用户名: 密码: 验证码:
RNA干扰抑制Snail基因表达对于肝癌HepG2细胞上皮间质转化以及体外侵袭的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:以RNA干扰(RNAinterference,RNAi)方法抑制转录因子Snail的表达后,研究对人肝癌HepG2细胞株上皮间质转化(epithelial-mesenchymal transition, EMT)的表型和体外侵袭能力的影响。
     方法:设计并合成Snail的小干扰RNA(Snail siRNA)和阴性对照siRNA,分别转染肝癌HepG2细胞,得到Snail表达受抑制的Snail siRNA组细胞和Snail表达未受影响的Negative control组细胞。分别采用Western blot和RT-PCR技术检测Control组(正常非转染组)、Negative control组和Snail siRNA组细胞Snail、E-cadherin和Vimentin的表达,用Transwell小室模型检测细胞侵袭能力。
     结果:Control组细胞:Snail和Vimentin表达较强,但是E-cadherin表达较弱。Snail siRNA组与Control组相比,Snail和Vimentin的表达显著减弱(P<0.05),E-cadherin的表达显著增强(P<0.05),Transwell小室透膜细胞数显著减少(P<0.05)。Negative control组与Control组相比,Snail、E-cadherin和Vimentin的表达及Transwell小室透膜细胞数均无显著差异(P>0.05)。
     结论:通过RNA干扰抑制Snail表达能有效地抑制HepG2细胞上皮间质转化过程和体外侵袭能力。Snail可能在肝细胞癌上皮间质转化及侵袭过程中发挥重要作用,抑制Snail表达可能成为治疗肝细胞癌的可行方法。
Objective: To investigate the effect of RNA interference(RNAi) targetingtranscription factor Snail on epithelial-mesenchymal transition(EMT) phenotype andinvasion ability of human hepatocellular carcinoma HepG2cell in vitro.
     Methods: The siRNA targeting Snail and negatvie control siRNA weredesigned,chemical synthesized and transfected into human hepatocellular carcinomaHepG2cell,Snail siRNA group cells expressing Snail suppressed and Negative controlgroup cells expressing Snail uninfluenced were obtained.In Control group(nontransfectiongroup),Negative control group and Snail siRNA group cells,Snail,E-cadherin and Vimentinexpression were detected by using Western blot and RT-PCR,invasion ability was detectedby using Transwell chamber model.
     Results: Control group:Both Snail and Vimentin expression were strong positive,butE-cadherin expression was poor positive.Snail siRNA group compared with Controlgroup,Snail and Vimentin expression decreased significantly(P<0.05),E-cadherinexpression increased significantly(P<0.05),the numbers of cells permeating septum ofTranswell chamber decreased significantly(P<0.05).Negative control group comparedwith Control group,Snail、E-cadherin and Vimentin expression,and the numbers of cellspermeating septum of Transwell chamber were not significantly different(P>0.05).
     Conclusion: RNA interference targeting Snail expression can inhibit efficientlyepithelial-mesenchymal transition and invasion ability of HepG2cells in vitro. Snailmight play a crucial role in epithelial-mesenchymal transition and invasion of hepatocellular carcinoma,and suppression of Snail expression might be a promisingstrategy for the treatment of human hepatocellular carcinoma.
引文
1. Epstein RJ,Leung TW. Reversing hepatocellular carcinoma progression by usingnetworked biological therapies[J]. Clin Cancer Res,2007,13(1):11-17.
    2. Kaibori M,Saito T,Matsui Y,Uchida Y,Ishizaki M,Kamiyama Y. A review of theprognostic factors in patients with recurrence after liver resection for hepatocellularcarcinoma[J]. American journal of surgery,2007,193(4):431-437.
    3. Hwang LH. Gene therapy strategies for hepatocellular carcinoma[J]. Jounal ofbiomedical science,2006,13(4):453-468.
    4. Nieto MA. The snail superfamily of zinc-finger transcription factors[J]. Nat Rev MolCell Biol,2002,3:155-66.
    5. Alberga A, Boulay JL, Kempe E, Dennefeld C, Haenlin M. The snail gene required formesoderm formation in Drosophila is expressed dynamically in derivatives of allthree germ layers[J]. Development,1991,111:983-92
    6.杨文君,陈丽荣.上皮间质转化在肿瘤侵袭转移中的作用[J].实用肿瘤杂志,2008,(1)23:86.
    7. Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controlsepithelial-mesenchymal transitions by repressing E-cadherin expression[J]. Nat CellBiol,2000,2:76-83.
    8. Battle E, Sancho E, Franci C, et al. The transcription factor snail is a repressor ofE-cadherin gene expression in epithelial tumour cells[J]. Nat Cell Biol,2000,2:84-9.
    9. Hemavathy K, Ashraf SI, Ip YT. Snail/slug family of repressors: slowly going into thefast lane of development and cancer[J]. Gene,2000,257:1-12.
    10. Thiery JP. Epithelial-mesenchymal transitions in tumour progression[J]. Nat RevCancer,2002,2:442-54.
    11. Hugo H, Ackland ML, Blick T, et al. Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression[J]. J Cell Physiol,2007,213:374-83.
    12. Oda H, Tsukita S, Takeichi M. Dynamic behavior of the cadherin-based cell-celladhesion system during Drosophila gastrulation[J]. Dev Biol,1998,203:435-50.
    13. Moody SE, Perez D, Pan TC, et al. The transcriptional repressor Snail promotesmammary tumor recurrence[J]. Cancer Cell,2005,8:197-209.
    14. Tamura S, Shiozaki H, Miyata M, et al. Decreased E-cadherin expression is associatedwith haematogenous recurrence and poor prognosis in patients with squamous cellcarcinoma of the oesophagus[J]. Br J Surg,1996,83:1608-14.
    15. Castro Alves C, Rosivatz E, Schott C, et al. Slug is overexpressed in gastriccarcinomas and may act synergistically with SIPl and Snail in the down-regulation ofE-cadherin[J]. J Pathol,2007,211:507-15.
    16. Hotz B, Arndt M, Dullat S, Bhargava S, Buhr HJ, Hotz HG. Epithelial to mesenchymaltransition: expression of the regulators snail, slug, and twist in pancreatic cancer[J].Clin Cancer Res,2007,13:4769-76.
    17. Elloul S, Silins I, Trope CG, Benshushan A, Davidson B, Reich R. Expression ofE-cadherin transcriptional regulators in ovarian carcinoma[J]. Virchows Arch,2006,449:520-8.
    18. Matzke MA, Brirchler JA. RNAi-mediated pathways in the nucleus[J]. Nat RevGenet,2005,6:24-35.
    19. Cheng JC, Moore TB,Sakamoto KM. RNA interference and human disease[J]. MolGenet Metah,2003,80:122-128.
    20. Stevenson M. Therapeutic potential of RNA interference[J].N Engl J Med,2004,351(17):1772-1777.
    21. Greenburg G, Hay E D. Epithelia suspended in collagen gels can lose polarity andexpress characteristics of migrating mesenchymal cells[J]. J Cell Biol,1982,95:333-339.
    22. A. Hertig, J. Verine, B. Mougenot, C. et al. Risk Factors for Early Epithelial toMesenchymal Transition in Renal Grafts[J]. American Journal of Transplantion,2006,6(12):2937-2946.
    23. Voulgari A,Pintzas A.Epithelial-mesenchymal transition in cancer metastasis:mechanisms,markers and strategies to overcome drug resistance in the clinic[J].Biochim Biophys Acta,2009,1796:75-90.
    24. Kang Y.Massagu J. Epithelial-mesenchymal transitions:twist in development andmetastasis[J].Cell,2004,118:277-279.
    25. Come C, Arnoux V, Bibeau F, et al. Roles of the transcription factors Snail and slugduring mammary morphogenesis and breast carcinoma progression[J]. J MammaryGland Biol Neoplasia,2004,9(2):183-193.
    26. Rosivatz E, Becker I, Specht K, et al. Differential expression of the epithelial-mesenchymal transition regulators Snail, SIP1, and twist in gastric cancer[J]. Am JPathol,2002,161(5):1881-1891.
    27. MiyoshiA, Kitajima Y, Kido S, et al. Snail accelerates cancer invasion by up regulatingMMP expression and is associated with poor prognosis of hepatocelluar carcinoma[J].Br J Cancer,2005,92(2):252-258.
    28. Plamer HG, LarribaMJ, Garcia JM. The transcription factor Snail represses vitaminDreceptor expression and responsiveness in human colon cancer[J]. Nat Med,2004,10(9):917-919.
    29. Yu JY, Deruiter SL, Turner DL. RNA interference by expression of short-interferingRNAs and hairpin RNAs in mammalian cells [J]. Proc Natl Acad Sci USA.2002,99(9):6047-52.
    30. Izquierdo M. Short interfering RNAs as a tool for cancer gene therapy [J]. CancerGene Ther,2005,12(3):217-27.
    1. Greenburg G, Hay E D. Epithelia suspended in collagen gels can lose polarity andexpress characteristics of migrating mesenchymal cells[J]. J Cell Biol,1982,95:333-339.
    2. Boyer B,Valles AM,Edme N. Induction and regulation of epithelial-mesenchymaltransitions[J]. Biochem Pharmacol,2000,60:1091-1099.
    3. Liu Y. New insights into epithelial-mesenchymal transition in kidney fibrosis[J]. J AmSoc Nephrol2010;21:212-222.
    4. Lopez-Novoa JM,Nieto MA. Inflammation and EMT:an alliance towards organ fibrosisand cancer progression[J]. EMBO Mol Med2009;1:303-314.
    5. Gavert N,Ben-Ze'ev A. Epithelial-mesenchymal transition and the invasive potential oftumors[J]. Trends Mol Med,2008,14:199-209.
    6. Ondertt,Gupta PB,Mani SA,et al. Loss of E-cadherin promotes Metastasis via MultipleDownstream Transcripional pathways[J]. Cancer Res,2008,68(10):3645-3654.
    7. Solnica-Krezel L. Conserved patterns of cell movements during vertebrategastrulation[J]. Curr Biol,2005,15(6):R213-R228.
    8. Mercado-Pimentel ME, Runyan RB. Multiple transforming growth factor-β isoformsand receptors function during epithelial-mesenchymal cell transformation in theembryonic heart[J]. Cells Tissues Organs,2007185(1-3),146-156.
    9. Nawshad A, LaGamba D, Hay ED. Transforming growth factor β(TGFβ) signalling inpalatal growth, apoptosis and epithelial mesenchymal transformation(EMT)[J]. ArchOral Biol,2004,49(9):675-689.
    10. Shook D, Keller R. Mechanisms, mechanics and function of epithelial-mesenchymaltransitions in early development[J]. Mech Dev,2003,120(11):1351-1383.
    11. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications forfibrosis[J]. J Clin Invest,2003,112(12):1776-1784.
    12. Thiery JP. Epithelial-mesenchymal transitions in tumor progression[J]. Nat RevCancer,2002,2(6):442-454.
    13. Olmeda D, Montes A, Moreno-Bueno G,Flores JM, Portillo F, Cano A. Snai1and Snai2collaborate on tumor growth and metastasis properties of mouse skin carcinoma celllines[J]. Oncogene,2008,27(34):4690-4701.
    14. Yang J, Mani SA, Donaher JL,et al. Twist, a master regulator of morphogenesis, playsan essential role in tumor metastasis[J]. Cell,2004,117(7):927-939.
    15. Micalizzi DS, Christensen KL, Jedlicka P, et al. The Six1homeoprotein induces humanmammary carcinoma cells to undergo epithelial-mesenchymal transition andmetastasis in mice through TGF-β signaling[J]. J Clin Invest,2009,119(9):2678-2690.
    16. Self M, Lagutin OV, Bowling B, et al. Six2is required for suppression ofnephrogenesis and progenitor renewal in the developing kidney[J]. EMBOJ,2006,25(21):5214-5228.
    17. Jakowlew SB. Transforming growth factor-β in cancer and metastasis[J]. CancerMetastasis Rev,2006,25(3):435-457.
    18. Brabletz T, Hlubek F, Spaderna S, et al. Invasion and metastasis in colorectalcancer:epithelial-mesenchymal transition, mesenchymal–epithelial transition, stemcells and β-catenin[J]. Cells Tissues Organs,2005,179(1-2):56-65.
    19. Muller HA. Of mice, frogs and flies:generation of membrane asymmetries in earlydevelopment[J]. Dev Growth Differ,2001,43(4):327-342.
    20. Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signalingmechanisms that create it[J]. Dev Dyn,2005,233(3):706-720.
    21. Nakaya Y, Sukowati EW, Wu Y, Sheng G. RhoA and microtubule dynamics controlcell-basement membrane interaction in EMT during gastrulation[J]. Nat CellBiol,2008,10(7):765-775.
    22. Romano LA, Runyan RB. Slug is an essential target of TGFβ2signaling in thedeveloping chicken heart[J]. Dev Biol,2000,223(1):91-102.
    23. Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. The mouse snail gene encodes a keyregulator of the epithelial-mesenchymal transition[J]. Mol Cell Biol,2001,21(23):8184-8188.
    24. Yu W, Kamara H, Svoboda KK. The role of twist during palate development[J]. DevDyn,2008,237(10):2716-2725.
    25. Nawshad A, Hay ED. TGFβ3signaling activates transcription of the LEF1gene toinduce epithelial mesenchymal transformation during mouse palate development[J]. JCell Biol,2003,163(6):1291-1301.
    26. Morkel M, Huelsken J, Wakamiya M, et al. β-catenin regulates Cripto-and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation[J].Development,2003,130(25):6283-6294.
    27. Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymalstates in development and disease[J]. Semin Cell Dev Biol,2008,19(3):294-308.
    28. Martinez-Alvarez C, Blanco MJ, Perez R,et al. Snail family members and cell survivalin physiological and pathological cleft palates[J]. Dev Biol,2004,265(1):207-218.
    29. Azhar M, Schultz Jel J, Grupp I,et al. Transforming growth factor β in cardiovasculardevelopment and function[J]. Cytokine Growth Factor Rev,2003,14(5):391-407.
    30. Savagner P, Kusewitt DF, Carver EA,et al. Developmental transcription factor slug isrequired for effective re-epithelialization by adult keratinocytes[J]. J Cell Physiol,2005,202(3):858-866.
    31. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads ofdevelopment and tumor metastasis[J]. Dev Cell,2008,14(6):818-829.
    32. Guarino M, Rubino B, Ballabio G. The role of epithelial-mesenchymal transition incancer pathology[J]. Pathology,2007,39(3):305-318.
    33. Gavert N, Ben-Ze’ev A. Epithelial-mesenchymal transition and the invasive potentialof tumors[J]. Trends Mol Med,2008,14(5):199-209.
    34. Trimboli AJ, Fukino K, de Bruin A,et al. Direct evidence for epithelial-mesenchymaltransitions in breast cancer[J]. Cancer Res,2008,68(3):937-945.
    35. Soinila J, Soinila S. Interaction of calcitonin gene-related peptide (CGRP),substance P(SP) and conventional autonomic agonists in rat subsmandibular salivary peroxidaserelease in vita[J]. Auton Neurosci,2001,86(3):163-169.
    36. Hardy RG,Vicente-Duenas C,Gonza-Herrer I,et al. Snail family transcription factors areimplicated in thyroid carcinogenesis[J]. J Pathol,2007,171(3):1037-1046.
    37. Fritzenwanker JH, Saina M, Technau U. Analysis of forkhead and snail expressionreveals epithelial-mesenchymal transitions during embryonic and larval developmentof Nematostella vectensis[J]. Dev Biol,2004,275(2):389-402.
    38. Taneyhill LA, Coles EG, Bronner-Fraser M. Snail2directly represses cadherin6Bduring epithelial-to-mesenchymal transitions of the neural crest[J]. Development,2007,134(8):1481-1490.
    39. Cano A, Perez-Moreno MA, Rodrigo I,et al. The transcription factor snail controlsepithelial-mesenchymal transitions by repressing E-cadherin expression[J]. Nat CellBiol,2000,2(2):76-83.
    40. Batlle E, Sancho E, Franci C,et al. The transcription factor snail is a repressor ofE-cadherin gene expression in epithelial tumor cells[J]. Nat Cell Biol,2000,2(2):84-89.
    41. Usami Y, Satake S, Nakayama F,et al. Snail-associated epithelial–mesenchymaltransition promotes oesophageal squamouscell carcinoma motility and progression[J].J Pathol,2008,215(3):330-339.
    42. Dhasarathy A, Kajita M, Wade PA. The transcription factor snail mediates epithelial tomesenchymal transitions by repression of estrogen receptor-α[J]. Mol Endocrino,2007,l21(12):2907-2918.
    43. Kurrey NK, K A, Bapat SA. Snail and Slug are major determinants of ovarian cancerinvasiveness at the transcription level[J]. Gynecol Oncol,2005,97(1):155-165.
    44. Moreno-Bueno G, Cubillo E, Sarrio D,et al. Genetic profiling of epithelial cellsexpressing E-cadherin repressors reveals a distinct role for Snail, Slug, and E47factors in epithelial-mesenchymal transition[J]. Cancer Res,2006,66(19):9543-9556.
    45. Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosomedissociation, an initial and necessary step for growth factor-inducedepithelial-mesenchymal transition[J]. J Cell Biol,1997,137(6):1403-1419.
    46. Jorda M, Olmeda D, Vinyals A,et al. Upregulation of MMP-9in MDCK epithelial cellline in response to expression of the Snail transcription factor[J]. J Cell Sci,2005,118(Pt15):3371-3385.
    47. de Boer TP, van Veen TA, Bierhuizen MF,et al. Connexin43repression followingepithelium-to-mesenchyme transition in embryonal carcinoma cells requires Snail1transcription factor[J].Differentiation,2007,75(3):208-218.
    48. Bolos V, Peinado H, Perez-Moreno MA, Fraga MF, Esteller M, Cano A. Thetranscription factor Slug represses E-cadherin expression and induces epithelial tomesenchymal transitions: a comparison with Snail and E47repressors[J]. J CellSci,2003,116(Pt3):499-511.
    49. Park SH, Cheung LW, Wong AS, Leung PC. Estrogen regulates Snail and Slug in thedown-regulation of E-cadherin and induces metastatic potential of ovarian cancercells through estrogen receptor α[J]. Mol Endocrinol,2008,22(9):2085-2098.
    50. Fujita N, Jaye DL, Kajita M, Geigerman C,Moreno CS, Wade PA. MTA3, aMi-2/NuRD complex subunit, regulates an invasive growth pathway in breastcancer[J]. Cell,2003,113(2):207-219.
    51. Vesuna F, van Diest P, Chen JH, Raman V. Twist is a transcriptional repressor ofE-cadherin gene expression in breast cancer[J]. Biochem Biophys Res Commun,2008,367(2):235-241.
    52. Cheng GZ, Chan J, Wang Q, Zhang W, Sun CD, Wang LH. Twist transcriptionallyup-regulates AKT2in breast cancer cells leading to increased migration, invasion, andresistance to paclitaxel[J]. Cancer Res,2007,67(5):1979-1987.
    53. Niu RF, Zhang L, Xi GM,et al. Upregulation of Twist induces angiogenesis andcorrelates with metastasis in hepatocellular carcinoma[J]. J Exp Clin CancerRes,2007,26(3):385-394.
    54. Yuen HF, Kwok WK, Chan KK,et al. TWIST modulates prostate cancer cellmediatedbone cell activity and is upregulated by osteogenic induction[J]. Carcinogenesis,2008,29(8):1509-1518.
    55. Fondrevelle ME, Kantelip B, Reiter RE,et al. The expression of Twist has an impact onsurvival in human bladder cancer and is influenced by the smoking status[J]. UrolOncol,2008,27(3):268-276.
    56. Kyo S, Sakaguchi J, Ohno S,et al. High Twist expression is involved in infiltrativeendometrial cancer and affects patient survival[J]. Hum Pathol,2006,37(4):431-438.
    57. Li X, Oghi KA, Zhang J,et al. Eya protein phosphatase activity regulatesSix1-Dach-Eya transcriptional effects in mammalian organogenesis[J]. Nature,2003,426(6964):247-254.
    58. Wellner U,Schubert J,Burk U C,Schmalhofer O,Zhu F,Sonntag A,et al. TheEMT-activator ZEB1promotes tumorigenicity by repressing stemness-inhibitingmicroRNAs[J]. Nat Cell Biol,2009,11:1487-1495.
    59. Peinado H,Olmeda D,Cano A. Snail, Zeb and bHLH factors in tumour progression: analliance against the epithelial phenotype? Nat Rev Cancer,2007,7(6):415-28.
    60. Massague J. TGF beta in cancer[J]. Cell,2008,134(2):215-230.
    61. Yu M,Smolen G A,Zhang J,Wittner B,Schott B J,Brachtel E,et al. Adevelopmentally regulated inducer of EMT,LBX1,contributes to breast cancerprogression[J]. Genes Dev,2009,23:1737-1742.
    62. Crawford SE, Stellmach V, Murphy-Ullrich JE,et al. Thrombospondin-1is a majoractivator of TGF-β1in vivo[J]. Cell,1998,93(7):1159-1170.
    63. Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in humandisease[J]. N Engl J Med,2000,342(18):1350-1358.
    64. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation ofthe polarity protein Par6by TGFβ receptors controls epithelial cell plasticity[J].Science,2005,307(5715):1603-1609.
    65. Peinado H, Quintanilla M, Cano A. Transforming growth factor β-1induces snailtranscription factor in epithelial cell lines:mechanisms for epithelial mesenchymaltransitions[J]. J Biol Chem,2003,278(23):21113-21123.
    66. Bhowmick NA, Ghiassi M, Bakin A,et al. Transforming growth factor-β1mediatesepithelial to mesenchymal transdifferentiation through a RhoA-dependentmechanism[J]. Mol Biol Cell,2001,12(1):27-36(2001).
    67. Hannon GJ, Beach D. p15INK4B is a potential effector of TGF-β-induced cell cyclearrest[J]. Nature,1994,371(6494):257-261.
    68. Baldwin RL, Tran H, Karlan BY. Loss of c-myc repression coincides with ovariancancer resistance to transforming growth factor β growth arrest independent oftransforming growth factor β/Smad signaling[J]. Cancer Res,2003,63(6):1413-1419.
    69. Soufla G, Sifakis S, Baritaki S,et al. VEGF,FGF2, TGFB1and TGFBR1mRNAexpression levels correlate with the malignant transformation of the uterine cervix[J].Cancer Lett,2005,221(1):105-118.
    70. Kjellman C, Olofsson SP, Hansson O,et al. Expression of TGF-β isoforms, TGF-βreceptors, and SMAD molecules at different stages of human glioma[J]. Int JCancer,2000,89(3):251-258.
    71. Mu L, Katsaros D, Lu L,et al. TGF-β1genotype and phenotype in breast cancer andtheir associations with IGFs and patient survival[J]. Br J Cancer,2008,99(8):1357-1363.
    72. Nelson WJ, Nusse R. Convergence of Wnt,β-catenin, and cadherin pathways[J].Science,2004,303(5663):1483-1487.
    73. Conacci-Sorrell M, Simcha I, Ben-Yedidia T,et al. Autoregulation of E-cadherinexpression by cadherin-cadherin interactions: the roles of β-catenin signaling, Slug,and MAPK[J]. J Cell Biol2003,163(4):847-857.
    74. Gilles C, Polette M, Mestdagt M,et al.Transactivation of vimentin by β-catenin inhuman breast cancer cells[J]. Cancer Res,2003,63(10):2658-2664.
    75. Huber MA, Kraut N, Beug H. Molecular requirements for epithelial–mesenchymaltransition during tumor progression[J]. Curr Opin Cell Biol,2005,17(5):548-558.
    76. Liebner S, Cattelino A, Gallini R,et al. β-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse[J]. JCell Biol2004,166(3):359-367.
    77. Kim K, Lu Z, Hay ED. Direct evidence for a role of β-catenin/LEF-1signalingpathway in induction of EMT[J]. Cell Biol Int,2002,26(5):463-476.
    78. Yook JI, Li XY, Ota I,et al. A Wnt-Axin2-GSK3β cascade regulates Snail1activity inbreast cancer cells[J]. Nat Cell Biol,2006,8(12):1398-1406.
    79. Wong SC, Lo ES, Lee KC,et al. Prognostic and diagnostic significance of β-cateninnuclear immunostaining in colorectal cancer[J]. Clin Cancer Res,2004,10(4):1401-1408.
    80. Chen J, Imanaka N, Chen J, Griffin JD. Hypoxia potentiates Notch signaling in breastcancer leading to decreased E-cadherin expression and increased cell migration andinvasion[J]. Br J Cancer,2010,102:351-360.
    81. Wang Z, Li Y, Kong D, Banerjee S,et al. Acquisition of epithelial-mesenchymaltransition phenotype of gemcitabine-resistant pancreatic cancer cells is linked withactivation of the notch signaling pathway[J]. Cancer Res,2009,69:2400-2407.
    82. Veenendaal LM, Kranenburg O, Smakman N,et al. Differential Notch and TGFbetasignaling in primary colorectal tumors and their corresponding metastases[J]. CellOncol,2008,30:1-11.
    83. Feng Y H, Zhu Y F, Sun W J. Hedgehog and tumorigenesis[J]. Cancer Prevent CureRes,2005,32(12):796-9.
    84. Feldmann G, Dhara S, Fendrich V,et al. Blockade of hedgehog signaling inhibitspancreatic cancer invasion and metastases: a new paradigm for combination therapyin solid cancers[J]. Cancer Res,2007,67:2187-2196.
    85. Yan W, Fu Y, Tian D,et al. PI3kinase/Akt signaling mediates epithelial-mesenchymaltransition in hypoxic hepatocellular carcinoma cells[J]. Biochem Biophys ResCommun,2009,382:631-636.
    86. Strippoli R, Benedicto I, Pérez Lozano ML,et al. Epithelial-to-mesenchymal transitionof peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snail1pathway[J].Dis Model Mech,2008,1:264-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700