用户名: 密码: 验证码:
新疆库鲁克塔格兴地河新元古代镁铁—超镁铁岩体研Rodinia超大陆裂解事件的制约
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新疆库鲁克塔格新元古代中期火成岩受到地学界的普遍关注,这一时期岩浆活动对于探讨该时期的构造环境以及Rodina超大陆裂解事件的动力学机制等地质问题至关重要。本文选择库鲁克塔格兴地河三个镁铁-超镁铁岩体,对其进行了详细的岩相学、LA-ICP-MS锆石U-Pb年代学、地球化学以及Hf同位素研究,探讨其源区特征、岩浆演化过程以及形成的构造背景,为库鲁克塔格新元古代的动力学演化和构造环境之争提供新的制约。获得以下主要认识:
     1、兴地I号岩体主体为辉长岩,含少量辉石岩和橄榄辉长岩。辉长岩中央发育不规则状花岗岩,花岗岩侵入于辉长岩中;兴地Ⅱ号岩体有辉石岩、橄榄岩和辉长岩,辉长岩体中存在一期脉状花岗岩;兴地Ⅳ号岩体主要为辉石闪长岩,局部见辉长岩。
     2、LA-ICP-MS锆石U-Pb定年研究表明:兴地Ⅰ号辉长岩年龄为728±3Ma(MSWD=0.77),中部花岗岩LA-ICP-MS年龄为741±6.3M(MSWD=0.65),边部花岗岩LA-ICP-MS年龄为729.4±2.6Ma(MSWD=1.3);兴地Ⅱ号花岗岩年龄731±13Ma(MSWD=0.77),略晚于辉长岩体的侵位时代。兴地Ⅳ号辉石闪长岩年龄为737.8±6.4Ma(MSWD=0.47)。兴地河三个岩体均属新元古代中期岩浆活动的产物。
     3、三个岩体的辉长岩均为大陆拉斑玄武岩系列,稀土及微量元素分配模式相似,富集大离子亲石元素(LILE)和轻稀土元素(LREE),亏损Nb、Ta、P和Ti等高场强元素(HFSE)和重稀土元素(HREE)。其中兴地II号岩体不相容元素富集不显著,轻重稀土分异不明显,相比较而言兴地I号和IV岩体不相容元素较富集,轻重稀土分异适中。三个岩体的地球化学特征表明它们具有同源性,结合兴地IV岩体辉石闪长岩Hf同位素的研究成果(εHf(t)=0.29~-23.78),表明三个岩体源区均是富集型大陆岩石圈地幔。岩浆上升侵位过程中发生结晶分异作用并遭受了地壳的混染。
     4、900-1000Ma期间俯冲作用对库鲁克塔格大陆岩石圈的改造,降低了其固相线温度,随后在岩浆活动热传导作用下,诱发大陆岩石圈的大比例部分熔融。受全球Rodinia超大陆裂解事件的影响,新元古代中期库鲁克塔格地区发生岩浆上涌,并造成经历了地幔交代的大陆岩石圈地幔的部分熔融,进而形成新元古代镁铁-超镁铁岩。在早期裂解过程中(820-800Ma),由于岩石圈地幔厚度大,交代岩石圈地幔发生低程度部分熔融,形成且干布拉克偏碱性镁铁-超镁铁-碳酸岩带;裂解峰期(-760Ma):随着软流圈上涌,岩石圈强烈减薄并发生高比例部分熔融,拉斑质基性岩浆的分异并侵位产生兴地II号镁铁-超镁铁杂岩体,这一时期的基性岩呈现不同程度的Nb-Ta亏损,具有较低的Nb/La比值,可能反映了岩石圈(地壳)混染作用或者再循环大陆岩石圈地幔的贡献;裂解晚期(-730Ma):软流圈活动减弱,岩石圈冷却增厚,部分熔融程度降低,基性岩浆的分异和侵位产生兴地I号和IV号岩体镁铁-超镁铁岩,岩浆的底侵位造成上覆下地壳物质的脱水熔融,形成相伴生的花岗岩(兴地I号花岗岩)。
The various igneous rocks of the middle Neoproterozoic that are well developedin Quruqtagh have been received a gread deal of attention to many researchers overthe world. Tectonic environment of this period of magmatism is Rodinasupercontinent breakup event in the dynamics mechanism for the discussion ofgeological problems of vital importance. Three Neoproterozic mafic and ultramaficintrusions in Quruqtagh Xingdi River were selected for comprehensivestudies,detailed outcrop investigations,petrology,LA-ICP-MS ziron U-Pb dating,whole-rock precision geochemical and Hf isotopic,research mafic-ultramafic rock inthe mantle source region characteristics and magma evolurion process.Thus providenew constraints for the dynamics of the Quruqtagh Neoproterozoic evolution andtectonic setting of contention.Some achieves are as following:
     1. The main rock lithofacies of Xingdi No.Ⅰintrusions is gabbro,gabbro containa small amout of pyroxenite and olivine gabbro;Xingdi No.Ⅱintrusions mainlycomposed of pyroxene facies.peridotite facies and gabbro facies; Xingdi No.Ⅳintrusions is fine-grained diorite,local gabbro.
     2. The LA-ICP-MS zircon U-Pb geochronology studies have shown thatXingdi No.Ⅰgabbro age of728±3Ma (MSWD=0.77), central granite age of741±6.3M (MSWD=0.65), and edge granite age of729.4±2.6Ma (MSWD=1.3);Xingdi No.Ⅱassociated with the granite age of731±13Ma (MSWD=0.77),slightly later than the gabbro emplacement age. Xingdi No.Ⅳgabbro diorite age is737.8±6.4Ma (MSWD=0.47). The age of three Xingdi River mafic-ultramaficrock are both the middle Neoproterozoic.
     3、Three intrusions gabbro are both continental tholeiite series, enriched in largeion lithophile elements (LILE) and light rare earth elements (LREE), the loss of Nb,Ta, P and Ti, high-field strength elements (HFSE) and heavy REE (HREE). Xingdi No.Ⅱintrusions incompatible element enrichment and significant HREE fractionationis not obvious, compared Xingdi No.Ⅰand No.Ⅳ enriched in incompatible elementsthan the HREE fractionation is moderate. Xingdi No.Ⅳ gabbro diorite Hf isotope(εHf (t)=0.29~-23.78), indicating that the three rock source areas are enrichedcontinental lithospheric mantle, magma ascent to emplacement crystal fractionationand subjected to crustal contamination.
     4. During900-1000Ma the subduction transform the Quruqtagh continentallithosphere, reduce its solidus temperature, and subsequently induce a largeproportion partial melting of the continental lithosphere caused by the Mantle plumeheat conduction.By the impact of the global Rodinia supercontinent breakup event theNeoproterozoic medium-term Quruqtagh region of asthenospheric mantle upwell andcause the partial melting of the continental lithospheric mantle, and thus form theNeoproterozoic mafic-ultramafic rocks. In the early cracking process (820-800Ma),the thickness of the lithospheric mantle, the lithospheric mantle of low degree ofpartial melting, form Qieganbulake alkaline mafic-ultramafic-carbonatites.Duringcontinental breakup (-760Ma), with the asthenosphere upwelling, lithosphericthinning and the occurrence of a high proportion of partial melting, tholeiitic matter ofmafic magma differentiation and emplacement produce Xing II mafic-ultramaficintrusive complex, this period of mafic exhibited various degrees of Nb-Ta loss, haslow Nb/La ratio, may reflect the lithosphere (earth) contamination or recycling ofcontinental lithospheric mantle contribution; cracking advanced (730Ma):asthenosphere activity weakened, lithospheric cooling thickening, degree of partialmelting reduction, basaltic magma differentiation and emplacement produced with Iand IV rock mafic-ultramafic rock, magma underplating caused by overlying lowercrustal material dehydration melting, forming an accompanied granite (with I granite).
引文
[1]陆松年,李怀坤,陈志宏.塔里木与扬子新元古代热-构造事件特征、序列和时代——扬子与塔里木连接(YZ-TAR)假设[J].地学前缘.2003(4):321-326.
    [2]陆松年,李怀坤,陈志宏,等.新元古时期中国古大陆与罗迪尼亚超大陆的关系[J].地学前缘.2004(2):515-523.
    [3] Zhang C, Yang D, Wang H, et al. Neoproterozoic mafic-ultramafic layered intrusion inQuruqtagh of northeastern Tarim Block, NW China: Two phases of mafic igneous activity withdifferent mantle sources[J]. Gondwana ResearchSpecial Section: The South and East Facades ofSundaland.2011,19(1):177-190.
    [4]郑永飞.新元古代岩浆活动与全球变化[J].科学通报.2003,48(16):1705-1720.
    [5]苏犁.中国中西部几个新元古代镁铁、超镁铁岩体研究及对Rodinia超大陆裂解事件的制约[D].西北大学,2004.
    [6]洛长义,杨合群,朱宝清,等.论新疆兴地基性超基性杂岩分带性[J].西北地质科学.1998(1):52-58.
    [7]杨合群,洛长义,朱宝清.新疆兴地含铜镍基性超基性侵人体地质特征及成矿条件[J].西北地质科学.1997,18(2):43-53.
    [8]夏昭德,石福品,胡秀军,等.新疆库鲁克塔格地区兴地Ⅱ号镁铁-超镁铁质岩体的地球化学特征与岩石成因[J].岩石学报.2009,25(4):805-816.
    [9] Cao X, Gao X, Lü X, et al. Sm-Nd Geochronology and geochemistry of a Neoproterozoicgabbro in Kuluketage block, north-western China[J]. International Geology Review.2012,54(8):861-875.
    [10] Hoffman P F. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?[J]. Science.1991,252(5011):1409-1412.
    [11] Li Z X, Li X H, Kinny P D, et al. The breakup of Rodinia; did it start with a mantle plumebeneath South China?[J]. Earth and Planetary Science Letters.1999,173(3):171-181.
    [12] Park J K. Palaeomagnetic constraints on the position of Laurentia from middleNeoproterozoic to Early Cambrian times[J]. Precambrian Research.1994,69(1–4):95-112.
    [13] Powell C M, Li Z X, Thrupp G A, et al. Australian Palaeozoic palaeomagnetism andtectonics—I. Tectonostratigraphic terrane constraints from the Tasman Fold Belt[J]. Journal ofStructural Geology.1990,12(5–6):553-565.
    [14]凌文黎,程建萍. Rodinia研究意义、重建方案与华南晋宁期构造运动[J].地质科技情报.2000,19(3):7-11.
    [15]郭进京,张国伟,陆松年,等.中国新元古代大陆拼合与Rodinia超大陆[J].高校地质学报.1996,5(2):148-156.
    [16] Liu D Y, Nutman A P, Compston W, et al. Remnants of≥3800Ma crust in the Chinese partof the Sino-Korean craton[J]. Geology.1992,20:339-342.
    [17] Zhao G, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the CentralZone of the North China Craton: implications for Paleoproterozoic tectonic evolution[J].Precambrian Research.2000,103(1–2):55-88.
    [18]陆松年,杨春亮,李怀坤,等.华北古大陆与哥伦比亚超大陆[J].地学前缘.2002,9(4):225-233.
    [19] Songnian L, Chunliang Y, Huaikun L, et al. A Group of Rifting Events in the TerminalPaleoproterozoic in the North China Craton[J]. Gondwana Research.2002,5(1):123-131.
    [20]邢裕盛,高振家,王自强.中国地层典:新元古界[M].北京:地质出版社,1996:1-96.
    [21] Xiaofeng W, Daquan M, Xiaohong C. Precambrian Geological Evolution in the YangtzeGorges Area, China[J]. Gondwana Research.1999,2(4):621-626.
    [22]程裕淇.中国区域地质概论[M].北京:地质出版社,1994:1-517.
    [23]王剑.华南新元古代裂谷盆地演化:兼论与Rodinia解体的关系[M].北京:地质出版社,2000:1-146.
    [24]夏林圻,夏祖春,李向民,等.华南新元古代中期裂谷火山岩系:Rodinia超大陆裂谷化-裂解的地质纪录[J].西北地质.2009,42(1).
    [25]王选策.华南新元古代地幔柱活动的岩石学记录——来自玄武岩的证据[D].中国科学院广州地球化学研究所,2007.
    [26]胡霭琴,格雷姆·罗杰斯.新疆塔里木北缘首次发现33亿年的岩石[J].科学通报.1992(07):627-630.
    [27]李伟,常玲.库鲁克塔格赛马山古元古代兴地塔格群变质变形作用特征及构造演化[J].新疆地质.2009,27(2):111-116.
    [28]陆松年.新疆库鲁克塔格元古宙地质演化[J].中国地质科学院天津地质矿产研究所所刊.1992(26-27):279-292.
    [29] Liou J, Graham S, Maruyama S. Proterozoic blueschist belt in western China:Bestdocumented Precambrian blueschists in the world[J]. Geology.1989,17:1127-1131.
    [30] Liou J, Graham S, Maruyama S, et al. Characteristics and tectonic significance of the LateProterozoic Aksu blueschists and diabasic dikes,Northwest Xinjiang,China[J]. InternationalGeology Review.1996,38(3):228-244.
    [31] Nakajima T, Maruyama S, Uchiumi S, et al. Evidence for Late Proterozoic subduction from700-Myr-old blueschists in China[J]. Nature.1990,346:263-265.
    [32] Nakajima T, Maruyama S, Uchiumi S, et al. Evidence for late Proterozoic subduction from700-Myr-old blueschists in China[J].1990,346(6281):263-265.
    [33]高振家.前寒武纪地质第6号--新疆北部前寒武系[M].地质出版社,1993:171.
    [34] Chen Y, Xu B, Zhan S, et al. First mid-Neoproterozoic paleomagnetic results from theTarim Basin (NW China) and their geodynamic implications[J]. Precambrian Research.2004,133(3–4):271-281.
    [35] Lu S, Li H, Zhang C, et al. Geological and geochronological evidence for the Precambrianevolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research.2008,160(1–2):94-107.
    [36] Shu L S, Deng X L, Zhu W B, et al. Precambrian tectonic evolution of the Tarim Block,NW China: New geochronological insights from the Quruqtagh domain[J]. Journal of Asian EarthSciences.2011,42(5):774-790.
    [37] Zhang C, Yu H, Haimin Y. Discussions on the Neoproterozoic diorites in central Tarimbasin: A comment on “Geochronology and geochemistry of deep-drill-core samples from thebasement of the central Tarim basin” by Guo et al.(Journal of Asia Earth Sciences,2005, vol.25,45–56)[J]. Journal of Asian Earth Sciences.2007,29(1):177-180.
    [38] Xu B, Jian P, Zheng H, et al. U-Pb zircon geochronology and geochemistry ofNeoproterozoic volcanic rocks in the Tarim Block of northwest China: implications for thebreakup of Rodinia supercontinent and Neoproterozoic glaciations[J]. Precambrian Research.2005,136(2):107-123.
    [39]展新忠,郭瑞清,张晓帆,等.新疆库鲁克塔格新元古代火山岩地质-地球化学特征及构造意义[J].新疆地质.2010,28(1):22-27.
    [40]展新忠.新疆库鲁克塔格地区新元古代—早寒武世火山岩地质—地球化学特征及其构造意义[D].新疆大学,2010.
    [41] Zhang C, Li X, Li Z, et al. Neoproterozoic ultramafic-mafic-carbonatite complex andgranitoids in Quruqtagh of northeastern Tarim Block, western China: Geochronology,geochemistry and tectonic implications[J]. Precambrian Research.2007,152(3-4):149-169.
    [42]展新忠,郭瑞清,张晓帆.新疆兴地河基性-超基性杂岩体岩石学-地球化学特征及其意义[J].新疆大学学报(自然科学版).2010,27(3):264-268,279.
    [43]王飞,王博,舒良树.塔里木西北缘阿克苏地区大陆拉斑玄武岩对新元古代裂解事件的制约[J].岩石学报.2010,26(2):547-558.
    [44] Zhang C, Dong Y, Zhao Y, et al. Geochemistry of Mesoproterozoic Volcanic Rocks in theWestern Kunlun Mountains: Evidence for Plate Tectonic Evolution[J]. Acta Geologica Sinica-English Edition.2003,77(2):237-245.
    [45] Zhang Z, Zhu W, Shu L, et al. Neoproterozoic ages of the Kuluketage diabase dyke swarmin Tarim, NW China, and its relationship to the breakup of Rodinia[J]. Geological Magazine.2009,146(1):150-154.
    [46]邓兴梁,舒良树,朱文斌,等.新疆兴地断裂带前寒武纪构造-岩浆-变形作用特征及其年龄[J].岩石学报.2008,24(12):2800-2808.
    [47] Zhu W, Zheng B, Shu L, et al. Geochemistry and SHRIMP U–Pb zircon geochronology ofthe Korla mafic dykes: Constrains on the Neoproterozoic continental breakup in the Tarim Block,northwest China[J]. Journal of Asian Earth Sciences.2011,42(5):791-804.
    [48]张传林,杨淳,沈加林,等.西昆仑北缘新元古代片麻状花岗岩锆石SHRIMP年龄及其意义[J].地质论评.2003,49(3):239-244.
    [49] Long X, Yuan C, Sun M, et al. Reworking of the Tarim Craton by underplating of mantleplume-derived magmas: Evidence from Neoproterozoic granitoids in the Kuluketage area, NWChina[J]. Precambrian Research.2011,187(1–2):1-14.
    [50]潘桂棠,肖庆辉,陆松年,等.中国大地构造单元划分[J].中国地质.2009(1):1-16.
    [51] Guo Z, Yin A, Robinson A, et al. Geochronology and geochemistry of deep-drill-coresamples from the basement of the central Tarim basin[J]. Journal of Asian Earth Sciences.2005,25(1):45-56.
    [52]姜常义,卢登蓉,白开寅,等.大陆岩石圈地幔交代作用的产物--且干布拉克蛭石矿床[J].岩石学报.2005,21(1):201-210.
    [53]罗新荣,石福品,樊卫东,等.新疆库鲁克塔格新元古代花岗岩年龄和地球化学[J].资源调查与环境.2007,28(4):235-241.
    [54]张英利,王宗起,闫臻,等.库鲁克塔格地区新元古代贝义西组的构造环境:来自碎屑岩地球化学的证据[J].岩石学报.2011,27(6):1785-1796.
    [55] Zhang C, Li Z, Li X, et al. Neoproterozoic mafic dyke swarms at the northern margin of theTarim Block, NW China: Age, geochemistry, petrogenesis and tectonic implications[J]. Journal ofAsian Earth Sciences.2009,35(2):167-179.
    [56] Xu B, Xiao S, Zou H, et al. SHRIMP zircon U–Pb age constraints on NeoproterozoicQuruqtagh diamictites in NW China[J]. Precambrian Research.2009,168(3–4):247-258.
    [57]姜常义,白开寅,黑爱芝,等.库鲁克塔格地区火山岩的岩浆过程与源区组成[J].岩石矿物学杂志.2000,19(1):11.
    [58]李先梓,李行,洛长义,等.新疆铂族元素成矿地质条件及找矿方向研究[J].西安地质矿产研究所所刊.1991,33:33-40.
    [59]袁英霞,潘朝霞,钱玉珍.新疆库鲁克塔格兴地Ⅱ号存体铜镍含矿性评价[J].新疆地质.2002,20(1):49-52.
    [60]高振家,陈晋镳,陆松年.新疆北部前寒武系[M].北京:地质出版社,1993:1-134.
    [61]沈其韩,耿元生,刘国惠.中国地层典:太古宇[M].北京:地质出版社,1996:50-51.
    [62]龙晓平,袁超,孙敏,等.库鲁克塔格地区最古老岩石的发现及其地质意义[J].中国科学:地球科学.2011,41(3):291-298.
    [63]金文山,王汝铮,孙大中.中国地层典:古元古界[M].北京:地质出版社,1996:1-50.
    [64]张鹏远,高振家,孙淑芬.中国地层典:中元古界[M].北京:地质出版社,1999:1-70.
    [65]高林志,王宗起,许志琴,等.塔里木盆地库鲁克塔格地区新元古代冰碛岩锆石SHRIMP U-Pb年龄新证据[J].地质通报.2010,29(2):205-231.
    [66] Xiong X L, Adam J, Green T H. Rutile stability and rutile/melt HFSE partitioning duringpartial melting of hydrous basalt: Implications for TTG genesis[J]. Chemical Geology.2005,218(3–4):339-359.
    [67] Lei R, Wu C, Chi G, et al. Petrogenesis of the Palaeoproterozoic Xishankou pluton, northernTarim block, northwest China: implications for assembly of the supercontinent Columbia[J].International Geology Review.2012:1-14.
    [68]黄建华,吴昌志,雷如雄,等.新疆且干布拉克超大型蛭石矿床的成因与成矿模式[J].矿床地质.2012,31(2).
    [69]孙宝生,黄建华.新疆且干布拉克超基性岩-碳酸岩杂岩体Sm-Nd同位素年龄及其地质意义[J].岩石学报.2007,23(7):1611-1616.
    [70] Ge R, Zhu W, Wu H, et al. The Paleozoic northern margin of the Tarim Craton: Passive oractive?[J]. Lithos.2012,142–143(0):1-15.
    [71]夏学惠,谭云基,武奕立,等.新疆库鲁克塔格地区铁磷矿成矿条件及找矿预测[J].化工矿产地质.2008,30(2):91-98.
    [72] Yuan H, Gao S, Liu X. Accurate U-Pb Age and Trace Element Determinations of Zircon byLaser Ablation-Inductively Coupled Coupled Plasma-Mass Spectrometry[J]. Geostandads andGeoanalytical.2004,3(28):353-370.
    [73] Ludwig K. Users manual for Isoplot/Ex (rev.2.49): A Geochronological Toolkit forMicrosoft Excel[M]. Berkely: Berkely Geoch-ronological Center Special Publication,2001:1-58.
    [74]徐平,吴福元,谢烈文,等. U-Pb同位素定年标准锆石的Hf同位素[J].科学通报.2004,49(14):1403-1410.
    [75] Blichert-Toft J, Albarède F.“The Lu–Hf isotope geochemistry of chondrites and theevolution of the mantle–crust system”:[Earth Planet. Sci. Lett.148(1997)243–258][J]. Earth andPlanetary Science Letters.1998,154(1-4):349.
    [76] Griffin W L, Wang X, Jackson S E, et al. Zircon chemistry and magma mixing, SE China:In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes[J]. LithosMagmaticProcesses: A special issue in honor of R.H. Vernon.2002,61(3-4):237-269.
    [77] Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization duringpolyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (SouthernAlps): an ion microprobe (SHRIMP) study[J]. Contributions to Mineralogy and Petrology.1996,122(4):337-358.
    [78] Vavra G, Schmid R, Gebauer D. Internal morphology, habit and U-Th-Pb microanalysis ofamphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps)[J].Contributions to Mineralogy and Petrology.1999,134(4):380-404.
    [79] Rubatto D. Zircon trace element geochemistry: partitioning with garnet and the link betweenU-Pb ages and metamorphism[J]. Chemical geology.2002,184(1-2):16.
    [80]吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用[J].岩石学报.2007,23(2):185-220.
    [81] Hans Wedepohl K. The composition of the continental crust[J]. Geochimica etCosmochimica Acta.1995,59(7):1217-1232.
    [82] Taylor S, Mclennan S. The Continental Crust: Its composition and evolution. Blackwell[M].London: Blackwell,1985:1-312.
    [83] Weaver B L, Tarney. Empirical approach to estimting the composition of the continentalcrust[J]. Nature.1984,310(5978):575-577.
    [84] Wedepohl K. The composition of the continental crust[J]. Geochimica et CosmochimicaActa.1995,59(7):1217-1232.
    [85] Mecdanald R, Rogers N, Fitton J, et al. Plume Lithosphere interactions in the generation ofthe basalts of the Kenya Rift,East Africa[J]. Journal of Petrology.2001,42:877-900.
    [86] Baker J, Menzies M, Thirlwall M, et al. Petrogenesic of quaternary intraplatevolcanism,Sana' a Yenmen:Implication and polybaric melt hybridization[J]. Journal of Petrology.1997,38:1359-1390.
    [87] Campbell I, Griffiths R. The evolution of mantle's chemical structure[J]. Lithos.1993,30:389-399.
    [88] Saunders A, Storey M, Kent R. Consequences of plume-lithosphere interaction(inMagmatism and the causes of continental break-up)[J]. Geological Society Special Publications.1992,68:41-60.
    [89] Long X, Yuan C, Sun M, et al. Archean crustal evolution of the northern Tarim craton, NWChina: Zircon U–Pb and Hf isotopic constraints[J]. Precambrian Research.2010,180(3–4):272-284.
    [90] Hess P. Phase equilibria constraints on the origin of ocean floor basalts[J]. AmericanGeophysical Union.1992,71:67-102.
    [91]汪云亮,李巨初,韩文喜.幔源岩浆岩源区成分判别原理与峨眉山地幔源区性质[J].地质学报.1993,67(1):52-62.
    [92] Cox K. A model for flood basalt volcanism[J]. Petrol.1980,21:629-650.
    [93] Green T. Experimental studies of trace-element partitioning applicable to igneouspetrogenesis;Sedona16years later[J]. Chemical Geology.1994,117:1-36.
    [94] Sprung P, Schuth S, Münker C, et al. Intraplate volcanism in New Zealand: the role of fossilplume material and variable lithospheric properties[J]. Contributions to Mineralogy and Petrology.2007,153(6):669.
    [95] Zhang M, Stephenson P J, O'Reilly S Y, et al. Petrogenesis and Geodynamic Implications ofLate Cenozoic Basalts in North Queensland, Australia: Trace-element and Sr-Nd-Pb IsotopeEvidence[J]. J. Petrology.2001,42(4):685-719.
    [96] Hawkesworth C, Turner S, Mcdermott F, et al. U-Th Isotopes in Arc Magmas:Implicationsfor Element Transfer from the Subducted Crust[J]. Science.1997,276(5312):551-555.
    [97] Becker H, Jochum K P, Carlson R W. Constraints from high-pressure veins in eclogites onthe composition of hydrous fluids in subduction zones[J]. Chemical Geology.1999,160(4):291-308.
    [98] George R, Turner S, Hawkesworth C, et al. Melting processes and fluid and sedimenttransport rates along the Alaska-Aleutian arc from an integrated U-Th-Ra-Be isotope study[J].Journal Of Geophysical Research.2003,108(B5):2252.
    [99] Chan L H, Leeman W P, You C F. Lithium isotopic composition of Central AmericanVolcanic Arc lavas: implications for modification of subarc mantle by slab-derived fluids[J].Chemical Geology.1999,160(4):255-280.
    [100] Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanicrocks[J]. Contributions to Mineralogy and Petrology.1979,69(1):33-47.
    [101]汪云亮,张成江,修淑芝.玄武岩类形成的大地构造环境的Th/Hf—Ta/Hf图解判别[J].岩石学报.2001,17(3):413-421.
    [102] Hoffman P. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out[J]. Science.1991,252:1409-1417.
    [103] Powell C, Pisarevsky S. Late Neoproterozoic assembly of East Gandwana[J]. Geology.2001,30(1):3-6.
    [104] Li Z X, Bogdanova S V, Collins A S, et al. Assembly, configuration, and break-up history ofRodinia: A synthesis[J]. Precambrian Research.2008,160(1–2):179-210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700