用户名: 密码: 验证码:
珠江水系鳜鱼的遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鳜鱼隶属鲈形目(Perciformes)鮨科(Serranidae)鳜亚科(Sinipercinae)。鳜鱼作为东亚地区特有的名贵鱼类,具有较高的生态价值、经济价值和科研价值。鳜鱼因其肉质细嫩、味道鲜美、营养丰富,而受到广大消费者的欢迎。长期以来,受自然环境因素和人为因素两方面的影响,珠江水系鳜鱼的遗传多样性急剧下降。一方面,气候异常变化、地质灾害频发破坏了鳜鱼的生境;另一方面过度捕捞、人工养殖、环境污染及修建水坝,不仅使鳜鱼的个体迅速下降、种质资源受到破坏,而且影响了不同群体间的基因交流。不仅珠江,在长江流域鳜鱼也面临着遗传多样性下降的严峻趋势。作为东亚地区特有的重要经济鱼类,鳜鱼急需加强保护。
     本文基于线粒体细胞色素b基因,对珠江水系干流及其4个主要支流共计126尾鳜鱼进行遗传多样性分析。得到如下结果:
     1.遗传多样性方面,珠江7个地理群体的126尾鳜鱼中,共发现16个单倍型,平均单倍型多样性(Hd)为0.773,核苷酸多样性(Pi)为0.00195,呈现高单倍型多样性低核苷酸多样性的特点。表明鳜鱼可能经历过瓶颈效应或奠基者效应,短期内通过变异积累了足够的单倍型多样性,但相同时间却不足以积累核苷酸多样性。其中以柳州群体遗传多样性最高,而三江群体遗传多样性最低,这可能是因为三江地区地质结构复杂,鱼类生活环境较差,而柳州地区区域稳定性较好且处于柳江干流,便于与其他群体进行基因交流。
     2.遗传分化方面:基于线粒体Cytb基因的NJ系统树中,不同地理群体的鳜鱼没有表现出明显的地理聚群现象,说明没有形成明显的地理结构。珠江水系7个地理群体之间的遗传距离均为0.002,各群体内部遗传距离在0.001-0.002之间。AMOVA分析结果表明,群体间差异仅为8.40%,而群体个体间差异高达88.04%,说明珠江不同水体之间的差异主要来自群体个体间的变异。珠江水系7个地理群体中,三江群体和其他群体之间均发生了不同程度的遗传分化,这可能是由于三江处于柳江支流上游,远离干流,且三江地理环境较差,故阻碍了三江群体同其他群体间的基因交流。
     3.种群扩张方面:歧点分布图、Tajima’s D和Fu’s Fs中性检验结果都表明,在7个鳜鱼群体中,三江群体和柳州群体历史上发生过种群扩张,而鳜鱼作为一个大的群体没有发生过扩张。估计出鳜鱼三江群体、柳州群体的种群扩张时间分别为15~40万年前、18~45万年前。
S.chuatsi sensu lato (Sinipercinae:Serranidae:Perciformes), were rare freshwaterfishes and endemic in East Asia. They had important economic value, ecologicalvalue and scientific value. S.chuatsi sensu lato for its meat And refine, delicious intaste good taste and eutrophy, by the general consumers' welcome.For a long time,affected by natural factors and Human factors, S.chuatsi sensu lato of the mandaringenetic diversity decreasing sharply. on the one hand, unusual climate change,geological disasters destroyed S.chuatsi sensu lato habitat;on the other hand,overfishing, artificial breeding, environment pollution and built DAMS. Not onlymake S.chuatsi sensu lato individual fell rapidly, germplasm resources to sabotage,and affect different groups of communication between genes. Not only the pearl river,in the Yangtze river basin S.chuatsi sensu lato is also facing a genetic diversity of thedecline of the serious trend. As the east Asia region important special economic fish,S.chuatsi sensu lato in genetic diversity protection is urgently needed.
     This paper, based on the mitochondria cytochrome b genes, Sum to126S.chuatsisensu lato in the pearl river water system and its four main tributaries Geneticdiversity analysis. Results were as follows:
     1. Genetic diversity: In126S.chuatsi sensu lato from7geographical populationsof the pearl river,16haplotypes were found. All the group showed high haplotypediversity (Hd is0.773) and low nucleotide diversity (Pi is0.00195). Indicating thatS.chuatsi sensu lato populations may have experienced a recent bottleneck or foundereffect, as sufficient haplotype diversity could be accumulated in short-term bymutation, but it were not enough to accumulate nucleotide diversity. In S.chuatsisensu lato populations the highest genetic diversity were found in Liu zhou population,and the lowest were in San jiang population. This may be because of the complexgeological structure sanjiang region, fish life environment is bad, Liuzhou region andregional stability is good,and in liujiang mainstream, With other groups to geneexchange convenient
     2. Genetic differentiation: In Neighbor-joining tree based on mtDNA Cytbsequences, different geographical population in S.chuatsi sensu lato didn't showobvious geographic cluster phenomenon, show that no obvious geographic structure.The genetic distance was form0.001to0.002within groups and was0.002betweentwo of them. Analysis of molecular variance(AMOVA) indicated that8.40%variations were found among groups, and only88.04%variations existed withinpopulations. Showed that the differences between different geographical populationsin the Pearl River are mainly within group.7geographical population in the pearlriver water system, Sanjiang group and other groups all happened between differentdegree of genetic differentiation, this may be due to the total tributaries in sanjiangupstream, away from the mainstream, and sanjiang geographic environment is bad, Sohindered sanjiang group with other groups of communication between genes.
     3. Population expanding: Mismatch distribution,Tajima’s D and Fu’s Fs neutraltests showed that historical population expansion only occurred in sanjiang populationand liuzhou population, but S.chuatsi sensu lato as a whole didn’t occured populationexpansion. The population expansion of sanjiang population and liuzhou populationappeared in15~400000years ago、18~450000years ago respectively.
引文
陈军,郑文彪,伍育源,等.鳜鱼鱼和大眼鳜鱼鱼年龄生长和繁殖力的比较研究[J].华南师范大学学报,2003,1:110-114.
    陈军.鳜鱼种质指标研究华南师范大学,硕士学位论文,2006.
    陈昌福,李静.翘嘴鳜细菌性败血症病原菌的分离及其致病力的研究[J].华中农业大学学报.,1996,15(4):370-373.
    程起群,韩金娣,王云龙,等.凤鲚两群体线粒体细胞色素b基因片段多态性及进化特征[J].中国水产科学,2006,13(3):337~343.
    程起群,温俊娥,王云龙,等.刀鲚和湖鲚线粒体细胞色素b基因片断多态性及遗传关系[J].湖泊科学,2006,18(4):425-430.
    陈元壮,吴明荣,刘洛夫,等.百色盆地古近系那读组和百岗组层序地层划分与沉积演化[J].石油大学学报(自然科学版),2005,29(1):1-6.
    邓勇,邱瑞山,罗鑫,等.广东河源七目嶂地区内生金属矿产成矿预测[J].华南地质与矿产,2007,2:30-35.
    邓敏.柳州市水资源可持续利用对策研究初探[J].广西轻工业,2006,97(6):30-32.
    方展强,陈军,郑文彪,等.鳜鱼野生群体与养殖群体的RAPD分析[J].大连水产学院学报,2005,20(1):16-19.
    方勤,艾桃山,汪亚平,等.鳜鱼病毒结构特征与形态发生[J].中国病毒学,2001,16(4):382-385.
    符路娣,方展强.鳜鱼精巢的组织学和超微结构观察[J].华南师范大学学报(自然科学版),2004,2:114-119.
    符贵红,褚武英,成嘉,等.大眼鳜鱼和斑鳜鱼肌肉营养成分分析[J].安徽农业科学,2008,36(34):15022-15023.
    范凤娟,章群,赵爽,等.珠江水系特有卷口鱼遗传变异的线粒体Cytb基因序列分析[J].广东农业科学,2010,37(4):161~164.
    冯战.三江至柳州公路洞诺融江大桥建设后河床演变分析[J].企业科技与发展,2010,289(19):47-51.
    郭多,秦书俭,苏玉虹,等.分子标记在犬中的应用进展[J].中国实验动物杂志,2002,12(6):371-373.
    葛颂.酶电泳资料和系统与进化植物学研究综述[J].武汉植物学研究,1994,12(1):71-84.
    高德.鳜鱼仔鱼的摄食与生长、耗氧率及4种药物的敏感性.华中农业大学,硕士学位论文,2008.
    顾天钊,陆承平,陈怀青.鲍氏不动杆菌一鳜鱼暴发性死亡的病新原[J].微生物学通报,1997,24(2):104-106.
    胡文革,王金富.动物线粒体DNA多态研究及其在鱼类群体遗传结构上的应用(综述)[J].石河子大学学报(自然科学版),2001,5(3):253-25.
    何建国,翁少萍,黄志坚,等.鳜暴发流行病病毒性病原的研究[J].中山大学学报:1998,37(5):74-77.
    黄志坚,何建国.鳜鱼细菌病病原的生长和生理特性的研究[J].淡水渔业.,2000,30(2):35-36.
    黄志坚,何建国,唐晶晶,等.广东北江流域部分野生淡水鱼类种质资源调查[J].生态学杂志,2009,28(8):1489-1493.
    黄原.分子系统学原理、方法及应用[M].北京:中国农业出版社,1998.
    江金波,张声才.珠江三角洲水土资源开发利用问题与对策[J].资源开发与市场,1994,10(5):220-223.
    林弘都.台湾与中国大陆地区鲤科鱼类之亲缘地理研究[D].台南:国立成功大学,2008.
    黎裕,贾继增,王天宇.分子标记的种类及其发展[J].生物技术通报,1999,4:19-22.
    李新辉,吴淑勤,李凯彬,等.鳜鱼病毒核酸随机引物扩增与克隆[J].中国水产科学,1999,6(4):21-24.
    李思发.中国淡水主要养殖鱼类种质研究[M].上海:上海科学技术出版社,1998.
    李明,王小明.分子系统学及其应用[J].大自然探索,1997,16(59):48.
    梁友光,刘友亮.大眼鳜鱼密度及其饵料鱼配额的初步研究[J].水利渔业,1999,19(2):22-23.
    梁银铨,崔希群,刘友亮.撅肌肉生化成份分析和营养品质评价[J].水生生物学报,1998,22(4):386-388.
    梁银铨刘友亮崔希群鳜鱼对饵料鱼类选择性的营养生理分析水利渔业1995第1期9-11.
    梁旭方,林小涛,鳜鱼食性驯化的研究[J].水利渔业,2002,22(3):4-6.
    李修峰,黄道明,杨汉运.光照对大眼鳜鱼鱼幼鱼摄食强度的影响[J].湖南农业大学学报,2005,31(2):187-190.
    李思忠.鳜鱼亚科地理分布的研究[J].动物学杂志,1991,26(4):40-44.
    粱旭方,郑微云,王艺磊.鳜鱼鱼视觉特性及其对捕食习性适应的研究[J].水生生物学报,1994,18(3):247-253.
    李明锋.鳜鱼鱼生物学研究进展[J].现代渔业信息,25(7):16-21.
    李红敬.珠江水系大眼鳜鱼的食性研究[J].水利渔业,2008,28(4):66-68.
    李思发,吕国庆,贝纳切兹.长江中下游鲢鳙草青四大家鱼线粒体DNA多样性分析[J].动物学报,1998,44(1):82-93.
    刘焕章.鱼类线粒体DNA控制区的结构和进化:以鳑鲏鱼类为例[J].自然科学进展,2002,12(3):266-270.
    刘峰,鲁双庆,刘臻.三种鳜鱼鱼(Siniperca)生长激素基因内含子多态性的比较研究[J].海洋与湖沼,2009,40(4):470-478.
    廖宗廷,江兴歌,李冉,等.陈跃昆广西百色盆地构造-热演化初步研究[J].石油实验地质,2005,27(1):18-24.
    梅秋兰.鳜鱼原种群体和养殖群体遗传多样性的TRAP及SSR标记分析,湖南农必大学,硕士学位论文,2010.
    蒙子宁.中国近海小黄鱼、带鱼和小带鱼的遗传多样性及其八种石首鱼类的分子系统进化,厦门大学,博士学位论文,2003年.
    马春艳.鳗科鱼类分子系统进化及凤跻、刀跻遗传多样性研究[D].上海:华东师范大学生命科学学院,2010.
    潘炯华.广东淡水鱼类志[M].广州:广东科技出版社,1990,365-368.
    潘炯华,刘成汉,郑文彪.广东北江鱼类区系研究[J].华南师范大学学报,1984,27-29.
    蒲德永,王志坚,周传江,等.大眼鳜鱼幼鱼的发育和生长[J].西南大学学报,2007,29(8):118-122.
    钱惠荣,郑康乐. DNA标记与分子育种[J].生物工程进展,1998,,18(3):12-18.
    庆宁,吕凤义,廖伟群,等.中间黄颡鱼群体遗传变异与亲缘生物地理[J].动物学报,2007,53(5):845~852.
    丘城锋,林岳光,庆宁,等.华南西部及海南岛美丽小条鳅种群遗传变异与亲缘地理[J].动物学报,2008,54(5):805~813.
    任岗.长江以南鳜鱼和大眼鳜鱼的分类地位研究,暨南大学,硕士学位论文,2006.
    任慕莲.黑龙江的崛鱼[J].水产学杂志.,1994,7(2):17-26.
    陕西动物研究所等.秦岭鱼类志[M].北京:科学出版社,1987,202-205.
    施立明,贾旭,胡志昂.中国的生物多样性:现状及其保护对策[M].北京:科学出版社,1993.
    童娟.珠江流域概况及水文特性分析[J].水利科技与经济,2007,13(1):31-33.
    肖武汉,张亚平.银鲴自然群体线粒体DNA的遗传分化[J].水生生物学报,2000,24(1):1-10.
    吴雪峰,赵金良,钱叶洲,等.鳜鱼消化系统器官发生的组织学[J].动物学研究,2007,28(5):511-518.
    魏秀国.珠江流域河流碳通量与河流侵蚀研究,中国科学院研究生院,博士学位论文,2003.
    伍献文.中国经济动物志.淡水鱼类[M].北京:中国科学出版社,1963,140-141.
    王红卫,高士杰,李万东.鳜鱼的生物学特性及养殖效果[J].黑龙江水产,132(4):5-8.
    王广军,谢骏,庞世勋,等.珠江水系大眼鳜鱼的繁殖生物学[J].水产学报,2006,30(1):50-54.
    王莹,赵华斌.分子系统学的理论、方法及展望[J].安徽师范大学学报,2005,28(1):84-88
    王伟,尤锋,高天翔,等.鱼类微卫星标记的研究进展[J].海洋科学,2006,10:81-86.
    吴谡琦,张进兴,洪旭光,等.分子标记技术的进展及其应用[J].高技术通讯,2001,4:99-103.
    吴旭,严美姣,李钟杰.长江中下游不同地理种群鳜鱼遗传结构研究[J].水生生物学报,2010,34(4):843-849.
    吴淑勤,李新辉,潘厚军,等.鳜暴发性传染病病原研究[J].水产学报.,1997.21(增刊):56-60.
    吴淑勤,李新辉,石存斌,等.鳜鱼病毒传播途径的初步研究[J].水产学报,2001,25(5):460-463.
    熊玉宇,朱思华,曾可为,等.鳜鱼稚鱼摄食行为的社会学习[J].四川动物,2010,29(3):415-418.
    谢碧文,黄琪,蒲德永,等.大眼鳜鱼垂体的组织学和组织化学研究[J].安徽农业科学,2009,37(22):10536-10538.
    徐宏发,王静波.分子系统学研究进展[J].生态学杂志,2001,20(3):41-46
    向近敏,林雨霖,周峰主.分子生态学[M].武汉:湖北科学技术出版社,1996,1-5.
    徐吉臣,朱立煌.遗传图谱中的分子标记[J].生物工程进展,1992,12(5):1-3.
    严家彬,李新辉,吴淑勤.鳜鱼病毒病研究进展[J].湛江海洋大学学报,2002,22(4):73-77.
    杨秀平,高秀勤,黄祥柱.鳜鱼脑及脑神经形态的研究[J].华中农业大学学报,1993,12(6):617~623.
    杨承泰,王卫民,曹玲.鳜鱼养殖中的常见疾病及其防治[J].水利渔业,2008,3:104-107.
    于帆洋.长江鳜鱼和大眼鳜鱼复合种的遗传多样性研究,暨南大学,硕士学位论文,2011.
    殷文莉,戴建华,杨代淑.鳜鱼及大眼鳜鱼线粒体DNA比较研究[J].水生生物学报,1998,22(3):257-264.
    余先觉等.中国淡水鱼类染色体.北京:科学出版社,1989
    叶富良,杨萍,宋蓓玲.东江鱼类区系研究[J].湛江水产学院学报,1991,11(2):1-7.
    尤锋.牙鲆群体遗传多样性及鲽形目鱼类分子系统学初步研究,中国科学院海洋研究所,博士学位论文,2001年.
    赵金良,李思发,蔡完其,等.长江水系不同水体级mtDNA控制区序列的遗传分析[J].湖泊科学),2007,19(l):92一97.
    朱思华,曾可为,方刚,等.鳜鱼鱼—鱼种混养模式初步研究[J].水利渔业,2011,21(2):25-27.
    张春光,赵亚辉.我国鳜鱼资源现状及其恢复和合理利用的途径[J].生物学通报,1999,34(12):9-11.
    曾艳英.珠江水系粤桂内河航运物流合作有待加强[J].区域扫描,2011,222(7):15-19.
    曾青兰.鳜常见疾病的防治方法[J].河南水产,2001,3:16-17.
    谌洁.珠江流域诸水系的形成与演变简述[J].珠江现代建设,20008,5:9-11.
    张声才.珠江三角洲的洪涝灾害及其对策[A].桑园围暨珠江三角洲水利史讨论会论文集[C].广州:广东科技出版社,1992,127-128.
    朱松泉.中国淡水鱼类检索[M].1995,南京:江苏科学技术出版社,170-171.
    郑葆珊.广西鱼类志[M].南宁:广西人民出版社,1981,204-207.
    浙江动物志编辑委员会.浙江动物志.淡水鱼类[M].杭州:浙江科学技术出版社,1991,188-189.
    周传江,蒲德永,赵海鹏,等.大眼鳜鱼早期生活习性的观察[J].淡水渔业,2006,36(3):44-46.
    张亮,雷新文,甄晓云,等.罗村口—富宁高速公路沿线原生生态与植物调查筛选研究[J].公路交通科技,2006,23(7):162-166.
    赵亮,张洁,刘志瑾等.乔氏新银鱼基于细胞色素b序列的种群遗传结构和种群历史生物多样性[J].生物多样性,2010,18(3):251~261.
    章群,任岗,钱开诚,等.鳜鱼类系统发育的线粒体细胞色b基因全序列分析[J].生态科学,2006,25(5):430-432.
    朱新产,王宝维,张庭荣.分子标记及其在生物遗传多样性研究中的应用[J].中国医学生物技术杂志,2002,2:33-34.
    钟扬,李伟,黄德世.分支分类的理论与方法[M].北京:科学出版社,1994.
    朱瑜,罗春业,龚竹林.广西柳江鱼类资源调查[J].广西水产科技,1997,1:15-20.
    周辉明,刘引兰,李飞.广西右江鱼类资源研究[J].江西水产科技,2011,127:22-25.
    张亚平.从DNA序列到物种树[J].动物学研究,1996,17(3):247-252.
    Avise J C. Molecular mark ers, natural history and evolution[M].Chapman and HallNY,1994.
    Avise J C, Ellis D. Mitochondrial DNA and the evolutionary genetics of higheranimals[J].Phil osophical Trans ations of the Royal Society B,1986,312(1154):325-342.
    Bachmann K. Molecular markers in plant ecology[J].New Phytologist,1994,126(3):403-418.
    Beebee T.J.C., Rowe G.. An introduction to molecular ecology[M].New York: OxfordUniversity Press Inc.,2004.
    Botstein D, White R L, Skolnick M, et al. Construction of a genetic linkage map inman using restriction fragment length Polymorphisms [J]. A merican journal ofhuman genetics,1980,32(3):314-331.
    Boonseub S., Tobe S.S., Linacre A.M.T.. The use of mitochondrial DNA genes toidentify closely related avian species[J].Forensic Science International:Genetics Supplement Series2,2009:275-277.
    Carvalho G.R.. Advances in Molecular Ecology[M].Amsterdam:OIS Press,1998.
    Carvalho G R,Cross T F. Enhancing fish production through introductions andstocking:genetic perspectives. In:329-338.Cowx I G(ed.), Stocking andIntroduction of Fish[M]. Blackwell Science, Oxford,1998.
    Chenhong Li, Guillermo Ortí, Jinliang Zhao. The phylogenetic placement ofsinipercid fishes (‘‘Perciformes”) revealed by11nuclear loci[J].MolecularPhylogenetics and Evolution56(2010)1096–1104.
    Dali Chen, Xianguang Guo, Pin Nie. Non-monophyly of fish in the Sinipercidae(Perciformes)as inferred from cytochrome b gene[J]. Hydrobiologia (2007)583:77–89.
    Dali Chen, Xianguang Guo, Pin Nie. Phylogenetic studies of sinipercid fish(Perciformes: Sinipercidae) based onmultiple genes, with first application ofan immune-related gene, the virus-induced protein (viperin) gene[J].MolecularPhylogenetics and Evolution55(2010)1167–1176.
    Darwin C.. On the orgin of species[M]. London: John Murray,1859.
    Excoffier L, Laval G, Schneider S. Arlequin ver.3.0: An integrated software packagefor population genetics data analysis[J]. Evolutionary Bioinformatics Online,2005,1:47-50.
    Farris J S. Methods for computing Wagner trees [J]. Systematic Zoology,1970,19(1):83-92.
    Fu Y X.Statistical tests of neutrality of mutations against population growth,hitchhiking and background selection[J]. Genetics,1997,147(2):915-925.
    Fitch W M. Toward Defining the Course of Evolution: Minimum Change for aSpecific Tree Topology [J]. Systematic Zoology,1971:20(4):406-416.
    Foulds L R, Graham R L. The steiner problem in phylogeny is NP-complete [J].Advances inApplied Mathematics,1982,3:43-49.
    Farris J.S.. A successive approximations approach to character weighting [J].Systematic Biology,1969,18(4):374-385.
    Felsenstein J.. Evolutionary trees from DNA sequences: A maximum likelihoodapproach [J]. Journal of Molecular Evolution,1981,17(6):368-376.
    Frankham R, Ballou J D, Briscoe D A. Introduction to Conservation Genetics[M].Cambridge University Press, Cambridge,2002.
    Gregory W.K.. Fish skulls: a study of the evolution of natural mechanisms[M].Philadelphia: American Philosophical Society,1933.
    Jinliang Zhao, Chenhong Li, Lili Zhao, et al. Mitochondrial diversity andphylogeography of the Chinese perch, Siniper chuatsi (Perciformes:Sinipercidae)[J]. Molecular Phylogenetics and Evolution49(2008)399–404.
    Hillis M D C, Moritz C, Mable B K. Molecular systematics (2nd Ed.)[M].Sunderland: Sinauer Associates Inc,1996.
    Hadrys H,Balick M,Schierwater B. Applications of random amplified polymorphicDNA(RAPD)in molecular ecology[J].Mol Ecol,1992,1(1):55~63.
    Hasegawa M., Kishino H., Saitou N.. On the maximum likelihood method inmolecular phylogenetics[J]. Journal of Molecular Evolution,1991,32:443-445.
    Huelsenbeck J.P., Ronquist F.. MRBAYES: Bayesian inference of phylogenetictrees[J]. Bioinformatics,2001,17(8):754-755.
    Holder M, Lewis P O. Phylogeny estimation: traditional and Bayesian approaches [J].Nature Reviews Genetics,2003,4:275-284.
    Irwin D M, Kocher T D, Wilson A C. Evolution of the cytochrome b gene ofmammals[J]. J. Mol. Evol.,1991,32:128-144.
    Joseph Felsenstein. Confidence limits on phylogenies:an approach using thebootstrap[J]. Evolution,1985,39:783-791.
    Kimura M. The Neutral Theory of Molecular Evolution [M].Cambridge UniversityPress,1983.
    Kocher T D, Thomas W K, Meyer A, et al. Dynamics of mitochondrial DNAevolution in animals: amplification and sequencing with conserved primers [J].The National Academy of Sciences,1989,86(16):6196-6200.
    Kumar S, Nei M, Dudley J, et al. MEGA: a biologist-centric software forevolutionary analysis of DNA and protein sequences[J]. Briefings inbioinformatics,2008,9(4):299-306.
    Kapoor B.G., Khanna B.. Ichthyology handbook[M]. Springer,2004.
    Librado P, Rozas J. DNASP v5:a software for comprehensive analysis of DNApolymorphism data[J]. Bioinformatics,2009,25:1451~1452.
    Li W H. Molecular Evolution[M].Sunderland M A, USA: Sinauer Associates,1997.
    Liu Z.W., Biyashev R.M., Maroof M.A.S.. Development of simple sequence repeatDNA markers and their integration into a barley linkage map[J]. TAGTheoretical and Applied Genetics,1996,93(5):869-876.
    Li J. The pdaric method for constructing molecular evolutionary trees from sequencesdata [J].Zoological Research,1992,13(4):387-396.
    Manehenko G P. Handbook of detection of enzymes on electirophoretic gels (2nd Ed)[M]. Ann Arbor: CRC Press,2002.
    Mallatt J.M., Garey J.R., Shultz J.W.. Ecdysozoan phylogeny and Bayesian inference:first use of nearly complete28S and18S rRNA gene sequences to classify thearthropods and their kin[J]. Molecular Phylogenetics and Evolution,2004,31(1):178-191.
    Meyer A. Evolution of Mitochondria DNA in Fishes [A]. In: Hochachka P W andMommsen T P(Ed). Biochemistry and Molecular Biology of Fishes (Vol2)[C].New York: Elsevier,1993,1-38.
    Meyer A.Evolution of mitochondrial DNA in fishes.In:1-38.Hochachka P W andMommsen P(eds)Molecular Biology Frontiers[M].Biochemistry and MolecularBiology of Fishes. Elsevier Press, Amsterdam,1993.
    Meyer A.. Evolution of mitochondria DNA in fishes[A]//Hochachka P.W., MommsenT.P.. Biochemistry and molecular biology of fishes(Vol2). New York:Elsevier,1993:1-38.
    Montagnon D., Ravaoarimanana L.B., Rumpler Y.. Taxonomic relationships andsampling effects among Lepilemuridae and Lemuridae using a partialcytochrome b gene[J]. Comptes Rendus de l'Academie des Sciences Series IIISciences de la Vie,2001,334:647-656.
    Moritz C. Defining ‘evolutionarily significant units’ for conservation[J]. Trends inEcology and Evolution,1994,9:73-375.
    Moritz C.Uses of molecular phylogenies for conservation[J].PhilosophicalTransactions: Biological Sciences,1995,349(1327):113-118.
    Moritz C. Conservation units and translocations: Strategies for conservingevolutionary processes[J]. Hereditas,1999,130(3):217-228.
    Nei M, Kumar S.. Molecular evolution and phylogenetics[M]. New York: OxfordUniv. Press,2000.
    Nielsen R, Yang Z. Likelihood models for detecting positively selected amino acidsites and applications to the HIV-1envelope gene [J].Genetics,1998,148:929-936.
    Nei M., Tajima F., Tateno Y.. Accuracy of estimated phylogenetic trees frommolecular data. Ⅱ. Gene frequency data[J]. Journal of Molecular Evolution,1983,19:153-170.
    Nei M, Li W H. Mathematical model for studying genetic variation in terms ofrestrictionend onucleases[J].Proc Natl Acad Sci U S,1979,76(10):5296-5273.
    Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A. Thecomparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers forgermplasm analysis. Molecular Breeding,1996,2(3):225-238
    Pellegrini M. Assigning protein functions by comparative genome analysis: proteinphylogenetic profiles [J]. The National Academy of Sciences,1999,96(8):4285-4288.
    Pillay M,Kenny S T. Anomalies in direct pair-wise comparisons of RAPD fragmentsfor genetic analusis[J].Biotechniques,1995,19(5):694~696,698.
    Poulakakis N., Lymberakis P., Valakos E., Zouros E., Mylonas M.. Phylogeneticrelationships and biogeography of Podarcis species from the Balkan Peninsula,by bayesian and maximum likelihood analyses of mitochondrial DNAsequences [J]. Molecular Phylogenetics and Evolution,2005,37:845-857.
    Rienzo A.D., Peterson A.C., Garza J.C., Valdes A.M., Slatkin M., Freimer N.B..Mutational processes of simple-sequence repeat loci in human populations[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,1994,91(8):3166-3170.
    Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method ofphylogenetic inference [J]. Molecular Biology and Evolution,1993,10(5):1073-1095.
    Saiton N, Nei M. The neighbor-joining method: a new method for reconstructingphylogenetic trees [J]. Molecular Biology and Evolution,1987,4:406-425.
    Rannala B., Yang Z.. Probability distribution of molecular evolutionary trees: a newmethod of phylogenetic inference[J]. Journal of Molecular Evolution,1996,43:304-311.
    Rogers A R, Harpending H C. Population growth makes waves in the distribution ofpairwise genetic differences[J].Molecular Biology and Evolution,1992,9:552-569.
    Raymond M L, Rousset F M.An exact test for population differentiation[J]. Evolution,1995,49:1280-1283.
    Rogers A R.Genetic evidence for a Pleistocene population explosion[J]. Evolution.1995,49:608-615.
    Rogers A R, Harpending H C. Population growth makes waves in the distribution ofpairwise genetic differences[J].Molecular Biology and Evolution,1992,9:552-569.
    Schaal B A,W J Leverich and S H Rogstad, Comparison of methods for assessinggenetic variation in plant conservation biology In Falk D A and K E Holsinger(eds) Genetics and Conservation of RarePlants[M].New York OxfordUniversity Press,1991:123-134.
    Sunnucks P.. Efficient genetic markers for population biology[J]. Trends in Ecologyand Evolution,2000,15(5):199-203.
    Saiton N., Nei M.. The neighbor-joining method: a new method for reconstructingphylogenetic trees[J]. Molecular Biology and Evolution,1987,4:406-425.
    Swofford D.L., Olsen G.J., Waddell P.J., Hillis D.M.. Phylogenetic inference[J]//Hillis D.M., Moritz C., Mable B.K.. Molecular systematics[M].2nded.Sunderland: Sinauer Associates.1996:407-514.
    Soltis P S,Soltis D E.Genetic variation in endemic and widespread plant species:examples from Saxifragaceae and Polystichum(Dryopteridaceae)[J]. Aliso,1991,13:215-223.
    Shaklee J B, Tamaru C S, Waples R W. Speciation and evolution of marine fishesstudied by electrophoresis analysis of proteins[J].Pac Sci,1982,36:141-157.
    Slatkin M.Gene flow in natural populations[J].Annual Review of Ecology andSystematics,1985,16:393-430.
    Sloss B., Billington N., Burr B.M.. A molecular phylogeny of the Percidae (Teleostei,Perciformes) based on mitochondrial DNA sequence[J]. MolecularPhylogenetics and Evolution,2004,32:545-562.
    Takezaki N, Rzhetsky A, Nei M. Phylogenetic test of the molecular clock andlinearized tree [J]. Molecular Biology and Evolution,1995,12:823-833.
    Thorpe J.P. The molecular clock hypothesis: Biochemical evolution, geneticdifferentiation and systematics[J]. Annual Review of Ecology, Evolution, andSystematics,1982,13:139-168.
    Takezaki N., Nei M.. Genetic distance and reconstruction of phylogenetic trees frommicrosatellite DNA[J]. Genetics,1996,144:389-399.
    Tajima F. Statistical method for testing the neutral mutation hypothesis by DNApolymorphism[J]. Genetics,1989,123:585-595.
    Utter F M.Biochemical genetics and fishery management: an historical perspective[J].Journal of Fish Biology,1991,39:1-20.
    Vrijenhoek R C.Genetic diversity and fitness in small populations.In: Loeschcke V,Tomiuk J, Jian S K(eds).Conservation Genetics[M].Birkh user-Verlag, Basel,1994:37-53.
    Williams Jq Kubelik AR, Livak KJ. DNA polymorphism amplified by arbitaryprimersare useful as genetic marker. Nucleic Acids Research,1990,18:6531-6535.
    Winkworth R C, Bell C D, Donoghue M J.Mitochondrial sequence data andDipsacales phylogeny: Mixed models, partitioned Bayesian analyses, andmodel selection [J].Molecular Phylogenet ics and Evolution,2008,46:830-843.
    Wilcox T P, Zwickl D J, Heath T A, et al. Phylogenetic relationships of the dwarfboasand acomparison of Bayesian and bootstrap measures of phylogenetic support[J].Molecular Phylogenetics and Evolution,2002,25:361-371.
    Wright S.The genetical structure of population structure[J].Annals of Eugenics,1951,15:323~354.
    Xianguang Guo Dali Chen.Comparative evolution of the mitochondrial cytochromeb gene and nuclear S7ribosomal protein gene intron1in sinipercid fishes andtheir relatives[J]. Hydrobiologia (2010)649:139–156.
    Yang Z., Rannala B.. Bayesian phylogenetic inference using DNA sequences: AMarkov chain Monte Carlo method[J]. Journal of Molecular Evolution,1997,14:717-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700