用户名: 密码: 验证码:
鸟粪石沉淀法去除和回收废水中氨氮和磷的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮磷是导致水体富营养化的关键因素,磷是一种不可再生的宝贵资源。随着污染物排放标准的日趋严格以及磷资源的日益匮乏,废水脱氮除磷技术以及磷资源化回收技术的研究与开发无疑具有重要意义。鸟粪石沉淀法可同时去除和回收废水中的氨氮和磷,回收产物可作为一种高效缓释肥,具有广阔的开发应用前景。
     本文首先采用鸟粪石沉淀法对两种高浓度实际工业废水进行脱氮除磷处理,考察了各因素对氨氮和磷的去除和回收效果的影响,得出了最佳工艺条件;为降低药剂消耗,降低处理成本,采用以废治废的新思路,将两种废水混合后进行处理,考察了各因素对混合废水脱氮除磷效果的影响,得出了混合废水处理的最佳工艺条件;结合扫描电镜、X射线衍射、化学分析等方法对沉淀产物的结构形态、组成成分以及沉淀产物中重金属元素的含量等进行了分析;探讨了鸟粪石沉淀法的反应机理;最后对鸟粪石沉淀法去除和回收氨氮和磷的环境效益和经济效益进行了分析。论文主要结论如下:
     (1)采用鸟粪石沉淀法去除和回收PO_4~(3-)-P含量为5399.83~5475.62mg·L~(-1)的高浓度含磷废水中的磷,在pH=9.5,n(Mg):n(N):n(P)=1.25:1.05:1,搅拌速率为200r·min-1左右,反应20min,沉淀20min的条件下,废水中PO_4~(3-)-P的去除率为99.96%,处理出水中PO_4~(3-)-P的残留量为2.20mg·L~(-1),NH_4~+-N的残留量为213.14mg·L~(-1)。
     (2)采用鸟粪石沉淀法去除和回收NH_4~+-N含量为562.97~677.28mg·L~(-1)的高浓度氨氮废水中的氨氮,在pH=9.5,n(Mg):n(P):n(N)=1.15:0.95:1,搅拌速率为150r·min-1左右,反应20min,沉淀20min的条件下,废水中NH_4~+-N的去除率为94.14%,处理出水中NH_4~+-N的残留量为38.21mg·L~(-1),PO_4~(3-)-P的残留量为49.43mg·L~(-1)。
     (3)处理PO_4~(3-)-P含量为7374.53mg·L~(-1)的高浓度含磷废水与NH_4~+-N含量为717.47mg·L~(-1)的高浓度氨氮废水的混合废水时,在高浓度含磷废水与高浓度氨氮废水按体积比为1:4.5混合,pH=9.5,n(Mg):n(P)=1.2:1,搅拌速率为200r·min-1左右,反应20min,沉淀20min的条件下,混合废水中PO_4~(3-)-P的去除率为99.64%,NH_4~+-N的去除率为88.62%,处理出水中PO_4~(3-)-P的残留量为4.86mg·L~(-1),NH_4~+-N的残留量为70.76mg·L~(-1)。
     (4)最佳工艺条件下得到的沉淀产物的扫描电镜结果显示沉淀产物为斜方晶体,X射线衍射分析结果表明沉淀产物的主要成分为MgNH_4PO_4·6H_2O,其N、P、Mg含量与鸟粪石理论值较为接近,沉淀产物中的重金属元素含量符合《肥料中砷、镉、铅、铬、汞生态指标》(GB/T23349-2009)相关要求,可作为缓释肥加以回收利用。
     (5)实验研究和理论分析结果表明,反应物摩尔配比和pH值对鸟粪石沉淀法从废水中去除和回收氨氮和磷的效果有很大影响。
     (6)鸟粪石沉淀法能有效的去除和回收废水中的氨氮和磷,具有较好的环境效益和经济效益;采用以废治废的新思路处理高浓度氮磷废水可大大节约药剂费用,是一种技术可行,经济合理的方法,具有很好的开发应用前景。
Nitrogen and phosphorus are key factors leading to the eutrophication of water bodies, andphosphorus is also a precious non-renewable resources. With the increasingly stringentpollutant discharge standards and the growing scarcity of phosphorus resources, the researchand development of the technology for the removal of nitrogen and phosphorus fromwastewater and the resource recycling technology of phosphorus is undoubtedly important. Thestruvite precipitation method can simultaneously remove and recover ammonia nitrogen andphosphorus from wastewater, and the products recovered can be used as a kind of high efficientslow-release fertilizer, therefore it has a wide prospect for development and application.
     In this thesis, the removal of ammonia nitrogen and phosphorus from two kinds of highconcentration practical industrial wastewater by struvite precipitation method was firstlystudied. The influences of factors on the ammonia nitrogen and phosphorus removal andrecovery efficiency were investigated respectively, and the optimal process conditions wereobtained. In order to reduce the chemical consumption and the treatment cost, the new idea thatusing waste to treat waste was used. The two kinds of wastewater were mixed, and then weretreated by using the same method. The influences of factors on mixed wastewater treatmentwere also investigated, and the best process conditions for mixed wastewater were obtained.The structure, constituent and heavy metals content of the precipitates were analyzed byscanning electron microscope, X-ray diffraction, chemical analysis and other methods. Thereaction mechanism of the struvite precipitation method was also discussed. Finally, analyseswere conducted on the environmental and economic benefits of removal and recovery ammonianitrogen and phosphorus from wastewater by struvite precipitation method. The mainconclusions of the thesis were as follows:
     (1) Phosphorus was removed and recovered from high concentration phosphorus-containing wastewater that the concentration of PO_4~(3-)-P is5399.83~5475.62mg·L~(-1)by struviteprecipitation method, while pH=9.5, n(Mg):n(N):n(P)=1.25:1.05:1,stirring speed was about200r·min-1, reaction time was20min, precipitation time was20min, the removal rate of PO_4~(3-)-P was99.96%, the concentration of PO_4~(3-)-P in the treated water was2.20mg·L~(-1),and the concentrationof NH_4~+-N in the treated water was213.14mg·L~(-1).
     (2) Ammonia nitrogen was removed and recovered from high ammonia nitrogen contentwastewater that the concentration of NH_4~+-N is562.97~677.28mg·L~(-1)by struvite precipitationmethod, while pH=9.5, n(Mg):n(P):n(N)=1.15:0.95:1, stirring speed was about150r·min-1,reaction time was20min, precipitation time was20min, the removal rate of NH_4~+-N was94.14%, the concentration of NH_4~+-N in the treated water was38.21mg·L~(-1), the concentrationof PO_4~(3-)-P in the treated water was49.43mg·L~(-1).
     (3) When treating the mixed wastewater containing high concentration phosphorus-containing wastewater that the concentration of PO_4~(3-)-P is7374.53mg·L~(-1)and high ammonianitrogen content wastewater that the concentration of NH_4~+-N is717.47mg·L~(-1), while highconcentration phosphorus-containing wastewater and high ammonia nitrogen content waste-water were mixed1:4.5by volume, pH=9.5, n(Mg):n(P)=1.2:1, stirring speed was about200r·min-1, reaction time was20min, precipitation time was20min, the removal rate of PO_4~(3-)-Pwas99.64%, the removal rate of NH_4~+-N was88.62%, the concentration of PO_4~(3-)-P in thetreated water was4.86mg·L~(-1), and the concentration of NH_4~+-N in the treated water was70.76mg·L~(-1).
     (4) The result of scanning electron microscope of the precipitates obtained under theoptimal process conditions indicated that the precipitates had rhombic structure. X-raydiffraction analysis results showed that the precipitates were mainly composed ofMgNH4PO4·6H2O.And the content of N, P and Mg were close to the theoretical content ofstruvite. The content of heavy metals elements in the precipitates was consistent with therequirements of the ecological index of arsenic, cadmium, lead, chromium and mercury forfertilizers(GB/T23349-2009). And it can be recycled as slow-release fertilizer.
     (5) The result of experiment research and theoretical analysis indicated that the reactantmolar ratio and pH had a great influence on the effects of removal and recovery ammonianitrogen and phosphorus from wastewater by struvite precipitation method.
     (6) The struvite precipitation method can effectively remove and recover ammonianitrogen and phosphorus from wastewater.It has better economic and environmental benefits. Itcan greatly reduce the chemical agent costs by use the new idea that using waste to treat waste,it is a technically feasible and economically reasonable method, and has great development andapplication prospect.
引文
[1]王燕群.鸟粪石结晶法回收废水中磷的研究[D].上海:东华大学,2008.
    [2]荆肇乾,吕锡武.污水处理中磷回收理论与技术[J].安全与环境工程,2005,12(01):29-32.
    [3]李博,杨持,林鹏.生态学[M].北京:高等教育出版社,2000:320-322.
    [4]张文学.我国磷资源开发利用及趋势[J].武汉工程大学学报,2011,33(02):1-5.
    [5]柳正.我国磷矿资源的开发利用现状及发展战略[J].中国非金属矿工业导刊,2006,(01):21-23.
    [6] Saktaywin W, Tsuno H, Nagare H, et al. Advanced sewage treatment process with excesssludge reduction and phosphorus recovery [J]. Wat. Res.,2005,39(05):902-910.
    [7]林明波.高氮低碳垃圾渗滤液处理试验研究[D].重庆:重庆大学,2007.
    [8]白雁冰.折点加氯法脱氨氮后余氯的脱除[J].环境科学与管理,2008,33(11):102-108.
    [9]许国强.高浓度氨氮废水处理试验研究[D].长沙:湖南大学,2003.
    [10]吕秀平.超声波吹脱-化学沉淀联合工艺预处理高浓度氨氮废水与综合利用研究[D].兰州:兰州大学,2009.
    [11]金彪,李广贺,张旭.吹脱技术净化石油污染地下水实验[J].环境科学,2000,21(4):102-105.
    [12]蔡秀珍,李吉生,温俨.吹脱法处理高浓度氨氮废水试验[J].环境科学动态,1998,(04):21-23.
    [13]黄海明,肖贤明,晏波.氨吹脱处理稀土分离厂中氨氮废水试验研究[J].环境工程学报,2008,2(08):1062-1065.
    [14] Liao P H, Chen A, Lo K V. Removal of nitrogen from swine manure wastewaters byammonia stripping [J]. Bioresource Technology,1995,54(01):17-20.
    [15]吕亲尔.改性沸石去除废水中氨氮的实验研究[D].山西:太原理工大学,2010.
    [16] Booker N A, Cooney E L, Priestley A J. Ammonia removal from sewage using naturalAustralian zeolite[J]. Water Sci. Technol.,1996,34(09):17-24.
    [17] Rahmani A R, Mahvi A H, Mesdaghinia A R, et al. Investigation of ammonia removal frompolluted waters by Clinoptilolite zeolite [J]. International Journal of EnvironmentalScience and Technology,2004,1(01):125-133.
    [18]安红梅,吴立波,岳尚超,等.斜发沸石对城市污水处理厂二级出水中氨氮的处理效果研究[J].环境工程学报,2010,4(05):1111-1115.
    [19]黄骏,陈建中.氨氮废水处理技术研究进展[J].环境污染治理技术与没备,2002,3(1):65-68.
    [20]方莎.磷酸铵镁化学沉淀法循环处理高氨氮废水研究[D].北京:北京交通大学,2008.
    [21]高廷耀,顾国维,周琪.水污染控制工程(3版)[M].北京:高等教育出版社,2007:86.
    [22]刘俊新,王秀蘅.高浓度氨氮废水亚硝酸型与硝酸型脱氮的比较研究[J].工业用水与废水,2002,33(03):1-4.
    [23]郝祥超,王良,张俊华,等.A/O工艺在高氨氮废水中的应用[J].环境科学与管理,2010,35(07):82-84.
    [24] Zhang Min. Coke Plant wastewater treatment by fixed biofilm system for COD and NH3-Nremoval [J].Water Res.,1998,32(02):519-527.
    [25]潘碌亭,屠晓青,罗华飞,等.改良厌氧/缺氧/好氧脱氮除磷工艺处理城镇污水[J].中国给水排水,2007,23(22):61-63.
    [26]孙洪伟,王淑莹,王希明,等.高氨氮垃圾渗滤液SBR法短程深度生物脱氮[J].化工学报,2009,60(07):1806-1811.
    [27]王莉,于鲁冀,吴连成.沸石吸附-SBR工艺对味精废水脱氮的试验研究[J].工业水处理,2008,28(12):53-55.
    [28]王微微,高路,郭子洋.废水生物脱氮工艺综述[J].黑龙江水利科技,2010,38(01),127-128.
    [29]林进条,林涛,刘丽玲.新型生物脱氮工艺的研究和进展[J].净水技术,2005,24(02):48-50.
    [30] Wartchow D. Nitrification and denitrification in combined activated systems [J]. Water Sci.Technol.,1990,22(07):199-206.
    [31] Watanabe Y, Masuda S, Ishiguro M. Simultaneous Nitrification and Denitrification inMicro-Aerobic Biofilms [J].Water Sci. Technol.,1992,26(05):511-522.
    [32] Priyali Sen, Steven K Dentel. Simultaneous nitrification-denitrification in a fluidized bedreactor [J]. Water Sci. Technol.,1998,38(01):247-254.
    [33]徐鹏,何争光,唐彦杰,等.常温下短程硝化实现及稳定性试验研究[J].工业水处理,2011,31(11):53-56.
    [34] Van Kempen R, Mulder J W, Uijterlinde C A, et al. Overview: full scale experience of theSHARON process for treatment of rejection water of digested sludge dewatering [J].WaterSci. Technol.,2001,44(1):145-152.
    [35] Van Dongen, Jetten M S, van Loosdrecht M C. The SHARON-Anammox process fortreatment of ammonium rich wastewater [J]. Water Sci. Technol.,2001,44(01):153-160.
    [36]姚俊芹,周少奇.厌氧氨氧化生物脱氮研究进展[J].化工学报,2005,56(10):1826-1831.
    [37] Jetten M S M, Wagner M, Fuerst J, et al. Microbiology and application of the anaerobicammonium oxidation (‘anammox’) process [J].Current Opinion in Biotechnology,2001,12(03):283-288.
    [38] Zhang T, Ding L, Ren H, et al. Thermodynamic modeling of ferric phosphate precipitationfor phosphorus removal and recovery from wastewater [J]. J. Hazard. Mater.,2010,176(1-3):444-450.
    [39] James M, Philip L, Sarah R, et al. Evaluation of chemical coagulation-flocculation aids forthe removal of suspended solids and phosphorus from intensive recirculating aquacultureeffluent discharge [J]. Aquacultural Engineering,2003,29:23-42.
    [40]兰吉奎,潘涌璋.化学沉淀法处理超高浓度含磷废水的研究[J].工业水处理,2011,31(01):58-60.
    [41] Mann R A, Bavor H J. Phosphorus removal in constructed wet lands using gravel andindustrial waste substrata. Water Sci. Technol.,1993,27(01):107-113.
    [42]蔡青青,刘键,姜勇,等.改性沸石吸附废水中磷污染物的研究[J].环境科学与管理,2008,33(07):92-94.
    [43]唐受印,戴友芝,汪大翚.废水处理工程(2版)[M].北京:化学工业出版社,2004:342.
    [44]郝伟东,李冬,吴迪,等.污水再生全流程中A/O工艺的深度除磷研究[J].中国给水排水,2011,27(19):10-16.
    [45]黄健,汤利华,张华,等.化学磷回收辅助A2/O工艺处理低碳城市污水的除磷规律[J].安全与环境工程,2007,14(01):68-71.
    [46] John U, Elaine H, John C. Biological phosphorus removal at Stratford upon Avon, UK:The effect of influent wastewater characteristics on effluent phosphate [J]. Water Sci.Technol.,1996,33(12):73-80.
    [47]张丽莉,赵旭德,刘子国,等.SBR处理城镇污水中除磷反应进程研究[J].工业安全与环保,2011,37(03):35-37.
    [48] Rawn A M, Banta A P, Pomeroy R. Multiple stage sewage digestion.[J].Transactions ofASCE,1939,105:93-132.
    [49] Webb K M, Ho G E. Struvite (MgNH4PO4·6H2O) solubility and its application to a piggeryeffluent problem. Water Sci. Technol.,1992,26(9-11):2229-2232.
    [50] Mamais D, Pitt P A, Cheng Yao Wen, et al. Determination of ferric chloride dose to controlstruvite precipitation in anaerobic digesters [J].Water Environ. Res.,1994,66(07):912-918.
    [51] Ohlinger K N, Young T M, Schroeder E D. Predicting struvite formation indigestion[J].Water Res.,1998,32(12):3607-3614.
    [52] Münch E V, Barr K. Controlled struvite crystallization for removing phosphorus fromanaerobic digester sidestreams. Water Res.,2001,35(01):151-159.
    [53]张记市,王玉松.鸟粪石结晶法回收垃圾渗滤液氨氮研究[J].环境工程学报,2009,3(11):2017-2020.
    [54] Mitani Y, Sakai Y, Mishina F, et al. Struvite recovery from wastewater having lowphosphate concentration[J].Journal of Water and Environment Technology,2003,1(01):13-18.
    [55] Jaffer Y, Clark T A, Pearce P, et al. Potential phosphorus recovery by struvite formation[J].Water Res.,2002,36(07):1834-1842.
    [56]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(4版)
    [M].北京:中国环境科学出版社,2002:243-248,276-281,413-415,210-213.
    [57]林亲铁,刘国光,尹光彩,等.磷酸铵镁法回收污泥浓缩液中氮磷的影响因素研究[J].环境工程学报,2010,4(09):2029-2032.
    [58]解磊,赵庆良.MAP沉淀法回收磷化废水中的磷[J].中国给水排水,2007,23(19):87-90.
    [59] Stratful I, Scrimshaw M D, Lester J N. Conditions influencing the precipitation ofmagnesium ammonium phosphate [J].Water Res.,2001,35(17):4191-4199.
    [60]汤琪.磷酸铵镁脱氮除磷技术及其应用研究[D].重庆:重庆大学,2008.
    [61]邹宇,伍钧,杨刚,等.MAP法处理饲料级磷酸氢钙母液的研究[J].环境工程学报,2008,2(09):1169-1172.
    [62]刘小澜.化学沉淀法处理焦化高浓度氨氮废水技术与工业应用探讨[D].长沙:湖南大学,2004.
    [63]周峰.鸟粪石沉淀法回收废水中磷的研究[D].厦门:华侨大学,2006.
    [64]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.GB/T23349-2009肥料中砷、镉、铅、铬、汞生态指标[S].北京:中国标准出版社,2009.
    [65]陈虹锦.无机与分析化学(2版)[M].北京:科学出版社,2008:253-254.
    [66] Wang J S, Song Y H, Yuan P, et al. Modeling the crystallization of magnesium ammoniumphosphate for phosphorus recovery [J].Chemosphere,2006,65(07):1182-1187.
    [67]王建森,宋永会,袁鹏,等.基于PHREEQC程序的磷酸铵镁结晶法污水处理工艺模型化研究[J].环境科学学报,2006,26(02):208-213.
    [68]高英.环境中磷回收的磷酸盐矿物结晶热力学计算模拟[D].北京:中国地质大学(北京),2007.
    [69] Shu L, Schneider P, Jegatheesan V. An economic evaluation of phosphorus recovery asstruvite from digester supernatant [J]. Bioresource Technology,2006,97(17):2211-2216.
    [70]邹雪.利用鸟粪石沉淀法从含磷废水中回收磷的实验研究[D].北京:北京交通大学,2007.
    [71] Doyle J D, Parsons S A. Struvite formation, control and recovery [J]. Water Res.,2002,36(16):3925-3940.
    [72]孙国平.磷酸铵镁结晶法去除和回收猪场废水中氮磷[D].郑州:郑州大学,2010.
    [73]陈瑶.以鸟粪石形式从污水处理厂同时回收氨氮和磷的研究[D].长沙:湖南大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700