用户名: 密码: 验证码:
西藏甲玛铜多金属矿床角岩岩石学与其蚀变—矿化演进序列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏甲玛铜多金属矿床位于冈底斯-念青唐古拉地块中部,探明控制资源储量达铜当量1500多万吨。以野外第一手的精细岩心地质编录(超过3万米)为基础,采用岩、矿石光薄片显微鉴定、电子探针分析、主量元素分析、黑云母LA-ICP-MS微量元素原位微区分析、黑云母红外光谱分析,开展岩石学、矿石学和岩石地球化学分析研究,查明了212个钻孔角岩的厚度、Cu、Mo、Au、Ag、 Pb、Zn的元素含量,进行了角岩岩石学和角岩蚀变一矿化演进序列的研究。
     研究表明,角岩岩石类型划分为成矿前角岩与成矿期角岩,多属钠长绿帘角岩相,矿物共生组合主要为钠长石+黑云母+石英。成矿前角岩以细晶化为主要特征,大多没有出现独立晶形的结晶矿物,其岩性主要为原生黑云母角岩(具典型斑点状、条带状构造)、长英质角岩;成矿期角岩以含有独立晶形的热液结晶矿物为特征,其岩性主要为硅化角岩、热液黑云母-绿泥石角岩等。参照地层接触关系、岩石组构特征,通过岩石化学和地球化学特征进行综合对比,确定了角岩的原岩为林布宗组砂板岩和碳质板岩。
     通过0-40勘探线各钻孔角岩与角岩型矿体厚度等值线图,与各钻孔角岩内Cu、Mo元素丰度浓集中心综合对比,以及最新的地质勘探发现,对隐伏斑岩岩体进行了定位预测。
     角岩中黑云母按其产状可区分为原生黑云母和热液黑云母,原生黑云母和热液黑云母的含铜性存在显著的差异,原生黑云母基本不含铜,热液黑云母则普遍含有Cu,表现出Cu元素的富集,而Mo元素在原生黑云母和热液黑云母中普遍存在,并不具有选择性赋存的特征。角岩中的热液黑云母根据蚀变矿物共生组合与蚀变产状可以分为A类、B类、C类和D类:A类黑云母产出于石英脉中,矿物共生组合为石英+黑云母(Q+Bi);B类黑云母产出于石英脉中,矿物共生组合为石英+黑云母+绿泥石(Q+Bi+Chl);C类黑云母产出于石英脉中,矿物共生组合为石英+黑云母+高岭石(Q+Bi+Kln);D类黑云母产出于面型的热液黑云母—伴生绿泥石化蚀变中,矿物伴生组合为黑云母—绿泥石(Bi-Chl),指示钾化蚀变或退变质型钾化蚀变。A类、C类、D类黑云母可较好指示角岩型Cu矿化,四类角岩热液黑云母的原位微区Cu、Pb、Zn元素含量与相应孔深岩矿石Cu、Pb、Zn元素含量呈现正相关关系。
     角岩内发育的蚀变和矿化空间演进具有如下规律,从下到上呈现了面型钾化+黄铜矿矿化→退变质型钾化+黄铜矿化→面型绿泥石化+含绿泥石石英脉+黄铜矿化→脉状硅化(石英+黄铜矿→石英+黄铜矿+辉钼矿→石英+辉钼矿);成矿时间上从早到晚表现为,早期大规模的富酸性全岩浸透性硅质热液交代作用(引起自组织结构)伴随黄铁矿化→钾硅酸盐矿物黑云母的大量形成伴随黄铜矿化、黄铁矿化→钾硅酸盐矿物的水解退化变质伴随黄铜矿化、黄铁矿化→热液绿泥石蚀变大量形成伴随黄铜矿化、黄铁矿化→局部团斑状硅化作用伴随黄铜矿化→脉状硅化作用,形成石英+黄铜矿→石英+黄铜矿+辉钼矿→石英+辉钼矿。早期形成的辉钼矿形成于石英脉脉壁,中晚期的形成的辉钼矿赋存于石英脉中,晚期形成的辉钼矿生长于石英脉脉中的晶洞构造中;在任一阶段矿化演化过程中,辉钼矿总是首先以微细稀疏浸染状产出,随后以连续稠密浸染状产出,最后以片状自形晶产出。
     精细岩心地质编录成果显示,通过单块岩心手标本,可以清晰的识别出角岩或角岩型矿石从面型蚀变到脉型蚀变,从蚀变矿物共(伴)生组合到矿物产出状态,判别出各类脉体的穿插关系及其形成的时间先后,进而可以指示蚀变类型、矿化物质组成及其组构演进序列。
     综上所述,通过对甲玛铜多金属矿床角岩与角岩型矿化特征及演化的研究,解决了甲玛铜多金属矿床角岩岩石类型与成因意义、黑云母含矿性及其成矿指示、角岩蚀变—矿化演进序列问题,预测了深部隐伏的含矿斑岩体,同时解释了甲玛矿床角岩型矿体形成了巨量金属富集的成因。
The Jiama Copper polymetallic deposit is located in the central part of the Gangdese-Nyainqentanglha terrane. Metal resources of EQCu exceeds14,000,000t. This study has discussed on the petrology and alteration-mineralization evolution rhythm of hornfels based on the basic geological mapping, core logging, thin section description and microanalyses and also combined with electron microprobe analysis, major elements analysis, trace element LA-ICP-MS in situ analysis of biotite, infrared spectrography analysis of biotite and contouring of hornfels thickness and Cu, Mo, Au, Ag, Pb, Zn mineralization element content formed in them by212drilling holes.
     Research shows that the hornfels thermal metamorphism is well developed in Jiama polymetallic copper deposit. Rock types of hornfels can be divided into the pre-oreforming hornfels and the syn-oreforming ones, belonging to AEH Face with the main mineral paragenetic association—albite+biotite+quartz. The pre-oreforming hornfels consist of protogenic biotite hornfels with typical mottled and banded structure, and felsic hornfels, characterized by refining-grain, most phenocryst mineral without independent morphology. The syn-oreforming hornfels include silicified hornfels and hydrothermal biotite-chlorite hornfels, characte-rized by phenocryst mineral formed in good crystal habit. Based on the stratum contact relationship and the rock fabric, protoliths of hornfels are inferred as sandy slates and carbonaceous slates by comparision for features of petrochemistry and geochemistry.
     On condition that hornfels are natural trace material for thermal metamorphism, the author contours the thickness of hornfels and mineralization formed in them, and contours the concentration center of abundance of Cu and Mo, which helps to indicate the location of the concealed porphyry with the latest exploration results.
     The biotite from hornfels can be distinguished into protogenic and hydrothermal biotite.. Compared with protogenic biotite, there is more Cu enriched in hydrothermal biotite. But Mo spread in two sorts of biotite diffusely, and don't have characteristic of selective occurrence. Hydrothermal biotite from hornfels can be divided into A, B, C and D type according paragenetic association of alteration minerals and alteration attitude. A type hornfels hydrothermal biotite occurs in quartz vein with the main alteration mineral paragenetic association quartz+biotite (Q+Bi), B type biotite in quartz vein with main alteration mineral paragenetic association quartz+biotite+chlorite (Q+Bi+Chl), C type biotite in quartz vein with main alteration mineral paragenetic association quartz+biotite+kaolinite (Q+Bi+Kin), and D type biotite grows in surface hydrothermal biotite-chlorite alteration with alteration mineral accompanying combination biotite-hlorite (Bi-Chl) indicating potassic alteration or retrometamorphism-potassic alteration. A, C and D type hornfels hydrothermal biotite can indicate Cu mineralization in hornfels well. The Cu, Pb and Zn contents from rocks have positive correlation with that in hornfels hydrothermal biotite.
     Alteration-mineralization evolution rhythm of hornfels shows surface potassic alteration with chalcopyrite mineralization→retrometamorphism potassic alteration with chalcopyrite mineralization→surface chloritization+chlorite in quartz vein with chalcopyrite mineralization→nervation silicification (quartz+chalcopyrite→quartz+chalcopyrite+molybdenite→quartz+molybdenite) from the bottom up in space; and early stage large-scale rich acid siliceous hydrothermal solution total-rock metasomatic metamorphism (giving rise to good self-organization construction) with pyrite→teeming of potassium-rich silicate mineral biotite with chalcopyrite and pyrite forming→hydrolyzation retrometamorphism of potassium-rich silicate mineral with chalcopyrite and pyrite forming→teeming of hydrothermal chloritization with chalcopyrite and pyrite→partial crumb silication with chalcopyrite→nervation silication (quartz+chalcopyrite→quartz+chalcopyrite+molybdenite→quartz+molybdenite) from early to late. The early molybdenite grows along vein wall of quartz vein, and the later one occurs in the centre of quartz vein, and molybdenite in the end appears in the miarolitic structure of quartz vein. In any stage, molybdenite always displays dissemination formation in the early, then becomes successive dense dissemination, and changes into schistose texture self-structured crystal in the end.
     The meticulous core logging shows single core hand specimen indicates information from surface alteration to nervation alteration, from alteration mineral paragenetic association or accompanying combination to occurence state, by which can help to distinguish intercalated relationship and formation order of all kinds of veins, and further indicate alteration-mineralization evolution rhythm of hornfels.
     The study on Petrology and alteration-mineralization evolution rhythm of hornfels in Jiama deposit has solved problems as rock types and genesis significance of hornfels, ore-bearing potential of biotites and their mineralization signatures, and alteration-mineralization evolution rhythm of hornfels, which help to indicate the location of the concealed porphyry, and to explain genesis of accumulation of massive amount mineralization element in hornfels-type orebody.
引文
Alberto R, Mario T, Emma S, Giancarlo S and Paul M H.2003. Cordierite-anorthoclase Hornfels Xenoliths In Lavas of the Stromboli Volcano (Aeolian Islands, Southern Italy):An Exanple of Fast Cooled Contact Metamorphic Aureole[J]. European Journal of Mine-ralogy,15(4): 665-679.
    Allaby A and Allaby M.1990. The concise oxford dictionary of earth sciences[M]. Oxford: Oxford University Press,1-432.
    Banks N G.1974. Distribution of copper in biotite and biotite alteration products in intrusive rocks near two Arizona porphyry copper deposits[J]. US Geol. Surv.,2:195-211.
    Bernardo C, Giuseppe C and Umberto R.2003. Hydrogen deficiency in Ti-rich biotite from anatectic metapelites (El Joyazo, SE Spain):Crystal-chemical aspects and implications for high-temperature petrogenesis[J]. American Mineralogist,88:583-595.
    Bodnar R J.1995. Fluid-inclusion evidence for a magmatic source for metals in porphyry copper deposits[A]. In:J. F. H. Thompson, ed. Magmas, fluids, and ore deposits[C]. Short Course Handbook,23 139-152.
    Christopher I C and Yau Y.1985. Hydroxyapophyllite in hornfels beneath the Duluth complex northeastern Minnesota[J]. Canadian Mineralogist,23:489-490.
    Clarke D B.1992. Granitoid Rocks. London:Chapman & Hall,1-283.
    Cline J S and Vanko D A. Magmatically generated saline brines related to molybdenum at Questa, New Mexico, USA[A]. Thompson J F H. Magmas, Fluids and Ore Deposits[C]. Mineralogical association of Canada short course series,23. Mineralogical association of Canada,1995.153-174.
    Cook S S.1988. Supergene copper mineralization at the Lakeshore mine, Pinal County, Arizona[J]. Economic Geology,83(2):297-309.
    Daczko N R, Stevenson J A, Clarke G L and Klepeis K A.2002. Successive hydration and dehydration of a high-P mafic hornfels involving clinopyroxene-kyanite symplectites, Mt Daniel, Fiordland, New Zealand[J]. J. metamorphic Geol.,20:669-682.
    Dickey J S, R. J and Obata M,1974. Graphitic hornfels dikes in the Ronda high-temperature peridotite massif[J]. American Mineraloist,59:1183-1189.
    Earley III D, Dyar M D, Ilton E S and Granthem A A.1995. The influence of structural fluorine on biotite oxidation in copper-bearing, aqueous solutions at low temperatures and pressures[J]. Geochimica et Cosmochimica Acta,59(12):2423-2433.
    Fiebig J and Hoefs J.2002. Hydrothermal alteration of biotite and plagioclase as inferred from intragranular oxygen isotope-and cation-distribution patterns[J]. Eur. J. Minearl.,14:49-60.
    Foster M D.1960. Interpretation of the composition of trioctahedral micas[J]. U. S. Geol. Survey, Prof. Paper,354:11-49.
    Gustafson L B and Hunt J P.1975, The porphyry copper deposit at El Salvador, Chile [J]. Econ Geol,70:857-912.
    Gustafson L B and Quiroga J.1995, Patterns of mineralization and alteration below the porphyry copper orebody at El Salvador, Chile[J]. Econ Geol,90:2-16.
    Harris A C and Golding S D.2002. New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphyry Cu deposits[J]. Geology,30:335-338.
    Harris A C, Kamenetsky V S, White N C, Achterbergh E V, Ryan C G.2003. Melt inclusions in veins:Linking magmas and porphyry Cu deposits. Science,302:2109-2111.
    Heberlein D R, Fletcher W K and Godwin C I. Lithogeochemistry of hypogene, supergene and leached cap samples, Berg porphyry copper deposit, British Columbia. Journal of Geochemistry Exploration,1983,19:595-609.
    Hendry D A F, Chivas A R and Reed S J B. Geochemical evidence foe magmatic fluids in porphyry copper mineralization, Part Ⅱ, Ion-probe analysis of Cu contents of mafic minerals, Koloula igneous complex. Contributions to Mineralogy and Petrology,78(4) 404-412.
    Jacobs D C and Parry W T.1979. Geochemistry of biotite in the Santa Rita porphyry copper deposit, New Mexico[J]. Economic Geology,74:860-887.
    Kanisawa S.1977. Chemical characteristics of biotite and hornblende of the late Mesozoic to early Tertiary granitic rocks in Japan[J]. Proc.7th CPPP Meeting at Toyama,194-202.
    Kathryn Gillis.2007. Oceanic hornfels:Records of heat transport near axial magma chamber roofs. Goldschmidt Conference Abstracts, A325.
    Kesler S E, Issigonis M J and Brownlow A H.1975. Geochemistry of biotites from mineralized and barren intrusive systems[J]. Economic Geology,70(4):559-567.
    Kesler S E.1972. Copper, molybdenum and gold abundances in porphyry copper deposits[J]. Scientific communications.
    Landtwing M R, Pettke T, Halter W E, Heinrich C A, Redmond P B, Einaudi M T and Kunze K. 2005. Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids:The Bingham porphyry[J]. Earth and Planetary Science Letters,235:229-243.
    Lowell. J. D. and Guilbert. J. M.1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J]. Economic Geology,65(4):373-408.
    Michard A.1989. Rare earth element systematics in hydrothermal fluids[J]. Geochimica et Cosmochimica Acta,53:745-750.
    Nachit H, Ibhi A, Abia E H and Ohoud M B.2005. Discrimination entre biotites magmatiques primaires, biotites reequilibrees et biotites neoformees[J]. Comptes Rendus Geosciences, 337(16):1415-1420.
    Ohmoto H and Rye R O.1979. Isotopes of sulfur and carbon In Barnes H L(ed),Geochemistry of hydrothermal ore deposits[M]. John Wiley&Sons,New York.509-567.
    P. R. Subramanlan and D. E. Laughlln.1990. The Cu-Mo(Copper-Molybdenum) System [J]. Bulletin of Alloy Phase Diagrams,11(2):169-172.
    Parry W T and Nackowski M P. Copper lead and zinc in biotites from Basin and Range quartz monzonites[J]. Economic Geology,58(7):1126-1144.
    Pudack C, Halter W E, Heinrich C A and Pettke T.2009. Evolution of Magmatic Vapor to Gold-Rich Epithermal Liquid:The Porphyry to Epithermal Transition at Nevados de Famatina, Northwest Argentina[J]. Economic Geology,104(4):449-477.
    Rick D. Cardwell, James B. Saddler and Lynwood S. Smith.1971. Hematological effects of dennison tagging upon juvenile pink salmon (Oncorhynchusgorbuscha)[J]. omparative Biochemistry and Physiology Part A:Physiology,38(3):497-508.
    Shand S J.1927. On the Relations between Silica, Alumina, and the Bases in Eruptive Rocks, considered as a means of classification[J]. Geological Magazine,64:446-449.
    Sillitoe R H.2010. Porphyry copper systems[J]. Econimic Geology,105:3-41.
    Sillitoe R H.1998. Major regional factors favouring large size, hirh hypogene grade, elevated gold content and supergene oxidation and enrichment of porphyry copper deposits[A]. PORTER T M. Porphyry and Hydrothermal Copper and Gold Deposits—A Global Perspective[C]. Perth, Adelaide:Australian Mineral Foundation. PGC Publishing,1998.49-60.
    Simonen A.1953. Stratigraphy and sedimentation of the Svecofennidic, early Archean supracrustal rocks in southwestern Finland[J]. Bull. Comm. Geol. Finland,160:1-64.
    Stone D.2000. Temperature and pressure variations in suites of Archean felsic plutonic rocks, Berens river area, northwest superior province, Ontario, Cananda[J]. The Canandian Mineralogist,38:455-470.
    Suzuki K, Yoshida H, Amano K and Yogo S.1996. CHIME dating of monazite from pelitic hornfels of the Kurihashi Granodiorite, Kitakami Mountains[J]. Japan Nagoya UNIV.: Journal Earth Planet. Sci..43:17-26.
    Taylor S R and Mclennan S M.1985. The continental crust; its composition and evolution; an examination of the geochemical record preserved in sedimentary rocks[M]. Blackwell, Oxford:1-312.
    Titley S R.1978. Copper, molybdenum, and gold content of some porphyry copper systems of the southwestern and western Pacific[J]. Economic Geology,73:977-981.
    Tolga O.2010. Geochemistry, mineralogy and genesis of the Ayazmant Fe-Cu skarn deposit in Ayvalik, (Balikesir), Turkey[J]. Ore Geology Reviews,37:175-201.
    Tosdal R M, Dilles J H and Cooke D R.2009. From Source to Sinks in Auriferous Magmatic-Hydrothermal Porphyry and Epithermal Deposits[J].Elements,5:289-295.
    Ulrich, T., Gunthur, D., and Heinrich, C.A.,2001, The evolution of a porphyry Cu-Au deposit, based on LA-ICP-MS analysis of fluid inclusions:Bajo de la Alumbrera, Argentina[J]. Econ Geol.,97:1889-1920.
    Yavuz F.2003 a. Evaluating micas in petrologic and metallogenic aspect:I-definitions and structure of the computer program MICA+[J]. Computers & Geosciences,29(10): 1203-1213.
    Yavuz F.2003b. Evaluating micas in petrologic and metallogenic aspect:Part Ⅱ—Applications using the computer program Mica+[J]. Computers & Geosciences,29(10):1215-1228.
    Zartman, R.E. and Doe, B.R.1981. Plumbotectonics—the model. Tectonophysics, vol.75: 135-162.
    #12
    陈德潜,陈刚.1990.实用稀土元素地球化学[M].北京:冶金工业出版社,1-268.
    邓刚,吴华,卢全敏.2004.东天山白山斑岩型钼矿床的地质特征及找矿标志[J].地质通报,23(11):32-1138.
    邓晋福.1978.硅线石角岩形成时变质反应的热力学计算[J].地球化学,3.235-241.
    杜光树,姚鹏,潘凤雏,粟登逵,李文彬,宁英毅.1998.喷流成因矽卡岩与成矿——以西藏甲玛铜金属矿床为例[M].成都:四川科学技术出版社,1-113.
    费光春,温春齐,王成松,吴鹏宇,温泉,周雄.2010a.西藏冈底斯东段墨竹工卡地区洞中拉辉绿玢岩锆石SHRIMP U-Pb定年及意义[J].地质通报,29(8):1138-1142.
    费光春,温春齐,王成松,周雄,吴鹏宇,温泉,周玉.2010b.西藏墨竹工卡县洞中拉铅锌矿床花岗斑岩锆石SHRIMPU-Pb定年[J].中国地质,37(2):470-476.
    冯孝良,管仕平,牟传龙,侯增谦,李胜荣.2001.西藏甲马铜多金属矿床的岩浆热液交代成因:地质与地球化学证据[J].地质地球化学,04.
    傅金宝.1981.斑岩铜矿中黑云母的化学组成特征[J].地质与勘探,9(1):16-19.
    高一鸣,陈毓川,唐菊兴,杜欣,李新法,高明,蔡志超.2009.西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义[J].地质学报,83(10):1436-1444.
    高一鸣,陈毓川,唐菊兴.2010.西藏沙让斑岩钼矿床锆石SHRIMP定年和角闪石Ar-Ar定年及其地质意义[J].矿床地质,29(2):323-331.
    龚福志,郑有业,张刚阳,屈文俊.2008.首次在冈底斯发现主碰撞期斑岩铜矿——来自西藏吉如斑岩铜矿辉钼矿Re-Os同位素年龄的证据[J].四川地质学报,28(4):296-299.
    贺同兴,卢良兆,李树勋,等.1980.变质岩岩石学[M].北京:地质出版社.
    洪大卫.华南花岗岩的黑云母和矿物相及其与矿化系列的关系.地质学报,1982,2:149-164.
    侯增谦,曲晓明,杨竹森,孟祥金,李振清,杨志明,郑绵平,郑有业,聂凤军,高永丰,江思宏,李光明.2006b.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):629-651.
    侯增谦,杨竹森,徐文艺,等.2006a.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,25(4):337-358.
    侯增谦.2004.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘,11(1):131-144.
    胡恭任,等.1999.赣中变质岩带的岩石学特征和原岩恢复[J].江西地质,13(3):163-167.
    胡正华,唐菊兴,丁枫,郑文宝,邓世林,杨毅,张志,王艺云,林彬,,丁帅.2011.西藏甲玛铜多金属矿富银矿体地质特征、银赋存状态及富集机理研究[J].地球学报,32(6):668-680.
    季克俭,吴学汉,张国柄.1989.热液矿床的矿源、水源和热源及矿床分布规律[M].北京:北京科学技术出版社.1-131.
    江博明,张宗清.1985.冀东太古代麻粒岩-片麻岩的稀土地球化学和岩石成因[J].中国地质科学院地质研究所所刊,13:4-37.
    蒋少涌,丁悌平,万德芳,魏菊英.1992.青城子矿区黑云母和石榴石的地球化学及变质作用的P-T条件探讨[J].地球学报,13(1):71-84.
    蒋振频,董永杰,喻建发,胡荣泉,吴水林.2007.相山铀矿田基底变质岩中角闪石榴(斜)黝帘石角岩的发现[J].铀矿地质,23(3):145-149.
    金章东,朱金初,李福春.1998.江西德兴铜厂斑岩铜矿床成矿金属物质的正岩浆来源[J].矿床地质,17(增刊),603-606.
    郎兴海,唐菊兴,王子正.2007.西藏冈底斯中段则莫多拉铜金矿床地质特征及找矿方向[J].地质与资源,16(1):29-33.
    郎兴海.2006.西藏雄村铜金矿床与洞嘎金矿床对比研究(硕士论文)[D].导师:唐菊兴.四川:成都理工大学.
    黎彤.1976.化学元素的地球丰度[J].地球化学,3:167-174.
    李光明,刘波,屈文俊,林方成,佘宏全,丰成友.2005a.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统—来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据[J].大地构造与成矿学,29(4):482-490.
    李光明,刘波,佘宏全,丰成友,屈文俊.2006.西藏冈底斯成矿带南缘喜马拉雅早期成矿作用——来自冲木达铜金矿床的Re-Os同位素年龄证据[J].地质通报,25(12):1481-1486.
    李光明,芮宗瑶,王高明,林方成,刘波,佘宏全,丰成友,屈文俊.2005b.西藏冈底斯成矿带甲马和知不拉铜多金属矿床的Re-Os同位素年龄及其意义[J].矿床地质,24(5):481-489.
    李鸿莉,毕献武,胡瑞忠,彭建堂,双燕,李兆丽,李晓敏,袁顺达.2007.芙蓉锡矿田骑田岭花岗岩黑云母矿物化学组成及其对锡成矿的指示意义[J].岩石学报,23(10):2605-2614.
    李金高,王全海,郑明华等.2001.西藏Sedex型矿床赋矿盆地性质对成矿元素的制约作用[J].沉积与特提斯地质,21(4):12-20.
    李磊.2010.西藏墨竹工卡县甲玛铜多金属矿床控矿构造研究(硕士论文)[D].导师:钟康惠.四川:成都理工大学.
    李曙光林树道.1989.弓长岭太古代条带状硅铁建造中长英质变质岩的原岩恢复及地层学意义[J].岩石学报,5(3):66-75.
    李永胜.2009.西藏甲玛铜多金属矿床地质特征及矿床成因探讨(硕士论文)[D].导师:唐菊兴.四川:成都理工大学.
    梁华英,谢应雯,张玉泉,Ian Campbell.2004.富钾碱性岩体形成演化对铜矿成矿制约——以马厂箐铜矿为例[J].自然科学进展,14(1):116-120.
    梁祥济,王福生,乔莉.1995.桂北雪峰期含锡黑云母花岗岩成因的见证[J].地球学报,16(1):55-68.
    林武,梁华英,张玉泉,谢应雯.2004.冈底斯铜矿带冲江含矿斑岩的岩石化学及锆石SHRIMP年龄特征[J].地球化学,33(6):585-592.
    林主清,陈斯盾,杨玲雅,揭育金.2002.福建省溪口组新祠角岩段的角岩(化)成因探讨[J].福建地质,4:246-251.
    刘彬,马昌前,刘园园,熊富浩.2010.鄂东南铜山口铜(钼)矿床黑云母矿物化学特征及其对岩石成因与成矿的指示[J].岩石矿物学杂志,29(2):151-165.
    刘英俊,曹励明,李兆麟,王鹤年,储同庆,张景荣.1984.元素地球化学[M].北京:科学出版社,1-548.
    刘增乾,徐宪,潘桂棠,等.1990.青藏高原大地构造与形成演化[M].北京:地质出版社.44-47.
    柳少波,王联魁.1995.侵入体中黑云母含铜性研究[J].地质科技情报,14(3):67-71.
    路凤香,桑隆康,邬金华,廖群安.2001.岩石学[M].北京:地质出版社,1-338.
    路远发.2004.Geokit:一个用VBA构建的地球化学工具软件包[J].地球化学,33(5):459-464.
    马建德,徐天波,敖颖峰,李祥才,张志伟,国铁成.2002.辽宁肖家营子铝多金属矿床地质特征及成因[J].桂林工学院学报,22(1):5-10.
    马文璞.1992.区域构造解析—方法理论和中国板块构造[M].北京:地质出版社.1-308.
    孟祥金,侯增谦,高永丰,黄卫,曲晓明,屈文俊.2003a.西藏冈底斯成矿带驱龙铜矿Re—Os年龄及成矿学意义[J].地质论评,49(6):660-666.
    孟祥金,侯增谦,高永丰,黄卫,曲晓明,屈文俊.2003b.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re—Os年龄证据[J].矿床地质,22(3):246-252.
    闵茂中,白南静.1990.地质测试样品采集及送测指南[M].北京:科学出版社.1-241.
    莫济海,梁华英,喻亨祥,陈勇,孙卫东.2008.西藏冲木达铜-金(钼)矿床黑云角闪二长花岗岩锆石U-Pb年龄及其意义[J].地球化学,37(3):206-212.
    莫济海,梁华英,喻亨祥,谢应雯,张玉泉.2006.冈底斯斑岩铜矿带冲江及驱龙含矿斑岩体锆石ELA-ICP-MS及SHRIMP定年对比研究[J].大地构造与成矿学,30(4):504-509.
    潘凤雏,邓军,姚鹏等.2002.西藏甲马铜多金属矿床矽卡岩的喷流成因[J].现代地质,16(4):360-364.
    彭惠娟,汪雄武,唐菊兴,秦志鹏,侯林,周云.2010.石英显微构造阴极发光特征研究——以西藏甲玛岩体为例[J].矿物岩石地球化学通报,29(3):279-283.
    秦克章,张连昌,丁奎首,许英霞,唐冬梅,徐兴旺,马天林,李光明.2009.东天山三岔口铜矿床类型、赋矿岩石成因与矿床矿物学特征[J].岩石学报,25(4):845-861.
    曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?[J].矿床地质,20(4):356-364.
    芮宗瑶,黄崇轲,齐国明,徐钰,张洪涛.1984.中国斑岩铜(钼)矿床[M].北京:地质出版社.1-350.
    芮宗瑶,李光明,张立生,王龙生.2004.西藏斑岩铜矿对重大地质事件的响应[J].地学前缘,11(1):145-152.
    邵克忠.1983.德兴斑岩铜矿矿床地质若干问题的商榷[J].河北地质学院学报,4:65-72.
    佘宏全,丰成友,,张德全,李光明,刘波,李进文.2006.西藏冈底斯铜矿带甲马夕卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J].岩石学报,22(3):689-696.
    佘宏全,丰成友,张德全.2005.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析[J].矿床地质,24(5):509-518.
    佘宏全,李光明,董英君,潘桂棠,李进文,张德全,丰成友.2009.西藏冈底斯多金属成矿带斑岩铜矿定位预测与资源潜力评价[J].矿床地质,28(6):803-814.
    申萍,沈远超,刘铁兵,张锐,王京彬,张云孝,孟磊,王丽娟,汪疆.2009.新疆包谷图斑岩型铜钼矿床容矿岩石及蚀变特征[J].岩石学报,25(4):777-792.
    唐菊兴,陈毓川,王登红,王成辉,许远平,屈文俊,黄卫,黄勇.2006.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,83(5):698-704.
    唐菊兴,邓世林,郑文宝,应立娟,汪雄武,钟康惠,秦志鹏,丁峰,黎枫佶,唐晓倩,钟裕峰,彭慧娟.2011a.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质,30(2):179-196.
    唐菊兴,黄勇,李志军,邓起,郎兴海,陈渊,张丽.2009a.西藏谢通门县雄村铜金矿床元素地球化学特征[J].矿床地质,2009,28(1):15-28.
    唐菊兴,黎风佶,李志军,张丽,唐晓倩,邓起,郎兴海,黄勇,姚晓峰,王友.2010c.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据[J].矿床地质,29(3):461-475.
    唐菊兴,李志军,多吉,郎兴海,黄勇,张金树,刘鸿飞,张丽,陈渊.2010b.西藏雄村铜金矿集区纽通门铜金矿床找矿勘查取得突破[J].矿床地质,29(4):727-728.
    唐菊兴,王登红,汪雄武,钟康惠,应立娟,郑文宝,黎枫佶,郭娜,秦志鹏,姚晓峰,李磊,王友,唐晓倩.2010a.西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J].地球学报,31(4):495-506.
    唐菊兴,王登红.2011b.西藏甲玛等超大型铜多金属矿床勘查与研究新进展[J].矿床地质,30(2):177-178.
    唐菊兴,张丽,黄勇,王成辉,李志军,邓起,郎兴海,王友.2009b.西藏谢通门县雄村铜金矿主要地质体的40Ar/39Ar年龄及地质意义[J].矿床地质,28(6):759-769.
    唐菊兴.2003.西藏玉龙斑岩铜(钼)矿成矿作用与矿床定位预测研究(博士论文)[D].导师:王成善.四川:成都理工大学.
    王承书.2006.世界大型斑岩矿床[J].沉积与特提斯地质,26(3):109-112.
    王翠云,李晓峰,肖荣,杨锋,王增科,朱小云.2012.德兴铜厂斑岩铜矿脉体类型、分布规律及其对成矿的指示意义[J].矿床地质,31(1):94-110.
    王登红,唐菊兴,应立娟,陈郑辉,许建祥,张家菁,李水如,曾载淋.2010.“五层楼+地下室”找矿模型的适用性及其对深部找矿的意义[J].吉林大学学报(自然科学版),40(4):733-738.
    王登红,唐菊兴,应立娟,林彬,丁帅.2011b.西藏甲玛矿区角岩特征及其对深部找矿的意义[J].岩石学报,07:189-194.
    王登红,唐菊兴,应立娟,芮宗瑶,郑文宝.2011a.甲玛与世界级铜矿的初步对比及下一步找矿工作建议[J].矿床地质,30(2):197-206.
    王鸿祯,李光岑.1990.国际地层时代对比表.北京:地质出版社.
    王奖臻,李泽琴,刘家军,李朝阳.2004.拉拉铁氧化物-铜-金-钼-钴-稀土矿床辉钼矿的多型及标型特征[J].地质找矿论丛,19(2):96-99.
    王亮亮,莫宣学.2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学[J].岩石学报,22(4):1001-1008.
    王全海,王保生,李金高等.2002.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估[J].地质通报,21(1):36-40.
    王仁民,贺高品,陈珍珍.1987.变质岩原岩图解判别法[M].北京:地质出版社,1-199.
    王崴平,唐菊兴,郑文宝,应立娟,王焕,唐晓倩,秦志鹏.2010.西藏甲玛铜多金属矿床角岩型矿体地质特征[J].矿床地质,29(增刊):292-294.
    王崴平,唐菊兴.2011.西藏甲玛铜多金属矿床角岩岩石类型、成因意义与隐伏斑岩岩体定位预测[J].矿床地质,30(6):1017-1038.
    王崴平,唐菊兴.甲玛铜多金属矿床角岩中黑云母矿物化学特征及其地质意义.地球学报,待刊.
    王彦斌,唐索寒,王进辉,曾普胜,杨竹森,蒙义峰,田世洪.2004.安徽铜陵新桥铜金矿床黄铁矿Rb/Sr同位素年龄数据——燕山晚期成矿作用的证据[J].地质论评,50(5):538-542.
    魏博,程顺波,庞迎春.2010.西藏蒙亚啊铅锌矿床成矿年龄及其地质意义[J].华南地质与矿产,01:14-19.
    瓮纪昌,张云政,黄超勇,李文智,崔蓓蕾,罗明伟.栾川三道庄特大型钼钨矿床地质特征及矿床成因[J].地质与勘探,46(1):41-48.
    武耀诚,徐士进.1988.环太平洋地区斑岩钼铜矿化岩体矿化类型统计预测[J].南京大学学报,24(1):10-23.
    熊小林,石满全,陈繁荣.2001.浅成-次火山岩黑云母Cu, Au成矿示踪意义[J].矿床地质,21(2):107-111.
    闫学义,黄树峰,杜安道.2010a.冈底斯泽当大型钨铜铝矿Re-Os年龄及陆缘走滑转换成矿作用[J].地质学报,84(3):398-406.
    闫学义,黄树峰.2010b.冈底斯东段泽当大型钨铜钼矿新发现及走滑型陆缘成矿新认识[J].地质论评,56(1):9-20.
    杨敏之.我国东北甲区钼矿化有关热液蚀变黑云母的物理化学性质及其成因[J].地质学报,1964,44(2):191-212.
    杨时惠.1995.西藏甲玛赤康多金属矿床金银秘钴镍赋存状态及其矿物学特征研究[J].矿物 岩石,15(1):26-34.
    杨志明,侯增谦,李振清,宋玉财,谢玉玲.2008.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录[J].矿床地质,27(2):188-199.
    姚鹏,杜光树.1999.西藏甲马多金属矿床容矿岩石的地球化学特征及其成因初步研究[J].特提斯地质,00:46-57.
    姚鹏,李金高,顾雪祥等.2006.从REE和硅同位素特征探讨西藏甲马矿床层状矽卡岩成因[J].岩石矿物学杂志,25(4):306-312.
    姚鹏,郑明华,彭勇明等.2002.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究[J].地质论评,48(5):469-478.
    应立娟,唐菊兴,王登红,畅哲生,屈文俊,郑文宝.2009.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J].岩矿测试,28(3):265-268.
    应立娟,王登红,唐菊兴,畅哲生,屈文俊.2010a.西藏墨竹工卡县甲玛铜多金属矿不同矿石中辉钼矿Re-Os同位素定年及其成矿意义[J].地质学报,84(8):1165-1174.
    应立娟,王登红,唐菊兴,王焕,陈振宇,郑文宝,黎枫佶.2010b.西藏甲玛铜多金属矿床中铋矿物及其与铜矿化关系[J].吉林大学学报(地球科学版),2010,40(4):801-809.
    袁万明,侯增谦,李胜荣,王世成.2001.西藏甲马多金属矿区热历史的裂变径迹证据[J].中国科学(D辑),31(S1):117-121.
    张德会,张文淮,许国建.2001.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约[J].地学前缘,8(3):193-201.
    张丽,黄勇,唐菊兴,郎兴海.2009.西藏谢通门县雄村铜金矿红柱石的矿物学特征和成因意义[J].矿物学报,S1.
    张玉学,邵树勋,张苗云.1995.云南岔河铜矿成矿时代与成因[J].地球化学,24(2):180-187.
    赵元艺,李殿超、程泽君.1994.内蒙古敖脑达坝斑岩型铜银锡多金属矿床围岩蚀变特征究[J].吉林地质,13(2):57-62.
    赵元艺,刘妍,王瑞江,崔玉斌,宋亮,吕立娜,曲晓明.2010.西藏班公湖—怒江成矿带及邻区铋矿化带的发现与意义[J].地球学报,31(2):183-193.
    郑巧荣.1983.由电子探针分析值计算Fe3+和Fe2+[J].矿物学报,1:55-62.
    郑文宝,陈毓川,唐菊兴,宋鑫,林彬,桂晓根,应立娟.2010a.西藏甲玛铜多金属矿床铜矿化富集规律研究及应用[J].金属矿山,2:87-91.
    郑文宝,黎枫估,唐菊兴,宋鑫,郭衍游,应立娟,林彬,唐晓倩.2010b.西藏墨竹工卡地区甲玛硅卡岩型铜多金属矿体的变化性[J].地质通报,29(10):1486-1494.
    郑文宝.2009.西藏墨竹工卡县甲玛铜多金属矿矿床地球化学特征(硕士论文)[D].导师:唐菊兴.四川:成都理工大学.
    郑有业,张刚阳,许荣科,高顺宝,庞迎春,曹亮,杜安道,石玉若.2007.西藏冈底斯朱诺斑岩铜矿床成岩成矿时代约束[J].科学通报,52(21):2542-2548.
    钟康惠,梁兴中,刘肇昌,舒良树,李凡友,施央申,唐菊兴.2004.藏东三江构造带云南段α石英热活化ESR定年与新生代构造事件[J].地质通报,23(12):1231-1237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700