用户名: 密码: 验证码:
高强铝合金板淬火及残余应力研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高强铝合金厚板具有比重小、比强度比刚度大等一系列优点,近年来广泛应用于航空航天、武器装备、汽车等行业中。铝合金厚板经固溶、淬火时效后有大量弥散强化相析出,可使其强度显著提高。但剧烈冷却的过程极容易在厚板中产生严重的淬火残余应力,使厚板在后续机械加工时出现弯曲和翘曲变形,还会影响材料的动态使用性能如断裂韧度,抗应力腐蚀性能等。因此,为了满足工业的需要,控制淬火残余应力的大小具有非常大的实际意义。
     本文采用有限元分析方法,利用Deform软件模拟铝合金厚板的淬火冷却过程,同时利用点跟踪技术得到了淬火温度场分布、淬火冷却曲线、淬火残余应力分布场;系统研究了淬火后该合金板件的残余应力消除工艺,具体研究内容及结果有:
     采用X射线衍射法测量了经残余应力校正工艺后沿厚度方向板件表层的残余应力分布情况。结果表明,沿厚度方向板件侧表面的中心部分应力为拉应力,其最大拉应力位于离上表面130mm处为76MPa;板件上下表面附近处的应力基本上都是压应力,最大压应力位于板件的下表面处,为-113MPa。
     1.利用有限元软件deform-3D模拟了铝合金板件的淬火冷却过程,同时利用点跟踪技术得到了淬火温度场分布、淬火冷却曲线、淬火残余应力分布场。在淬火过程中板件内外存在着很大的温度梯度,当淬火到500s时,最大温度梯度可达370℃。这种冷热不均的温度将使板件在淬火后产生很大的残余应力。淬火结束后,板件上残余应力表现为内拉外压。最大压应力位于板件表面上,为-150MPa;而最大拉应力则位于板件心部附近,为153MPa。板件在淬火后,其三向残余应力都为内拉外压。在长宽厚方向上,主要受X向残余应力作用,Y、Z向残余应力作用很小。
     3.采用Deform-3D模拟了垫块压缩法消除淬火后板件残余应力的工序,优化了垫块宽度及压下量等控制参数。制定了正反两方向垫块压缩板件消除残余应力的工艺方案,并对压缩过程进行了数值模拟。通过点跟踪技术分析得到了正反两方向垫块压缩后板件的残余应力分布情况。结果表明,第一次下压3.6mm后再反向下压2.4mm,可使板件的残余应力得到较好的控制。当第一次采用3.6mm的压缩量时,可得到板件较小的残余应力值,增大或较小这个临界压缩量都不利于有效控制残余应力。在经过第二次反向下压2.4mm后,板件的X方向应力分量值整体上变得更为均匀;侧面上的压应力由-135MPa减为零-57MPa,中部到下表面的拉应力也减小到了45MPa以内。
The high strength aluminum alloy thick plate with a small proportion, theintensity ratio of specific strength and specific stiffness of a series of advantages,is widely used in aerospace, weapons, equipment, and automobile industries inrecent years. Thick aluminum alloy plate after solid solution quenching afteraging a large number of dispersion strengthening precipitates may be its strengthsignificantly improved. Intense cooling process is very easy in the slab togenerate serious residual stress of quenched, so that the thick plate bending andwarpage in the subsequent machining, will also affect the dynamic use of thematerial properties such as fracture toughness, stress corrosion resistance and soon. Therefore, in order to meet the needs of industry, control the size of theresidual stress of quenched very great practical significance. Using the finiteelement analysis methods, the use of the quenching process of deform softwaresimulation of thick aluminum alloy plate, quenching temperature distribution atthe same time point tracking technology to quench curve, quenching residualstress distribution field; System to study the residual stress after quenching thealloy plate to eliminate the process, specific research contents and results:
     1. X-ray diffraction method measured by the residual stress correctionprocess, the residual stress distribution plate surface along the thicknessdirection. The results showed that the plate along the thickness direction sidesurface of the central part of the stress is tensile stress, its maximum tensilestress is located from the upper surface of130mm at76MPa;Plates near thesurface at the upper and lower stress are basically compressive stress, themaximum compressive stress is located in the lower surface of the platesat-113MPa.
     2. Using finite element software deform-3D simulation of the aluminumalloy plate quench process, the quenching temperature distribution while takingadvantage of tracking technology to quench curve, quenching residual stressdistribution field. Plates inside and outside in the quenching process there is alarge temperature gradient, the maximum temperature gradient of up to370°C. When quenched to500s.The Enthusiasm of temperature would make the board alot of residual stress after quenching. After quenching, the residual stress in theplate on the performance of the outside pressure is within the pull. Themaximum compressive stress at the surface of the plates is-150MPa; themaximum tensile stress in the plates near the core part, as153MPa.Plates afterquenching, the residual stress of the three-way is within the pull externalpressure. In the long generous direction, mainly due to the role of the X to theresidual stress, Y, and Z to the residual stress is very small.
     3. Using the Deform-3D simulation of the plates of pad compressionmethod to eliminate the quenching residual stress of the process, optimizing thecontrol parameters of the pad width and reduction. To develop the pros and consof the direction pad compression plates to eliminate the residual stress of theprocess program, and the compression process was simulated. The analysis hasbeen both positive and negative direction pad compression plates residual stressdistribution through a point of tracking technology. The results showed that forthe first time under the pressure of the pressure2.4mm3.6mm and then reversethe residual stress of the enable the board to get better control. When first using3.6mm compression, available to board a smaller residual stress values largeror smaller this critical amount of compression is not conducive to effectivecontrol of residual stress.2.4mm after the pressure of the second reverse, theboard of the X direction stress component value as a whole has become moreuniform; compressive stress on the side reduced to zero-57MPa-135MPa, centralto the under surface of the tensile stress reduced to less than45MPa.
引文
[1]米古茂[日],朱荆璞,邵会孟译.残余应力的产生和对策[M].北京:机械工业出版社,1983.
    [2]张辉,林高用,杨立斌等.高性能铝合金超厚板制备技术及理论[J].材料导报,2002,16(3):
    [3]何家文,徐可为.第5届国际残余应力学术会议.2004,29(6):7~11.
    [4] Mather J.Determination of initial stress by measuring the deformation around drilledholes.Transaction ASME,1934,V01.56,No.4,249-254.
    [5]何家文,徐可为,李家宝.残余应力研究概况[J].国际学术动态.1998,NO.4.pp75~76.
    [6]朱伟.7075铝合金厚板淬火残余应力的研究[D].中南大学硕士学位论文,2002.
    [7]朱伟,彭大暑,张辉等.7075铝合金厚板淬火残余应力消除工艺研究[J],铝加工,2002.25(2):12-14.
    [8]林高用.高性能7×75系铝合金厚板加工技术相关基础研究[D].中南大学博士学位论文,2006.
    [9]姚灿阳.7050铝合金厚板淬火温度场及内应力场的数值模拟研究[D].中南大学硕士学位论文,2007.
    [10]中华人陆共和国船舶行业标准CB3395—92.《残余应力测试方法~钻孔应变释放法》.
    [11] G. S. Schajer.Hole-Drilling Residual Stress Measurements at75:Origins, Advances,Opportunities. Experimental Mechanics,2010,50:245-253
    [12]孙舒晨,陈五一. L D10锻造铝合金内部残余应力分析[J].科技创新导报,2010,02:
    [13]王秋成,柯映林.板类构件内部残余应力测试技术研究[J].浙江大学学报(工学版),Vol.39,No.3,M ar,2005
    [14]朱伟,陈梦雄,张辉等.降低7075铝合金厚板淬火残余应力的工艺[J].金属热处理,2002,27(7):
    [15]王树宏,左敦稳. LY12,B95π.U和7050铝合金预拉伸厚板内部残余应力分布特征评估与分析[J].材料工程学报,2004,10,
    [16]王秋成,柯映林.航空高强度铝合金残余应力的抑制与消除[J].航空材料学报,2002,22(3):
    [17] R.A. Hardin and C. Beckerman. Simulation of Heat Treatment Distortion[J].Proceedingsof the59thSFSA Technical and Operating Conference, Paper NO.3.3,Steel Founders’Society of American,Chicago,IL,2005.
    [18] J.S. Robinson, C.E. Truman. Residual stress in7449aluminum alloy forgings. MaterialsScience and Engineering A527(2010)2603–2612.
    [19] DORUK DO U. Finite Element Modeling of Stress Evolution in QuenchingProgress[D]. Degree of Master of Science in The Graduate School of Natural and AppliedSciences of Middle East Technical University,2005.
    [20] Ian Mitchell. Residual Stress Reduction During Quenching of Wrought7075AluminumAlloy[D]. Degree of Master of Science in the Faculty of Worcester Polytechnic Institute,May2004.
    [21] D. Scott MacKenzie.History of Quenching.Houghton International, Inc. Valley Forge,PA19426.
    [22] M. Shimada and N. Mitchell. Stability Estimations and Quench Simulations for the ITERConductors[J]. Journal of Fusion Energy, Vol.14, No.1,1995.
    [23] K. Palaniradja. Residual Stresses in Case Hardened Materials. The Open MaterialsScience Journal,2010,4,92-102.
    [24]张庆峰,焦四海,马朝晖.厚板淬火过程温度场的有限元模拟[J].材料热处理技术,2010,39,6-9.
    [25]董瑞强,王秋成,付军.航空铝合金构件淬火残余应力的数值模拟[J].国外金属热处理,2003,24(6),77-79.
    [26]任伟才,张磊,孙兆霞.7000系铝合金厚板喷淋淬火的数值模拟与分析[J].黑龙江科技学院学报,2010,20(2),33-36.
    [27] K. Palaniradja. Residual Stresses in Case Hardened Materials. The Open MaterialsScience Journal,2010,4,92-102.
    [28] K.Escobar,B.Gonzalez.On the Residual Stress Control in Aluminum Alloy7050.Materiels Science Forum Vols,396-402(2002).
    [29]赵祖德,王秋成,康凤.7A04铝合金构件深冷处理过程瞬态温度场的数值模拟[J].低温工程,2007,2(156),55-61.
    [30] Wendell Porto de Oliveira. Thermomechanical analysis of steel cylinders quenchingusing a constitutive model with diffusional and non-diffusional phase transformations.Mechanics of Materials42(2010)31–43.
    [31]王秋成.航空铝合金残余应力消除及评估技术研究[D].杭州:浙江大学博士论文,2003.
    [32]王亮.新型高强铝合金锻造工艺实验及模拟研究[D].太原:太原科技大学,2010.
    [33]Li H P, Zhao G Q, He L F. Finite element method based simulation of stress-strain fieldin the quenching process[J]. Materials Science and Engineering A,2008,478(1-2):276-290.
    [34]张园园.铝合金厚板淬火过程及预拉伸热—力仿真与实验研究[D].长沙:中南大学硕士论文,2008
    [35]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006.
    [36]丁惠麟,辛智华.实用铝、铜及其合金金相热处理和失效分析[M].北京:机械工业出版社,2007.9
    [37] J. S. Robinson, S. Hossain, C. E. Truman. Residual stress in7449aluminum alloyforgings[J].Materials Science and Engineering A,2010,527,2603~2612.
    [38]Robert Stone. Processing Effects on Residual Stress. www. mw-ind. Com/pdfs/ResidualStress Processing. pdf.
    [39]LIN Gao-yong,ZHANG Hui, ZHU Wei. Residual stress in quenched7075aluminumalloy thick plates. Trans. Nonferrous Met. Soc.china,2003,3(13),641~644.
    [40]林高用,郑小燕,冯迪,杨伟.铝合金厚板淬火残余应力的研究进展.材料导报,2008,22(6),70~74.
    [41]王树宏.航空铝合金厚板初始残余应力及其对铣削变形影响的基础研究[D].南京:南京航空航天大学博士论文,2005.
    [42]唐志涛.航空铝合金残余应力及切削加工变形研究[D].济南:山东大学博士学位论文,2008.
    [43]胡少虬.7075铝合金厚板淬火残余应力的数值分析[D].长沙:中南大学硕士学位论文,2004.
    [44]黄继武.7055高强铝合金热加工工艺基础研究[D].长沙:中南大学硕士学位论文,2004.
    [45]芦亚萍.振动消除残余应力机理分析及试验研究[D].杭州:浙江大学硕士学位论文,2002.
    [46]李杰.热处理对7055合金组织和性能的影响[D].长沙:中南大学硕士学位论文,2005.
    [47]辜蕾钢.铝合金厚板预拉伸及淬透性研究[D].重庆:重庆大学硕士学位论文,2004.
    [48]段水亮.合金元素和热处理对7475铝合金组织与性能的影响[D].长沙:中南大学硕士学位论文,2008.
    [49]龙华.U71Mn钢重轨轨头淬火温度场和应力场的数值模拟研究[D].武汉:武汉科技大学硕士学位论文,2008.
    [50]虞付进.基于临界折射纵波的残余应力检测研究[D].杭州:浙江工业大学硕士论文,2007.
    [51]黄东岩.一种测量铁磁性材料应力的新装置[D].长春:吉林大学硕士论文,2007.
    [52]王彦龙.残余应力的超声波检测研究[D].西安:西安科技大学硕士论文,2005.
    [53]余伟.基于残余应力的航空薄壁件加工变形分析[D].南京:南京航空航天大学硕士论文,2004.
    [54]马振宇.激振时效技术机理研究和装置的研究开发[D].杭州:浙江大学硕士论文,2003.
    [55]吕克茂.残余应力测定的基本知识[J].理化检验(物理分册),2007-08-08.
    [56]杨志强.渗碳圆柱齿轮淬火过程的数值模拟[D].秦皇岛:燕山大学硕士论文,2010.
    [57]贺毅.复杂铸件残余内应力的数值模拟及分析[D].乌鲁木齐:新疆大学硕士论文,2009.
    [58]冯晓丹.几种钢材淬火过程计算机数值模拟优化的研究[D].武汉:武汉大学硕士论文,2005.
    [59]董辉跃.航空整体结构件加工过程的数值仿真[D].杭州:浙江大学博士论文,2004.
    [60]王大鹏.轴对称大锻件淬火过程温度场及组织场的数值模拟[D].大连:大连理工大学硕士论文,2002.
    [61]李广睿.大型轧辊热处理工艺模拟及其实验研究[D].秦皇岛:燕山大学硕士论文,2007.
    [62]孙光爱;陈波.X射线衍射残余应力分析方法与J75抗氢钢实验[J].中国核科技报告,2009-04-15.
    [63]全钰泰.热处理过程中温度、组织转变和应力的计算机模拟技术[J].渝州大学学报(自然科学版),1999-06-30.
    [64]曹盛强.铝合金厚板喷淋淬火的非均匀换热与冷却特性研究[D].长沙:中南大学硕士学位论文,2011.
    [65]李强;刘丽军.基于有限元分析的计算机模拟技术在淬火工艺过程中的应用[J].热加工工艺,2008-02-25.
    [66]赵祖德;王益嗣.深冷处理消除7A04长条构件残余应力的建模与仿真[J].低温工程,2008-06-15.
    [67]王少辉.7085铝合金整体结构件淬火残余应力分析及其消减工艺研究[D].长沙:中南大学硕士论文,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700