].地学前缘,2000,7(1):123-132.
    [59]翟裕生.成矿系统研究与找矿[J].地质调查与研究,2003,26(2):65-135.
    [60]翟裕生,邓军,王建平等.深部找矿研究问题[J].矿床地质,2004,23(2):142-149.
    [61]张乾,潘家永.接触交代夕卡岩型多金属矿床铅源新认识[J].地质论评,1994,40(4):330-338
    [62]张守林.矽卡岩型铜矿成矿地质环境、成矿地质特征及找矿标志[J].矿产与地质,2001,15(85):315-319.
    [63]赵斌.中国主要矽卡岩及矽卡岩型矿床[M].科学出版社,1989,12:214-225.
    [64]赵明玉.张广才岭成矿带铁力-玉泉有色金属、贵金属矿带成矿特征分析[J].矿产与地质,2000,14(78):225-229
    [65]赵鹏大,陈建平等.成矿多样性与矿床谱系[J].地球科学-中国地质大学学报,2001,26(2):111-117.
    [66]赵一鸣等.中国矽卡岩矿床基本地质特征[J].中国地质科学院院报,1986:59-83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700