用户名: 密码: 验证码:
利用南极冰芯代用指标反演南印度洋近300年海冰变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海冰在全球气候系统中扮演着重要的角色,对全球的大气环流、辐射平衡以及海洋-大气物质交换等过程都有着直接的影响。虽然海冰对研究气候系统有着重要的作用,由于历史资料匮乏的原因,海冰在全球模式中仍是一个不确定的要素。卫星资料的应用大大提高了海冰资料的时空分辨率,然而仅限于最近几十年。为了探究海冰的历史变化情况,必须寻找海冰代用指标,利用海冰代用指标反演海冰的历史变化。冰芯中的海冰代用指标主要是甲基磺酸(MSA)和海盐气溶胶离子(Na~+)。本文利用取自东南极Lambert冰盆的一支LGB69冰芯,探究冰芯中的MSA和Na~+作为指示毗邻的南印度洋海域海冰变化的可行性,并尝试用冰芯MSA、Na~+序列重建南印度洋长期海冰变化。
     以主要海盐离子的季节性循环为基础,利用数年层的方法对LGB69冰芯进行定年,长度为102.18m的LGB69冰芯包含293个年层(1708-2001A.D.)。利用冰芯中的火山喷发事件参考层对LGB69冰芯定年经过进行准确性检验,结果表明,通过季节性参数对冰芯进行定年结果与冰芯中保存的历史重大火山记录参考层所处年代相当吻合。通过与全球火山喷发计划(Global Volcanism Program)中的火山记录进行对比,在冰芯跨越的时间范围(1708-2001A.D.)之内,该计划中包含的可能保存在南极冰盖中(火山喷发位于赤道或者南半球地区)的11个重大火山喷发记录(VEI≥5)均在LGB69冰芯中被清晰地辨识出来,并且自火山事件喷发到火山气溶胶沉降到南极冰盖的滞后时间都在允许误差范围之内,冰芯最底部由于一些不明确的季节循环而导致的积累误差<±2年。
     以精确的定年结果为基础,对LGB69冰芯中所保存的MSA和Na~+浓度资料进行处理,得到MSA(以南半球夏季为中心)和Na~+浓度的年平均时间序列。分别对1973-2000年28年MSA和Na~+年平均时间序列和南半球冬季(8-10月)的海冰最北界资料(以每10°经度为一个扇区)进行对比,探讨两种成分作为南印度洋海冰代用指标的可行性。对比结果表明:MSA序列与70-100°E之间的南印度洋海域海冰范围变化呈显著正相关关系(r=0.41,P<0.05,N=28),而Na~+序列与40-90°E之间的南印度洋海域的海冰范围变化存在较弱的正相关(r=0.26,P<0.2,N=28)。进一步将LGB69冰芯中的MSA和Na~+浓度的年平均序列与海冰持续时间进行对比发现,在LGB69冰芯附近的南印度洋海冰边缘区域,存在着海冰代用指标与海冰持续时间的显著正相关区域,这种相关性与南印度洋海冰范围变化的气候背景(温度、环流条件等)是相联系的。
     通过与大尺度气象要素场和地面气象站风场资料进行对比发现,LGB69冰芯中的MSA(Na~+)浓度较高的年份,在南印度洋海域都有明显的向南的经向风异常,有利于MSA(Na~+)自海冰融化区域(新形成海冰表面)向南极冰盖输送。LGB69冰芯中的MSA记录与气象要素场的显著相关进一步确认了MSA作为南印度洋海冰代用指标的可信度。冰芯中的Na~+浓度记录与大尺度气象要素场的显著相关表明大气环流输送对于冰芯中Na~+的浓度具有重要的影响,只有海冰范围较广并且大气环流输送较强的时候,冰芯中保存的Na~+浓度才较高。
     通过结果对比认为:LGB69冰芯中的MSA可以作为南印度洋(70-100°E)海冰范围变化的代用指标,同时,大气环流输送作用对冰芯中的MSA浓度有重要影响;LGB69冰芯中的Na~+浓度并不能作为海冰代用指标,因为冰芯中记录的Na~+浓度更多的要受到大气环流的影响。
     从过去300年MSA浓度的20年滑动平均的变化趋势来看:18世纪到19世纪50年代(1708-1850年)海冰经历了大幅度减少的变化,19世纪50年代至20世纪40年代这近百年之间,海冰变化一直处于一个比较稳定的时期;20世纪中期开始,海冰开始有所减少,特别是从1950s之后,海冰明显减少,这与很多研究结果是一致的。总体来看,近300年来虽然南印度洋海冰经历了减少-增加-稳定-减少的变化过程,但是南印度洋海冰变化一直处于历史变化的范围之内;300年以来,即使是在全球变暖的今天,南印度洋海冰总体并没有发现增加或者减少的趋势。20世纪50年代之后南印度洋海冰的明显减少,以及1980年之后南印度洋海冰的略微增加,都是在南印度洋海冰历史变化的正常范围之内,即:南印度洋海冰变化并未在很大程度上受到全球变暖的影响。
Sea ice plays a crucial role in the global climate system: apart from its direct influence onradiative balance via its high albedo, it also has a large influence on ocean-atmosphereexchange progresses and atmospheric circulation. However, despite its importance, sea iceremains a poorly constrained component in model simulations due to the paucity of informationabout past sea ice conditions. Satellite imagery has allowed sea ice patterns to be monitored atvery high spatial and temporal resolution while this is limited only in recent decades. Forinvestigation of sea ice change beyond the satellite era, proxy-based sea ice reconstructions areneeded. Recently, progress has been made using methanesulfonic acid (MSA) and sea saltaerosol (Na~+) measured in Antarctic ice cores are used as proxies for regional sea ice extent. Anice core from LGB69site, Lambert Glacier basin, eastern Antarctica was used to findcorrelations between sea ice extent of the adjacent South Indian Ocean and the sea ice proxiesin the ice core and then to reconstruct the historical sea ice extent changes.
     The ice core was dated based on the well-preserved seasonal cycles of Na~+, Mg2+and Cl-,which were counted to establish the depth-age relationship with high accuracy. The102.18m icecore record extends for293years (1708-2001A.D.). The accumulated errors, attributable to afew ambiguous seasonal cycles, are estimated to be only±2years at the end of the record. Thedating results provide a good match with volcanic records used as reference layers. All thoseabove have testified the accuracy of our dating work for LGB69ice core. In comparison to theGlobal Volcanism Program, all explosive volcanic eruptions (VEI≥5) that might havedeposited large amounts of strong acids in Antarctic sheets (eruptions located in the tropics orsouthern hemisphere) have been identified in the LGB69ice core, which proves that our workis of high accuracy.
     The SIE used in our analysis was calculated as the mean ice edge latitude (or extent) forAugust, September and October of each year (1973-2000), which we define as SIEmax. AnnualSIEmaxwas compared with mean annual MSA concentration (centered on the following summer)and annual Na~+concentration respectively to discuss the correlations between proxies inLGB69ice core and the South Indian Ocean sea ice extent. The MSA and Na~+records werecompared with SIEmaxaveraged from around the entire Antarctic continent and with individual10°sectors, with a view to identifying a source region for MSA and Na~+deposited at LGB69.Mean annual MSA concentrations are found to be remarkable positive correlated with the SIEmaxof the70-100°E sectors (r=0.41,P<0.05,1973-2000a) and mean annual Na~+concentrations are found weakly positive correlated with the SIEmaxof the40-90°E sectors(r=0.26,P<0.2,1973-2000a). Furthermore, both the MSA and Na~+records have significantpositive correlation with the sea-ice duration of the on the edge of the sea ice extent.
     The meteorological conditions associated with MSA variability at LGB69are examinedusing NCAR/NCEP Re-Analysis data and surface wind data from Davis station, suggesting thatincreased (decreased) ice core MSA is associated with years of northeasterly (southwesterly)wind anomalies that from along the coastline. The meteorological conditions are also wellcorrelated with the ice core Na~+record, meaning the transport of Na~+is a key factor for the Na~+concentrations in LGB69ice core.
     Before1900a, there are minimum around1760s and1820s, indicating there was little seaice in the South Indian Ocean those times. The LGB69MSA series indicate an apparentdecrease in South Indian Ocean sea ice extent through the20thcentury, which is coincident withthe other reconstructions of Antarctic historical sea ice extent. There is a clear decrease du ringthe early1960s to the early1980s, followed by a slight increase in sea ice extent over the1980-2000, which could be driven by increasing greenhouse gas concentrations and bystratospheric ozone depletion according model simulations.
     On the whole, sea ice extent of South Indian Ocean has been in a stable state while it hasgone decrease and increase last300years. Even on the background of global warming, changesof South Indian Ocean sea ice extent are within its natural variability. That is to say, SouthIndian Ocean sea ice changes do not in a great extent by the effects of Global Warming.
引文
卞林根,林学椿.2009.南极涛动和南极绕极波的年代际变化[J].大气科学,33(2),251-260. Bian Lingen,Lin Xuechun.2009. Interdecadal change of t he Antarctic oscillation and t he Antarctic circumpolarwave [J]. Chinese Journal of At mospheric Sciences (in Chinese),33(2),251-260.
    秦大河.1995.南极冰盖表层雪内的物理过程和现代气候及环境记录.北京:科学出版社,116-121.
    效存德,孙俊英,秦大河,田立德, Witlow S, Stievernard M.2001.南太平洋降水中MSA的纬度分布及其分解的气温敏感性.海洋学报.23(3),112-116.
    张明军,效存德,任贾文,李忠勤,秦大河.2004.南极冰芯定年综述.自然杂志.26(2),63-68.
    Abram, N.J., Mulvaney, R., Wolff, E.&Mudelsee, M.2007. Ice core records as sea ice proxies: anevaluation from the Weddell Sea region of Antarctica. Journal of Geophysical Research,112, D15101,doi:10.1029/2006JD008139.
    Abram, N.J., Thomas, E.R., McConnell, J.R., Mulvaney, R. Bracegirdle, T.J., Sime, L.C.&Aristarain, A.J.2010. Ice core evidence for a20th century decline of sea ice in the Bellingshausen Sea, Antarctica.Journal of Geophysical Research,115, D23101, doi:10.1029/2010JD014644.
    Becagli, S. et al.2009. Methanesulphonic acid (MSA) stratigraphy from a Talos Dome ice core as a tool indepicting sea ice changes and southern atmospheric circulation over the previous140years,Atmospheric Environment,43,1051-1058.
    Bluth, G.J.S., Doiran, S.C., Schnetzler, C.C., Krueger, A.J.&Walter, L.S.1992. Global tracking of the SO2clouds from the June1991Mount Pinatubo eruptions. Geophysical Research Letters,19,151-154.
    Cavalieri, D.J., Parkinson, C.L., and Vinnikov K.Y.2003.30-Year satellite record reveals contrasting Arcticand Antarctic decadal sea ice variability. Geophysical Research Letters,30(18),1970, doi:10.1029/2003GL018031.
    Cavalieri, D.J.&Parkinson, C.L.2008. Antarctic sea ice variability and trends,1979-2006. Journal ofGeophysical Research,113, C07004. doi:10.1029/2007JC004564.
    Clausen, H.B.&Hammer, C.U.1988. The Laki and Tambora eruptions as revealed in Greenland ice coresfrom11locations. Annals of Glaciology,10,16-22.
    Clausen, H.B., Hammer, C.U., Hvidberg, C.S., Dahl-Jensen, D., Steffensen, J.P., Kipfstuhl, J.&Legrand M.1997. A comparison of the volcanic records over the past4000years from the Greenland Ice Core Projectand Dye3Greenland ice cores, Journal of Geophysical Research,102(C12),26707-26723.
    Cole-Dai, J., Mosley-Thompson, E., Wight, S.P.&Thompson, L.G.1997.Annually resolved southernhemisphere volcanic history from two Antarctic ice cores. Journal of Geophysical Research,102,16761-16771.
    Cole-Dai, J., Mosley-Thompson, E., Wight, S.P.&Thompson, L.G.2000. A4100-year record of explosivevolcanism from an East Antarctica ice core. Journal of Geophysical Research,105,24431-24441.
    Comiso, J.C.&Nishio, F.2008. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I,and SMMR data. Journal of Geophysical Research,113, C02S07, doi:10.1029/2007JC004257.
    Cotte, C.&Guinet. C.2005. Historical whaling records reveal major regional retreat of Antarctic sea ice.Deep Sea Research,54(2007),243-252.
    Curran, M.A.J.&Jones, G.B.2000. Dimethyl sulfide in the Southern Ocean: Seasonality and flux, Journal ofGeophysical Research,105(D16),20451-20459, doi:10.1029/2000JD900176.
    Curran, M.A.J., van Ommen, T.D., Morgan, V.I., Phillips, K.L.&Palmer, A.S.2003. Ice core evidence forAntarctic sea ice decline since the1950s. Science,302,1203-1206.
    Dai, J., Mosley-Thompson, E.&Thompson, L.G.1991. Ice core evidence for an explosive tropical volcaniceruption6years preceding Tambora. Journal of Geophysical Research,96,17,361-17,366.
    Dansgaard, W.1954. Oxygen-18Abundance in Fresh Water. Nature,174,234-235, doi:10.1038/174234a0.
    Delmas, R.J., Legrand, M., Aristarain, A.J.&Zanolini, F.1985. Volcanic deposits in Antarctic snow and ice.Journal of Geophysical Research,90,12901-12920.
    De la Mare&William, K.2009. Changes in Antarctic sea-ice extent from direct historical observations andwhaling records. Climate Change,92,461-493.
    Delmas, R.J., Kirchner, S., Palais, J.M.&Petit, J.R.1992.1000years of explosive volcanism recordedat theSouth pole, Tellus,44B,335-350.
    Dieckmann, G.S.&Hellmer, H.H.2003. The importance of sea ice: an overview. In: Thomas, D.N.,Dieckmann, G.S.(Eds.), Sea Ice: an Introduction to Its Physics, Chemistry, Biology and Geolog y.Blackwell Science Ltd, Oxford, UK.,1-21.
    Doiran, S.C., Bluth, G.J.S., Schnetzler, C.C., Krueger, A.J.&Walter, L.S.1991. Transport of Cerro HudsonSO2clouds. Eos, Transactions American Geophysical Union,72,489-490.
    Fletcher, J.O.1969. Ice extent in the southern oceans and its relation to world climate. Journal of Glaciology,15,417-427.
    Foster, A.F.M., Curran, M.A.J., Smith, B.T., van Ommen, T.D.&Morgan.2006. Covariation of sea ice andmethanesulphonic acid in Wilhelm II Lnad, East Antarctica, Annals of Glaciology,44,429-432.
    Gong, D., and Wang, S.1999. Definition of Antarctic Oscillation Index. Geophysical Research Letters,26:459-462.
    Gong, S.L., Barrie, L.A.&Lazare, M.2002. Canadian Aerosol Module (CAM): A size-segregatedsimulation of atmospheric aerosol processes for climate and air quality models-2. Global sea-saltaerosol and its budgets. Journal of Geophysical Research,107(D24),4779.
    Goosse, H., Lefebvre, W., deMontety, A., Crespin, E.&Orsi A.H.2009. Consistent past half-century trendsin the atmosphere, the sea ice and the ocean at high southern latitudes. Climate Dynamics,33,999-1016.
    Hall, A.&Visbeck, M.2002. Synchronous variability in the Southern Hemisphere atmosphere, sea ice andocean resulting from the Annular Mode. Journal of Climate,15,3043-3057.
    Hammer, C.U.1977. Dating of Greenland ice cores by micro-particle concentration analyses. In Isotopes andImpurities in Snow and Ice (Proceedings of the Grenoble Symposium, August-September1975),297-301: IAHS Publ. no.118.
    Hammer, C.U., Clausen, H.B.&Langway Jr., C.C.1997.50,000years of recorded global volcanism.Climate Change,35,1-15.
    Herron, M.1982. Impurity sources of F, Cl, NO3and SO24in Greenland and Antarctic precipitation.Journal of Geophysical Research,87,3052-3060.
    Hynes, A.J., Wine, P.H.&Semmes, D.H.1986. Kinetics and mechanism of OH reactions with organicsulfides. The Journal of Physical Chemistry.90,4148-4156.
    Jacka, T.H.&Budd, W.F.1998. Detection of temperature and sea ice-extent changes in the Antarctic andSouthern Ocean.1949–96. Annals of Glaciology,27,553-559.
    Jansen. E., Overpeck, J., Briffa, K.R., Duplessy, J-C., Joos, F., Masson-Delmotte, V., Olago, D.,Otto-Bliesner, WR Peltier, S Rahmstorf, R Ramesh, D Raynaud, D Rind, O Solomina, R Villalba, B.&D Zhang.2007. Palaeoclimate. In Climate change2007: the physical science basis. Contribution ofWorking Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,Solomon S, D Qin, M Manning, Z Chen, M Marquis, KB Averyt, M Tignor and HL Miller (eds.).Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    Langway, C.C., Jr., Osada, K., Clausen, H.B., Hammer, C.U.&Shoji, H.1995. A10century comparison ofprominent bipolar volcanic events in ice cores. Journal of Geophysical Research,100,16241-16247.
    Lefebvre, W., Goosse, H., Timmermann, R.,&Fichefet, T.2004. Influence of the Southern Annular Mode onthe sea ice–ocean system. Journal of Geophysical Research,109, C09005, doi:10.1029/2004JC002403.
    Legrand, M.&Delmas, R.J.1987. A220-year continuous record of volcanic H2SO4in the Antarctic IceSheet. Nature,327,671-676.
    Legrand, M.R., Lorius, C., Barkov, N.I.&Petrov, V. N.1988. Vostok (Antarctica) ice core: Atmosphericchemistry changes over the last climatic cycle (160,000years). Atmospheric Environment,22(2),317-331.
    Legrand, M., Feniet-Saigne, C., Saltzman, E.S.&Germain C.1992. Spatial and temporal variations ofmethanesulfonic acid and non sea salt sulfate in Antarctic ice. Journal of Atmospheric Chemistry,14(1-4),245-260.
    Legrand, M.&Mayewski, P.1997. Glaciochemistry of polar ice cores: a review. Reviews of Geophysics,35,219-243.
    Martin, S., Yanling, Y.&Drucker, R.1996. The temperature dependence of frost flower growth onlaboratory sea ice and the effect of the flowers on infrared observations of the surface. Journal ofGeophysical Research,101,12111-12125.
    Mayewski, P.A. et al.2005. The International Trans-Antarctic Scientific Expedition (ITASE): An overview.Annals of Glaciology,41,180-185.
    Meier, W., Fetterer, F., Knowles, K., Savoie, M., Brodzik. M.J.2006, updated quarterly. Sea IceConcentrations from Nimbus-7SMMR and DMSP SSM/I-SSMIS Passive Microwave Data,[1979.1.1-2001.12.31]. Boulder, Colorado USA: National Snow and Ice Data Center. Digital media.
    McPeters, R.D.1993. The atmospheric SO2budget for the Pinatubo derived from NOAA-11SBUV/2spectral data. Geophysical Research Letters,20,1971-1974.
    Moore, J.C., Narita, H.&Maeno, N.1991. A continuous770-year record of volcanic activity from EastAntarctica. Journal of Geophysical Research,96,17353-17359.
    Mosley-Thompson E., Thompson L.G.,&Grocte P.1990. Little ice age (neoglacial) paleoenvironmentalconditions at siple station, Antarctica. Annals of Glaciology,14,199-204.
    Mosley-Thompson, E., Thompson, L.G., Dai, J., Davis, M.&Lin, P.N.1993. Climate of the last500years:high resolution ice core records. Quaternary Science Reviews,12,419-430.
    Mulvaney, R., Pasteur, E.C., Peel, D.A., Saltzman, E.S.&Whung, P.Y.1992. The ratio of MSA to non seasalt sulphate in Antarctic Peninsula ice cores. Tellus,44,295-303.
    Murphy, E.J., Clarke, A., Symon, C.&Priddle, J.J.1995. Temporal variation in Antarctic sea ice-analysis ofa long term fast-ice record from the South Orkney Islands. Deep Sea Research,42,1045-1062.
    Nan, S., and Li, J.2003. The relationship between summer precipitation in the Yangtze River valley and theprevious Southern Hemisphere Annular Mode. Geophysical Research Letters,30(24),2266, doi:10.1029/2003GL018381.
    Newhall, G.C.&Self, S.1982. The Volcanic Explosivity Index (VEI): an estimate of explosive magnitudefor historical volcanism. Journal of Geophysical Research,87,1231-1238.
    Palmer, A.S., van, Ommen, T.D., Curran, M.A.J., Morgan, Souney, J.M.&Mayewski, P.A.2001.High-precision dating of volcanic events (A.D.1301–1995) using ice cores from Law Dome Antarctica.Journal of Geophysical Research,106(D22),28089-28095.
    Parkinson, C.L.1994. Spatial patterns in the length of the sea ice season in the Southern Ocean. Journal ofGeophysical Research,99(C8),16327-16339.
    Parkinson, C.L.2002. Trends in the length of the Southern Ocean sea ice season,1979–1999. Annals ofGlaciology,34,435-440.
    Parkinson, C.L.2004. Southern Ocean sea ice and its wider linkages: Insights revealed from models andobservations, Antarctic Science,16(4),387-400.
    Pasteur, E.C., Mulvaney, R., Peel, D.A., Saltzman, E.S.&Whung, P.-Y.1995. A340-year record of biogenicsulphur from the Weddell Sea area, Antarctica. Annals of Glaciology,21,169-174.
    Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis,M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L.,Ritz, C., Saltzman, E.&Stievenard, M.1999. Climate and atmospheric history of the past420,000years from the Vostok ice core, Antarctica. Nature,399,429-436.
    Rankin, A.M., Wolff, E.W.&Martin, S.2002. Frost flowers-implications for tropospheric chemistry andice core interpretation. Journal of Geophysical Research,107(D23),4683, doi:10.1029/2002JD002492.
    R thlisberger, R., Crosta, X., Abram, N.J., Armand L.&Wolff, E.W.2010. Potential and limitations ofmarine and ice core sea ice proxies: an example from the Indian Ocean sector. Quaternary ScienceReviews,29,296-302.
    Self, S., Rampino, M.R.&Carr, M.J.1989. A reappraisal of the1835eruption of Cosiguina and itsatmospheric impact. Bull Volcanol,52,57-65.
    Self, S.&King, A.J.1996. Petrology and sulfur and chlorine emissions of the1963eruption of GunungAgung, Bali, Indonesia. Bull Volcanol,58,263-285.
    Stammerjohn, S.E., Martinson, D.G., Smith, R.C. Yuan, X.&Rind, D.2008. Trends in Antarctic annual seaice retreat and advance and their relation to El Ni o–Southern Oscillation and Southern Annular Modevariability. Journal of Geophysical Research,113, C03S90, doi:10.1029/2007JC004269.
    Sun, J., Ren, J.&Qin, D.2002.60years record of biogenic sulfur from Lambert Glacier basin firn core, EastAntarctica. Annals of Glaciology,35,362-367.
    Taran, Y., Fischer, T.P., Pokrovsky, B., Sano, Y., Aurora Armienta, M.&Macias, J.L.1998. Geochemistry ofthe volcano-hydrothermal system of El Chichón Volcano, Chiapas, Mexico. Bull Volcanol,59,436-449.
    Thompson, D.W.J.&Wallace, J.M.2000. Annual modes in the extratropical circulation, Part I:month-to-month variability. Journal of Climate,13,1000-1016.
    Turner, J. et al.2009. Non-annular atmospheric circulation change induced by stratospheric ozone depletionand its role in the recent increase of Antarctic sea ice extent. Geophysical Research Letters,36, L08502.
    Udisti, R., Becagli, S., Castellano, E., Mulvaney, R., Schwander, J., Torcini, S.&Wolff, E.W.2000.Holocene electrical and chemical measurements from the EPICA-Dome C ice core. Annals of Glaciology,30,20-26.
    Vairavamurthy, A., Andreae, M.O.&Iverson, R.L.1985. Biosynthesis of dimethylsulfide anddimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations.Limnology and Oceanography,30,59-70.
    Vinnikov, K.Y., Cavalieri, D.J.,&Parkinson, C.L.2006. A model assessment of satellite observed trends inpolar sea ice extents. Geophysical Research Letters,33, L05704, doi:10.1029/2005GL025282.
    Wagenbach, D., Ducroz, F., Mulvaney, R., Keck, L., Minikin, A., Legrand, M., Hall, J. S.,&Wolff, E. W.1998. Seasalt aerosol in coastal Antarctic regions. Journal of Geophysical Research,103(D9),10961-10974.
    Watanabe, O., Kamiyama, K., Motoyama, H., Fujii, Y., Shoji, H.,&Satow, K.1999. The palaeoclimaterecord in the ice core at Dome Fuji station, East Antarctica. Annals of Glaciology,29,176-178.
    Watson, A.J.&Garabato, A.C.N.2006. The role of Southern Ocean mixing and upwelling inglacial–interglacial atmospheric CO2change. Tellus Series B-Chemical and Physical Meteorology,58(1),73-87.
    Welch, K.A., Mayewski, P.A.&Whitlow S.I.1993. Methanesulphonic acid in coastal Antarctic snow relatedto sea ice extent, Geophysical Research Letters,20(6),443-446, doi:10.1029/93GL00499.
    White, W.B.&Peterson R.G.1996. An Antarctic circumpolar wave in surface pressure, wind, temperatureand sea-ice extent. Nature,380,699-702.
    Wolff, E.W., Rankin, A.M.,&Ro¨thlisberger, R.2003. An ice core indicator of Antarctic sea ice production?.Geophysical Research Letters,30(22),2158, doi:10.1029/2003GL018454.
    Xiao, C.D., Qin, D.H., Bian, L.G., Zhou, X.J., Allison, I.&Yan, M.2005.A precise monitoring of snowsurface height in the region of Lambert Glacier basin-Amery Ice Shelf, East Antarctica. Science in ChinaSer. D Earth Sciences,48(1),100-111.
    Yuan, X.&D.G. Martinson2001. The Antarctic Dipole and its pre-dictability, Geophysical Research Letters,28(18),3609-3612.
    Zhang, M.J., Li, Z.Q., Xiao, C.D., Qin, D.H., Yang, H.A., Kang, J.C.&Li, J.2002. A continuous250-yearrecord of volcanic activity from Princess Elizabeth Land, East Antarctica. Antarctic Science,14(1),55-60.
    Zielinski, G.A., Mayewski, P.A., Meeker, L.D., Whitlow, S.I., Twickler, S.M., Morrison, M., Meese, D.A.,Gow, A.J.&Alley, R.B.1994. Record of volcanism since7000B.C. from the GISP2Greenland ice coreand implications for the volcano-climate system. Science,264,948-952.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700