用户名: 密码: 验证码:
胶州湾中型浮游动物对浮游植物和微型浮游动物级联式摄食的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2007年12月至2008月11月在胶州湾的2个典型站位采样,结合Landry稀释法和改进后的Frost的直接计量法研究了不同粒径范围的中型浮游动物对浮游植物和微型浮游动物的摄食速率,并对中型浮游动物的食物组成、中型浮游动物群落和微型浮游动物群落对浮游植物群落的摄食压力进行了估算。
     调查期间,A站共发现浮游植物42属76种,物种丰富度和细胞丰度均以硅藻为主,且主要是一些近岸广布种和暖温带种。浮游植物细胞丰度最高峰出现在7月,为1301.52×10~3 cells L~(-1),最低值出现在4月,为17.44×10~3 cells L~(-1)。优势种主要为中肋骨条藻(Skeletonema costatum)、诺氏海链藻(Thalassiosiranordenski(?)ldii)和浮动弯角藻(Eucampia zodiacus)等。B站共发现浮游植物44属83种,物种丰富度和细胞丰度同样均以硅藻为主。浮游植物细胞丰度的变化趋势表现为双周期型,最高峰出现在1月,为1257.48×10~3 cells L~(-1),次高峰出现在3月,为1137.67×10~3 cells L~(-1),最低值出现在6月和11月,分别为11.32×10~3cells L~(-1)和21.77×10~3 cells L~(-1)。优势种主要为中肋骨条藻(Skeletonema costatum)、丹麦细柱藻(Leptocylindrus danicus)和窄隙角毛藻(Chaetoceros affinis)等。A站和B站微型浮游动物优势种主要为百乐拟铃虫(Tintinnopsis beroidea)、急游虫(Stromdium sp.)和桡足类幼虫(Copepod nauplii)等。A站微型浮游动物个体丰度最大值出现在6月,为6.20×10~6 ind m~(-3),最低值出现在11月,为0.68×10~6 ind m~(-3)。B站微型浮游动物个体丰度最大值出现在3月,为4.44×10~6 ind m~(-3),最低值出现在6月,为0.49×10~6 ind m~(-3)。
     A站浮游植物内禀生长率介于0.38-2.58 d~(-1),均值0.99 d~(-1);微型浮游动物对浮游植物摄食率介于0.12-2.23 d~(-1),均值0.77 d~(-1);微型浮游动物对浮游植物现存量摄食压力介于19.49-1179.88%,均值225.22%;微型浮游动物对浮游植物潜在初级生产力的摄食压力介于25.96-102.06%,均值72.74%。B站浮游植物内禀生胶州湾中型浮游动物对浮游植物和微型浮游动物级联式摄食的初步研究长率介于0.45-2.21 d~(-1),均值1.12 d~(-1),微型浮游动物对浮游植物摄食率介于0.07-2.12 d~(-1),均值0.95 d~(1-),微型浮游动物对浮游植物现存量摄食压力介于10.71-771.55%,均值253.21%,微型浮游动物对浮游植物潜在初级生产力的摄食压力介于19.05-104.86%,均值78.14%。。与世界其他海区相比,胶州湾的微型浮游动物对浮游植物潜在初级生产力的摄食压力处于一般水平。
     Frost的直接计量法结果表明:对于A站,较小粒径范围的中型浮游动物对浮游植物的物种摄食速率介于15.13-556.67×10~3cells ind.~(-1) d~(-1),均值为158.48×10~3cells ind.~(-1) d~(-1),较大粒径范围的中型浮游动物对浮游植物的物种摄食速率介于22.32-637.01×10~3cells ind.(-1) d~(-1),均值176.12×10~3cells ind.~(-1) d~(-1)对于B站,较小粒径范围的中型浮游动物对浮游植物的物种摄食速率介于15.28-1360.16×10~3cells ind.~(-1) d~(-1),均值296.63×10~3cells ind.~(-1) d~(-1),较大粒径范围的中型浮游动物对浮游植物的物种摄食速率介于12.72-741.93×10~3cells ind.~(-1) d~(-1),均值195.27-10~3cells ind.~(-1)d~(-1)。中型浮游动物对浮游植物摄食速率具有饵料丰度依赖性,在浮游植物较低的细胞丰度下,其摄食速率会随着浮游植物细胞丰度的增加而增加,达到一定阈值后随着浮游植物细胞丰度增加而降低。对于A站,较小粒径范围的中型浮游动物对微型浮游动物的物种摄食速率介于0.37-6.19×10~3ind.ind.~(-1)d~(-1),均值2.21×10~3 ind.ind.~(-1) d~(-1),较大粒径范围的中型浮游动物对微型浮游动物的物种摄食速率介于0.49-10.07×10~3ind.ind.~(-1) d~(-1),均值3.39-10~3ind.ind.~(-1) d~(-1);对于B站,较小粒径范围的中型浮游动物对微型浮游动物的物种摄食速率介于0.30-9.12×10~3 ind.ind.~(-1) d~(-1),均值1.81×10~3ind.ind.~(-1) d~(-1),较大粒径范围的中型浮游动物对微型浮游动物的物种摄食速率介于0.19-10.40×10~3ind.ind.~(-1)d~(-1),均值2.06-10~3 ind.ind.~(-1) d~(-1)。比较中型浮游动物食物组成表明,中型浮游动物的食物组成中主要以浮游植物为主。对于A站,浮游植物占较小粒径范围的中型浮游动物食物比例介于27.44-97.49%,均值66.96%,浮游植物占较大粒径范围的中型浮游动物食物比例介于17.79-97.38%,均值59.20%;对于B站,浮游植物占较小粒径范围的中型浮游动物食物比例介于46.54-98.08%,均值81.68%,浮游植物占较大粒径范围的中型浮游动物食物比例介于48.09-98.63%,均值79.02%。但微型浮游动物也占一定的比例,在个别月份成为中型浮游动物食物的主要组成部分。对于A站,较小粒径范围的中型浮游动物群落对浮游植物群落现存量的摄食压力介于0.40-6.16%,均值1.56%,微型浮游动物群落对浮游植物群落现存量的摄食压力介于93.84-99.60%,均值98.54%;较大粒径范围的中型浮游动物群落对浮游植物群落现存量的摄食压力介于0.17-3.61%,均值0.95%,微型浮游动物群落对浮游植物群落现存量的摄食压力介于96.39-99.83%,均值99.05%;对于B站,较小粒径范围的中型浮游动物群落对浮游植物群落现存量的摄食压力介于1.36-29.85%,均值5.72%,微型浮游动物群落对浮游植物群落现存量的摄食压力介于70.15-98.64%,均值94.28%;较大粒径范围的中型浮游动物群落对浮游植物群落现存量的摄食压力介于0.30-17.03%,均值3.01%,微型浮游动物群落对浮游植物群落现存量的摄食压力介于82.97-99.70%,均值96.99%。比较中型浮游动物群落和微型浮游动物群落对浮游植物群落现存量的摄食压力表明,微型浮游动物群落对浮游植物群落现存量的摄食压力要高于中型浮游动物群落对浮游植物群落现存量的摄食压力。
A preliminary study on grazing speed of different size mesozooplankton on phytoplankton and microzooplankton was carried out with feeding experiments, the Frost's method, and the Landry dilution experiment in 2 stationsin the Jiaozhou Bay, from December 2007 to November 2008. Changes in community structure of phytoplankton and microzooplankton, grazing speed, food composition of mesozooplankton with different size range, and mesozooplankton with different size range and microzooplankton grazing pressures on phytoplankton were studied.
     During the survey, there were 76 phytoplankton species found in the station A, which mainly were composed of diatom. The eell abundance of phytoplankton changed dramatically in different month and the maximum value was 1301.52×10~3 cells L.~(-1), which appeared in July, while the minimum was 17.44×10~3 cells L~(-1), which took place in April. The dominant species were Skeletonema costatum, Thalassiosira nordenski(?)ldii and Eucampia zodiacus. There were 76 phytoplankton species found in the station A, which mainly were composed of diatom as the same as station A. The seasonal variation of cell abundance of phytoplankton was a typical double period's type in station B. The first highest peaks appeared in January,the cell abundance was 1257.48×10~3 cells L~(-1).Next highest peaks was March, the cell abundance was 1137.67×10~3 cells L~(-1),lowest peaks appeared in June and November, the cell abundance separately was 11.32×10~3 cells L~(-1) and 21.77×10~3 cells L~(-1). The dominant species were Skeletonema costatum, Leptocylindrus danicus and Chaetoceros affinis. The dominant microzooplankton species were Tintinnopsis beroidea, Stromdium sp. and Copepod naupli. The abundance was lowest and averaged 0.68×10~6 ind m~(-3) for microzooplankton in November, while there was a maximum value (6.20×10~6 ind m~(-3)) in June. For station B, the highest peaks appeared in March, which averaged value was 4.44×10~6 ind m~(-3), while the lowest peaks appeared in June, which averaged value was 0.49×10~6 ind m~(-3).
     Through the Landry dilution experiment, the instantaneous growth rate of phytoplankton ranged from 0.38-2.58 d~(-1) at 0.99 d~(-1) average; ingestion rate of microzooplankton on phytoplankton varied from 0.12-2.23 d~(-1) in average of 0.77 d~(-1); the percentage of phytoplankton standing crop ingested by microzooplankton ranged from 19.49-1179.88% at 225.22% average; and the percentage of phytoplankton potential production ingested by microzooplankton varied from 25.96-102.06% in average of 72.74%. For station B, the instantaneous growth rate of phytoplankton ranged from 0.45-2.21 d~(-1) at 1.12 d~(-1) average; ingestion rate of microzooplankton on phytoplankton varied from 0.07-2.12 d~(-1) in average of 0.95 d~(-1); the percentage of phytoplankton standing crop ingested by microzooplankton ranged from 10.71-771.55%% at 253.21% average;and the percentage of phytoplankton potential production ingested by microzooplankton varied from 19.05-104.86% in average of 78.14%.Compared with the similar studies in other waters around the world,the grazing pressure of microzooplankton in the Jiaozhou Bay is at the middle levels.
     Through the Frost's method ,for station A, the specific grazing speed of the smaller size mesozooplankton on phytoplankton varied from 15.13-556.67×10~3cells ind.~(-1)d~(-1) ind.~(-1) d~(-1), in average of 158.48×10~3cells ind.~(-1) d~(-1), while the specific grazing speed of the bigger size mesozooplankton on phytoplankton varied from 22.32-637.01×10~3cells ind.~(-1)d~(-1), in average of 176.12×10~3cells ind.~(-1) d~(-1). For station B, the specific grazing speed of the smaller size mesozooplankton on phytoplankton varied from 15.28-1360.16×10~3cells ind.~(-1)d~(-1), in average of 296.63×10~3cells ind.~(-1)d~(-1), while the specific grazing speed of the bigger size mesozooplankton on phytoplankton varied from 12.72-741.93×10~3cells ind.~(-1)d~(-1), in average of 195.27×10~3cells ind.~(-1)d~(-1). The grazing speed of different size mesozooplankton on phytoplankton was food-density dependent, increasing with phytoplankton cell abundance up to a threshold value,and then decreasing regardless of the cell abundance increase. For station A, the species specific grazing speed of smaller mesozooplankton on microzooplankton varied from 0.37-6.19×10~3 ind. ind.~(-1) d~(-1), in average of 2.21×10~3 ind. ind.~(-1) d~(-1), the species specific grazing speed of bigger mesozooplankton on microzooplankton varied from 0.49-10.07×10~3 ind. ind.~(-1) d~(-1), in average of 3.39×10~3 ind. ind.~(-1) d~(-1), for station B, the species specific grazing speed of smaller mesozooplankton on microzooplankton varied from 0.30-9.12×10~3 ind. ind.~(-1) d~(-1), in average of 1.81×10~3 ind. ind.~(-1) d~(-1), the species specific grazing speed of bigger mesozooplankton on microzooplankton varied from 0.19-10.40×10~3 ind. ind.~(-1) d~(-1), in average of 2.06×10~3 ind. ind.~(-1) d~(-1). Food composition of different size mesozooplankton was mostly phytoplankton, for station A, taking 27.44-97.49% ,in average of 66.96% of the the smaller mesozooplankton total food, and taking 17.79-97.38%, in average of 59.20% of the the bigger mesozooplankton total food;for station B, taking 46.54~98.08%,in average of 81.68% of the the smaller mesozooplankton total food, and taking 48.09-98.63% ,in average of 79.02% of the the bigger mesozooplankton total food. Microzooplankton was less taken, but it was a major food source in some month. For station A, the grazing pressure of smaller size mesozooplankton community on phytoplankton community standing crop varied from 0.40-6.16 %, in average of 1.56%, the grazing pressure of microzooplankton community on phytoplankton community standing crop varied from 93.84-99.60 %, in average of 98.54%,and the grazing pressure of bigger size mesozooplankton community on phytoplankton community standing crop varied from 0.17-3.61%, in average of 0.95%, the grazing pressure of microzooplankton community on phytoplankton community standing crop varied from 96.39-99.83%, in average of 99.05%;for station B, the grazing pressure of smaller size mesozooplankton community on phytoplankton community standing crop varied from 1.36-29.85%, in average of 5.72%, the grazing pressure of microzooplankton community on phytoplankton community standing crop varied from 70.15-98.64%, in average of 94.28%,and the grazing pressure of bigger size mesozooplankton community on phytoplankton community standing crop varied from 0.30-17.03%, in average of 3.01%, the grazing pressure of microzooplankton community on phytoplankton community standing crop varied from 82.97-99.70%, in average of 96.99%.Comparison in grazing pressure on phytop lankton by mesozooplankton and microzooplankton,the microzooplankton built much higher pressure on standing phytoplankton crop than that mesozooplankton did in the Jiaozhou Bay.
引文
1. 高尚武,王克.胶州湾的浮游动物数量河分布.见:胶州湾生态学河生物资源.北京:科学出版社,1995.151-158
    2. 高亚辉,林波.几种因素对太平洋纺锤水蚤摄食率的影响.厦门大学学报,1999,38(5):751-757
    3. 国家技术监督局.海洋调查规范:海洋生物调查.北京:中国标准出版社.1992.17-20
    4. 郭玉洁,杨则禹.浮游植物.胶州湾生态学和生物学资源.北京:科学出版社,1992.136-169
    5. 黄世玫.胶州湾的浮游动物.山东海洋学院学报,1983,13(2):43-60
    6. 江天久,杞桑.广东深圳大鹏湾的桡足类腹刺纺锤水蚤对链状亚历山大藻摄食的研究.7暨南大学学报,1994,15(3):99-105
    7. 焦念志.海湾生态过程与持续发展.北京:科学出版社.2001
    8. 李超伦,孙松,吉鹏,等.南极普里兹湾边缘浮冰区微型浮游动物的摄食及其氮的排泄.海洋与湖沼,2000,31(6):657-663
    9. 李超伦,王克.植食性浮游桡足类摄食生态学研究进展.生态学报,2002,22(4):593-596
    10. 刘东艳,孙军,唐优才,等.胶州湾北部水域浮游植物研究Ⅰ-种类组成和数量变化.青岛海洋大学学报,2002,32(1):67-72
    11. 刘东艳,孙军,张利永.胶州湾浮游植物水花期群落结构特征.应用生态学报,2003,11(14):1963-1966
    12. 刘瑞玉.胶州湾生态学和生态资源.北京:科学出版社,1992.
    13. 钱树本,王筱庆,陈国蔚.胶州湾的浮游藻类.山东海洋学院学报,1983,13(1):39-56
    14. 沈锦兰,吴桂汉.厦门杏林虾池夏冬季微型浮游动物对浮游植物的摄食压力.台湾海峡,2002,21(1):31-36
    15. 沈志良.胶州湾营养盐结构的长期变化及其对生态环境的影响.海洋与湖沼,2002,33(3):322-331
    16. 孙军,刘东艳,钱树本.浮游植物生物量研究:Ⅰ.浮游植物生物量细胞体积转化法.海洋学报,1999,21(2):75-85
    17. 孙军,刘东艳.浮游植物生物量研究:Ⅱ.胶州湾网采浮游植物细胞体积转换生物量.海洋学报,2000,22(1):102-109
    18. 孙军,刘东艳,钱树本.一种海洋浮游植物定量研究分析方法-Uterm(?)hl方法的介绍及其改进.黄渤海海洋,2002,20(2):105-112
    19. 孙军,刘东艳,王宗灵,等.春季赤潮频发期东海微型浮游动物摄食研究.应用生态学报,2003a,14(7):1073-1080
    20. 孙军,宋秀贤,殷克东,等.香港水样夏季微型浮游动物摄食研究.生态学报,2003b,23(4):712-724
    21. 孙军,刘东艳,王宗灵,等.浮游动物摄食在赤潮生消过程中的作用.生态学报,2004a,24(7):1514-1522
    22. 孙军,宋书群,王丹,等.中华哲水蚤(Calanus sinicus)对浮游植物和微型浮游动物的摄食速率估算.生态学报,2007,27(8):3302-3315
    23. 孙军,John Dawson,刘东艳.夏季胶州湾微型浮游动物摄食初步研究.应用生态学报,2004b,15(7):1245-1252
    24. 孙军,宋秀贤,殷克东,等.香港水域夏季微型浮游动物摄食的初步研究.生态学报,2003,23(4):91-105
    25. 孙松,刘桂梅,张永山,等.90年代胶州湾浮游植物种类组成和数量分布特征.海洋与湖沼,2002,(海洋动物研究专辑):37-44
    26. 孙松,张永山,吴玉霖,等.胶州湾初级生产力周年变化.海洋与湖沼,2005,35(6):481-486
    27. 王荣,范春雷.东海浮游桡足类的摄食活动及其对垂直碳通量的贡献.海洋与湖沼,1997,28(6):579-587
    28. 吴玉霖,孙松,张永山.环境长期变化对胶州湾浮游植物群落结构的影响.海洋与湖沼,2005,35(6):487-498
    29. 吴玉霖,孙松,张永山,等.胶州湾浮游植物数量长期动态变化的研究.海洋与湖沼,2004,36(6):518-523
    30. 王小东,孙军,刘冬艳,等.海洋中型浮游动物的选择性摄食对浮游植物群落的控制.海洋科学进展,2005,23(4):524-535
    31. 肖贻昌,高尚武,张河清.胶州湾的浮游动物.见:胶州湾生态学河生物资源.北京:科学出版社,1992.170-203
    32. 徐兆礼,陈亚瞿.东黄海秋季浮游动物优势种聚集强度与鲐鲹渔场的关系.生态学杂志,1989,8(4):13-15
    33. 杨纪明.渤海中华哲水蚤摄食的初步研究.海洋与湖沼,1997,28(4):376-382
    34. 张武昌.浮游动物现场摄食压力的研究方法.海洋科学,1998,5:17-19
    35. 张武昌,王荣.渤海微型浮游动物及其对浮游植物的摄食压力.海洋与湖沼,2000a,31(3):252-258
    36. 张武昌,王荣.饵料浓度对中华哲水藻摄食的影响.海洋学报,2000b,22(6):88-94
    37. 张武昌,王荣.海洋微型浮游动物对浮游植物和初级生产力的摄食压力.生态学报,2001a,21(8):1360-1368
    38. 张武昌,王荣.胶州湾桡足类幼虫和浮游生纤毛虫中的风度和生物量.海洋与湖沼,2001a,32(3):280-287
    39. 赵文,宋青春,高放.大连近海两种桡足类摄食生态的初步研究.大连水产学院学报,2002,17(1):8-14
    40. 邹景忠.赤潮灾害.见:曾呈奎,徐鸿儒,王春林.中国海洋志,2003.802-826.
    41. 郑培迎.胶州湾功能与区划.海岸工程,1994,12(4):63-69
    42. Azam F, Fenchel T, Field J G, et al. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser., 1983, 10: 257-263
    43. Batten S D, Fileman E S, Halvorsen E. The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain. Progr. Oceanor., 2001,51:385-398
    44. Berggreen U, Hansen B, Ki(?)rboe T. Food size spectra, ingestion and growth of the copepod Acartia tonsa during development: implications for determination of copepod production. Mar. Biol., 1988, 99: 341-352
    45. Brown S L, Landry M R, Christensen S, et al. Microbial community dynamics and taxon-specific phytoplankton production in the Arabia Sea during the 1995 monsoon seasons. Deep-sea Res. Ⅱ, 2002, 49: 2345-2376
    46. Burkill P H, Mantoura R F C, Llewellyn C A, et al. Microzooplankton grazing and selectivity of phytoplankton in coastal waters. Mar. Biol., 1987, 93(4): 581-590
    47.Burkill P H,Head E,Fransz G,et al.Grazing by microzooplankton.In:SCOR/JGOFS Report No.6:Core measurement protocols.Reports of the Core Measurement Working Groups.1990,31-37
    48.Burkill P H,Edwards E S,Sleigh M A.Microzooplankton and their role in controlling phytoplankton growth in the marginal ice zone of the Bellingshausen Sea.Deep-Sea Res Ⅱ,1995,42:1277-1290
    49.Calbet A,Landry M R.Mesozooplankton influences on the microbial food web:direct and indirect trophic interactions in the oligotrophic open ocean.Limnology and Oceanography,1999,44:1370-1380
    50.Calbet A,Landry M R.Phytoplankton growth,microzooplankton grazing,and carbon cycling in marine systems.Limnology and Oceanography,2004,49:51-57
    51.Capriulo G M,Capenter E J.Grazing by 35 to 202 urn microzooplankton in Long Island Sound.Mar.Biol.1980,56:319-326
    52.Cosper E,Stepien J C.PhytoPlankron-zooPlankton xouPling in the outer continental shelf and slope waters of the Mid-Atlantic Bight,June 1979.Estuar Coast.Shelf Sci.1984,18:145-155
    53.Cowles T J,Olson R J,Chisholm S W.Food selection by copepods:Discrimination on the basis of food quality.Mar.Biol,1988,100:41-49
    54.Cushing D H.Grazing in Lake Erken.Limnol.Oceanogr.,1976,21:349-356
    55.David A.Caron,Mark R.Dennett,Darcy J.Lonsdale,et al.Microzooplankton herbivory in the Ross Sea,Antarctica.Deep-Sea Research Ⅱ,2000,47:3249-3272
    56.Deason E E.Grazing of Acartia hudsonica (A.clausi) on Skeletonema costatum in Narragansett Bay (USA):Influence of food concent ration and temperature.Mar.Biol,1980,60:101-113
    57.DeMott W R,Moxter F.Foraging on cyanobacteria by copepods:Responses to chemical defenses and resource abundance.Ecology,1991,72:1820-1834
    58.Edwards E S,Burkill P H,Stelfox C E.Zooplankton herbiovry in the Arabian Sea during and after the SW monsoon,1994,Deep-sea Res.,1999,46:843-863
    59.Fenchel T.Marine plankton food chains.Annu.Rev.Ecol.Syst.,1988,19:19-38
    60.Froneman P W,Perissinotto R,McQuaid C D.Seasonal variations in microzooplankton grazing in the region of the Subtropical Convergence.Mar.Biol.,1996,126(3):433-442
    61.Frost B W.Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacific.Limnology and Oceanography,1972,17:805-815
    62.Frost B W.Feeding processes at lower trophic levels in pelagic communities.In:Miller C.B.ed.The Biology of the Oceanic Pacific.Corvallis:Oregon State University Press,1974.59-77
    63.Frost B W.A threshold feeding behavior in Calanus pacificus.Limnol.Oceanogr.1975,20:263-266
    64.Frost B W.Grazing control of phytoplankton stock in the open subarctic Pacific Ocean:A model assessing the role of mesozooplankton,particularly the large Calanoid copepods Neocalanus spp.Mar.Eco.Prog.Ser,1987,39(1):49~68
    65.Gallagos C L.Microzooplankton grazing on phytoplankton in the Rhode River,Maryland:nonlinear feeding kinetics.Mar.Ecol.Prog.Ser.,1989,57:23~33
    66.Gifford D J.Impact of grazing by microzooplankton in the northwest arm of Halifax Harbor,Nova Scotia,Mar.Ecol.Prog.Ser.,1988,47:249-253
    67.Gifford D J.Consumption of protozoa by copepods feeding on natural microplankton assemblages.In:Kemp P F,Sherr B F,Sherr E B,Cole J J eds.Handbook of methods in aquatic microbial ecology.Boca Raton,FL,Lewis Publishers,1993.723-729
    68.Haberman K L,Ross R M and Quetin L B.Diet of the Antarctic krill (Euphausia superba Dana):Ⅱ.Selective grazing in mixed phytoplankton assemblages.Journal of Experimental Marine Biology and Ecology,2003,283:97-113
    69.Heinbokel J F.Stdies on functional role of tintinnids in the southern California Bight.Grazing and growth rates in laboratory cultures.Mar.Biol,1978,47:177-189
    70.Huntley M.Feeding biology of Calanus:A new perspective.J.Phys.Oceanogr.,1988,18(2):339-346
    71.James M R,Hall J A.Microzooplankton grazing in different water masses associated with the Subtropical Convergence round the South Island,New Zealand.Deep Sea Res.I,1998,45(10):1689-1707
    72.Jeffrey S W,Humphrey G F.New spectrophotometric equations for determining chlorophylls a,b,and c in higher plants,algae and natural phytoplankton.Biochen.Physiol.Pfanzen.,1975,167:191-194
    73.Jeffrey S W,Mantoura R F C.Development of pigment methods for oceanography:SCOR-supported Working Groups and objectives.In:Jeffrey,S.W.et al.(Eds.),Phytoplankton Pigments in Oceanography:Guidelines to Modern Methods.UNESCO,Paris.1997.19-36
    74.Kalmijn A J.Hydrodynamic and acoustic field detection.Atema J,Fay R R,Popper A N,et al.Sensory Biology of Aquatic Organisms.New York:Springer-Verlag,1988.83~130
    75.Katechakis A,Stibor H,Sommer U et al,Feeding selectivities and food niche separation of A cartia clausi,Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea,NW Mediterranean).Journal of Plankton Research,2004,26:589~603
    76.Knap A,Michaels A,Close A,et al,Protocols for the Joint Global Ocean Flux Study (JGOFS) Core Measurements.UNESCO,1994.1~170
    77.Kofoid CA,Swezy O.The free-living unarmored dinoflagellata.Mem Univ Calif,1921,5:1~562
    78.Lalii C M,Parsons T R.Biological oceanography:an introduction.New York:Pergamon Press,1997.
    79.Lam R K,Frost B W.Model of copepod filtering response to changes in size and concentration of food.Limnol Oceanogr.,1976,21:490~500
    80.Landry M R,Hassett R P.Estimating the grazing impact of Marine Micro-zooplankton.Marine Biology,1982,67:283~288
    81.Landry M R,Monger B C,Selph K E.Time-dependancy of microzooplankton grazing and phytoplankton growth in the subarctic Pacific.Progr Oceanogr.,1993,32:205~222
    82.Landry M R,Kirshtein J,Constantinou J.A refined dilution technique for measuring the community grazing impact of microzooplankton,with experimental tests in the central equatorial Pacific.Mar.Ecol.Prog.Ser.,1995,120:53~63
    82 Lessard E J,Swiff E.Species-specific grazing rates of heterotrophic dinofiangellates in oceasnic waters measured with a dual-label radioisotope technique. Mar. Biol. 1985, 87: 289-296
    83 Li C L, Sun S, Ji P, et al. Herbivorous activity and nitrogen excretion of microzooplankton in the marginal ice zone of the Prydz Bay, Antarctic. Oceanol Limnol Sin, 2000, 31(6): 657-663
    84 Li C L, Wang R, Sun S. Grazing impact of copepods on phytoplankton in the Bohai Sea. Est. Coast. Shelf Sci. , 2003, 58:487-498
    85 Li W K W, Dickie P D. Growth of bacteria in: eawater filtered through 0.2μm Nuclepore membranes: implications for dilution experiments. Mar. Ecol. Prog. Ser., 1985, 26: 245-252
    86 Liu H, Suzuki K, Saino T. Phytoplankton growth and microzooplankton grazing in the subarctic Pacific Ocean and he Bering Sea during summer1999. Deep-sea Res. I, 2002, 9: 363-375
    87 Louise S. The influence of addition on growth rates of Phytoplankton groups, and microzooplankton grazing rates in a mesocosm experiment. J. Exp. Biol. Ecol, 1998, 228: 53-71
    88 L(?)ning J. How do predator-induced changes affect prey vulnerability? Larvae of Chaoborus flavicans (Diptera: Chaoboridae) feeding on Daphnia pulex (Crustacea: Cladocera). Freshw. Biol., 1995, 34: 523-530
    89. Mackas D, Bohrer R. Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J. Exp. Mar. Biol. Ecol, 1976,25: 77-85
    90. Margalef R. Perspective in Ecological Theory. University of Chicago Press, 1968. 111
    91. Marin V, Huntley M E, Frost B. Measuring feeding rates of pelagic herbivores: analysis of experimental design and methods. Marine Biology, 1986,93:49-58
    92. McManus G B, Edering-Cantrell M C. Phytoplankton pigments and growth rates and microzooplankton grazing in a large temperate estuary. Mar. Ecol. Prog. Ser., 1992, 87: 77-85
    93. McManus G B. Phytoplankton abundance and pigment changes during simulated in situdilution experiments in estuarine waters: possible artifacts caused by algal light adaptation. J. Plankton Res., 1995,17: 1705-1716
    94. Moore P A, Fields D M, Jeannette Y. Physical constraints of chemoreception in foraging copepods. Limnol. Oceanogr., 1999,44(1): 1662-1772
    95. Mullin M M, Stewart E F, Fuglister F J. Ingestion by planktonic grazer as a function of concentration of food. Limnol. Oceanogr., 1975,20: 259-262
    96. Murrell M C, Hollibaugh J T. Microzooplankton grazing in northern San Francisco Bay measured by the dilution method. Aquat Microb Ecol, 1998,15: 53-63
    97. Nejstgaard J C, Gismervik I, Solberg P T. Feeding and reproduction by Calanus finmarchicus, and microzooplankton grazing during mesocosm blooms of diatoms and the coccolithophore Emiliania huxleyi. Marine Ecology Progress Series, 1997, 147: 197-217
    98. Nejstgaard J C, Naustvoll L J, Sazhin A. Correction for underestimation of microzooplankton grazing in bottle incubation experiments with mesozooplankton. Marine Ecology Progress Series, 2001, 221: 59-75
    99. Nemoto T. Chlorophyll pigments in the stomach and gut of some macrozooplankton species. In: Takenouchi AY et al. (eds), Biological oceanography of the northern North Pacific Ocean. Tokyo: Idemitsu Shoten, 1970. 411-418
    100.Paranjape M A.Grazing by microzooplankton in the eastern Canadian arctic in summer 1983.Mar Ecol Prog Ser,1987,40:239-246
    101.Pielou E C.Ecological Diversity.Wiley-Inters,New York,1975.163
    102.Putland J N.Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring,summer and winter.J Plankton Res,2000,22(2):253~277
    103.Putt M,Stoecker D K.An experimentally determined carbon:volume ratio for marine oligotrichous ciliates from estuarine and coastal waters.Limnology and Oceanography,1989,34:1097~1103
    104.Sautour B,Artigas L F,Delmas D,et al.Grazing impact of micro zooplankton and mesozooplankton during a spring situation in coastal waters off the Gironde estuary.J Plankton Res,2000,22(3):531~552
    105.Schuter L.The influence of nutrient addition on growth rates of Phytoplankton groups,and microzooplankton grazing rates in a mesocosm experiment.J.Exp.Mar.Biol.Ecol.,1998,228:53~71
    106.Shannon C E,Wiener W The Mathematical Theory of Communication.University of Illinois,Urbanna,1949.117
    107.Sheldon R W,Nival P,Rassoulzsdegan F.An experimental investigation of a flagellateciliate-copepod food chain with some observations relevant to the linear biomass hypothesis.Limnol.Oceanogr.1986,3:184~188
    108.Soohoo J B,Kiefer D A.Vertical distribution of phaeopigments.I.A simple grazing and photooxidative scheme for small particles.Deep Sea Ses.,1982,29:1539~1551
    109.Strickler J R.Calanoid copepods,feeding currents and the role of gravity.Science,1982,218:158~160
    110.Sun J,Liu D Y.Geometric models for calculating cell biovolume and surface area for phytoplankton.Journal of Plankton Research,2003,25(11):1331~1346
    112.Suzuki K,Tsuda A,Kiyosawa H,et al.Grazing impact of microzooplankton on a diatom bloom in a mesocosm as estimated by pigment specific dilution technique.J.Exp.Mar.Biol.Ecol.,2002,271(1):99~120
    113.Takahashi M,Hoskins K D.Winter conditions of marine Plankton populations in Saanich Inlet.B C.Canada.Ⅱ.Microzooplankton,J.Exp.Mar.Biol.Ecol.1978,32:27~37
    114.Urban R J,Dagg M,Peterson J.Copepod grazing on phytoplankton in the Pacific sector of the Antartic Polar Front.Deep Sea Res.,2001,48:4224~4246
    115.Uye S,Nagano N,Tamaki H.Geographical and seasonal variations in abundance,biomass and estimated production rates of microzooplankton in the Inland Sea of Japan.Journal of Oceanography,1996,52:689~703
    116.Van Germerden H.Coexistence of organisms competing for the same substrate:an example among the purple sulfur bacteria.Microbial Ecology,1974,1:104~119
    117.Verity P G,Stoecker D K,Sieracke M E,et al.Microzoo plankton grazing of primary production at 140°W in the equatorial Pacific.Deep-Sea Res Ⅱ,1996,43:1227~1255
    118.Wang R,Conover R J.Dynamics of gut pigment in the copepod Temora longicornis and the determination of in situ grazing rates.Limnol.Oceanogr.,1986,31:867~877
    119.Waterhouse T Y,Welschmeyer N A.Taxon-specific analysis of microzooplankton grazing rates and phytoplankton growth rates.Limnol.Oceanogr,1995,40:827~834
    120.Watras C J,Garcon V C,Olson R J,et al.The effect of zooplankton grazing on estuarine blooms of the toxic dinoflagellate Gonyaulax tamarensis.J.Plankton Res.,1985,7(6):891~908
    121.Welschmeyer N A,Lorenzen C J.Chlorophyll budgets:zooplankton grazing and phytoplankton growth in a temperate fjord and in the Central Pacific Gyre.Limnol.Oceanogr.,1985,30:1~21
    122.Zhang W C,Wang R.Microzoopankton and their grazing pressure on phytoplankton in Bohai Sea.Oceanol Limnol Sin,2000,31(3):252~258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700