用户名: 密码: 验证码:
不同海况条件下船舶动力定位混合控制系统设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断发展进步,海洋资源特别是远海、深海石油和天然气资源的开采日益受到重视。比起近海作业,远海、深海海洋环境条件更恶劣,环境载荷更大,对海上作业的结构物定位系统的要求更高。传统的系泊定位系统因其本身的局限性,如定位精度不高,机动性差,锚链造价和安装费成本较高,特别是定位能力受水深及海底情况的限制等,已经无法满足远海、深海作业的定位要求。作为一种更适合深海浮式结构物位置保持和航迹跟踪的定位方法,采用推进器的动力定位系统迅速发展并逐渐取代传统的系泊系统,成为深海浮式结构和船舶的主要定位方式。动力定位系统对各种海洋工程作业,特别是深海作业,如深海油气开发、海底勘探、海底铺管布缆、海底矿物质采集等显示出越来越重要的作用。
     船舶动力定位系统主要包括传感测量系统、控制系统、推进系统等几大部分,其中控制系统是动力定位系统的核心。以往的船舶动力定位控制系统设计研究大多针对某种特定的海洋环境条件下的动力定位系统,采用固定控制算法和模型的观测器及控制器,很少有研究多种复杂海洋环境条件下的控制系统设计。针对这种情况,本文为船舶动力定位控制系统设计了满足不同海况条件下工作任务要求的系统观测器和控制器,引入开关逻辑算法设计混合控制器,建立可以在多种海况条件下自动切换控制算法和模型的动力定位混合控制系统,并通过计算机仿真验证所设计的控制器的控制效果。
     首先,建立船舶动力定位控制系统的数学模型,包括风、浪和流环境载荷模型以及船舶运动模型。其中,风载荷近似为高斯白噪声干扰并以前馈的形式加入模型。浪载荷模型分为幅值很大的高频一阶波浪载荷和幅值相对较小且缓慢变化的低频二阶波浪载荷分别处理。考虑到推进器的能耗和磨损情况,一阶波浪力是控制系统中要重点建模和滤波的对象,也是本文中主要的环境载荷。流载荷因其复杂的物理特性,很难用建模方法进行模拟,文中对此进行了简化处理。
     其次,在模拟四种级别典型海况的基础上,针对每种海况分别设计了合适的观测器和控制器,建立了四个完整的控制反馈回路。通过分析比较三种不同的滤波算法,即常用的低通滤波算法,卡尔曼滤波算法以及非线性被动滤波算法,选择合适的滤波模型消除了一阶波浪干扰作用。
     再次,考虑介于中等级别海况和极端海况之间的第三种海况,通过权值分配来综合第二和第四种海况下设计的控制器,单独为其设计了控制器。又考虑到第四种海况下一阶波浪力基频相对较低使设计的滤波器陷波频率落在系统低频运动频宽内,改进前三种海况的观测器模型以保留一阶波浪力作用。
     最后,通过一种尺度独立的时滞开关逻辑,将四个不同海况条件下的控制模型融合为一个可以在多种海况条件下自动切换控制策略的混合控制系统。
     本文对船舶动力定位控制系统进行了分析和设计,建立了可以在不同海况条件下正常工作的混合控制系统。该模型可为复杂海况条件下船舶动力定位控制系统的设计提供一种有效的实现方法和手段,对动力定位系统的设计和更广泛的应用具有重要的意义和一定的工程实用价值。
With the development of science and technology, offshore ocean exploration,especially oil and gas exploration in deep sea has been experiencing a continuous boom.Better positioning performances are needed for deep sea structures and offshore ships, asthe sea condition becomes harsher with the increase of water depth and distance from theshore. MP (Mooring Positioning) is not suitable for deep sea operation, due to its ownlimitations, such as lack of accuracy and mobility, high cost for construction andespecially its bad functionality with large water depth and obstructed seabed, etc. DP(Dynamic Positioning) has replaced the traditional MP, as a better option to maintain theposition of a floating structure in deep sea or to make it follow a pre determined operationtrajectory by means of active thrusters. DP is becoming more and more important to allkinds of offshore operations, such as oil gas exploration, scientific drilling, pipe laying,mineral drilling, etc.
     Ship DP system consists of reference system, control system and power andpropulsion system, among which control system is of great importance. Most of theprevious researches on ship DP control system are based on a certain sea condition,utilizing fixed control algorithms and models. Seldom are there publications dealing withsystem operating under complex sea conditions. In this thesis, different sea states areconsidered, and various observers and controllers with different structures andfunctionalities are designed to meet diversified needs. The final hybrid control systemcapable of auto switching among control algorithms and models is made possible by aswitching logic. The performance of the control strategies are tested and verified throughcomputer simulations.
     Firstly, the mathematical model of ship DP control system including wind, wave,current and ship motion model are built up. In the control system, feedforward wind loadis approximated as Gaussian white noise. High Frequency (HF) first order wave modelwith large amplitude and slowly varying low frequency (LF) second order wave modelwith small amplitude are treated separately. To reduce the energy consumption andthruster wear, first order wave load is especially modeled and filtered. Current issimplified as slowly varying bias, since its complex physical characters make it hard tomodel.
     Secondly, four different feedback control loops with proper observers and controllersare constructed in four typical sea states. By comparing three filtering algorithms, namelythe traditional low pass filter, Kalman filter and nonlinear passive filter, a more suitablemodel is chosen to eliminate the first order wave disturbance.
     Thirdly, in an attempt to get a smooth response of the control system from themoderate sea state to the extreme sea state, a separate controller is built by assigningweights to controllers of the second and fourth control loops. For the fourth control loopwith extreme sea state, the relatively low frequency of the first order wave renders thenotch frequency of the filter designed, within the control bandwidth of ship’s LF motion.For this reason, the observer for the fourth sea state is modified so that the first orderwave load enters the control process.
     Finally, a hybrid control system is constructed based on scale independent hysteresisswitching logic, which allows the system to automatically switch among different controlstrategies in four different sea states.
     In this thesis, a ship dynamic positioning hybrid control system is designed, whichcan operate in different sea states. It provides an effective solution for the control systemdesign of DP, thus contributes to the design and wider application of ship DP system.
引文
[1] S rensen, A.J.(2011). A survey of dynamic positioning control systems. Annual Reviews inControl,35, pp.123136.
    [2]边信黔,付明玉,王元慧(2011).船舶动力定位,科学出版社.
    [3] Fossen, T.I.(2011). Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley&Sons Ltd, Chichester, UK.
    [4] Nguyen, T.D.(2005). Design of hybrid marine control systems for dynamic positioning. Ph.D.thesis, Department of Civil Engineering, National University of Singapore (NUS).
    [5] Nguyen, T.D., S rensen, A.J.&Quek, S.T.(2007). Design of high level hybrid controller fordynamic positioning from calm to extreme sea conditions. Automatica43(5), pp.768785.
    [6] S rensen, A.J., Strand, J.P.&Nyberg, H.(2002). Dynamic positioning of ships and floaters inextreme seas. OCEANS '02MTS/IEEE,3, pp.18491854.
    [7] Balchen, J.G., Jenssen, N.A.&Saelid, S.(1976). Dynamic positioning using Kalman filteringand optimal control theory. In IFAC/IFIP symposium on automation in offshore oil fieldoperation, Amsterdam, The Netherlands pp.183186.
    [8] Balchen, J.G., Jenssen, N.A., Mathisen, E.,&S lid, S.(1980). A dynamic positioning systembased on Kalman filtering and optimal control. Modeling Identification and Control,1(3),pp.135163.
    [9] S rensen, A.J., Sagatun, S.I.&Fossen, T.I.(1996). Design of a dynamic position system usingmodel based control. Control Eng. Pract.,4(3), pp.359368.
    [10] Fossen, T. I.,&Perez, T.(2009). Kalman filtering for positioning and heading control of shipsand offshore rigs. IEEE Control Systems Magazine,29(6),32–46.
    [11] Fossen T.I.&Strand, J.P.(1999). Passive nonlinear observer design for ships using Lyapunovmethods: full scale experiments with a supply vessel. Automatica,35(1), pp.316.
    [12] Fossen, T.I.(1999). Nonlinear passive control and observer design for ships. ECC’99, Karlsruhe,Germany, Tutorial Workshop TT1: Nonlinear Passive Based Control in Mechanical Systems.
    [13] Di Masi, G.B., Finesso, L.&Picci, G.(1986). Design of an L.Q.G. controller for single pointmoored large tankers. Automatica,22(2), pp.155169.
    [14]王晓飞(2011).船舶动力定位建模与控制算法研究,上海交通大学船舶海洋与建筑工程学院,船舶与海洋博士后科研工作总结报告.
    [15] Fossen, T.I.&Grovlen, A.(1998). Nonlinear output feedback control of dynamically positionedships using vectorial observer backstepping. IEEE Transactions on Control Systems Technology,6(1), pp.121128.
    [16] Grovlen, A.&Fossen, T.I.(1996). Nonlinear control of dynamic positioned ships using onlyposition feedback: An observer backstepping approach. Proc.35th IEEE Conf. Decision Contr.,CDC'96, pp.33833393.
    [17] Aarset, M.F., Strand, J.P.,&Fossen, T.I.(1998). Nonlinear vectorial observer backstepping withintegral action and wave filtering for ships. Proceedings of the IFAC conference on controlapplications in marine systems, Fukuoka, Japan.
    [18] Strand, J.P.,&Fossen, T.I.(1998). Nonlinear output feedback and locally optimal control ofdynamically positioned ships: Experimental results. Proceedings of the IFAC conference oncontrol applications in marine systems, Fukuoka, Japan.
    [19] Fossen, T.I.,&Strand, J.P.(2001). Nonlinear passive weather optimal positioning control(WOPC) system for ships and rigs: Experimental results. Automatica,37(5), pp.701715.
    [20] Strand, J.P.(1999). Nonlinear position control systems design for marine vessels. Ph.D. thesis,Department of Engineering Cybernetics, NTNU, Trondheim, Norway.
    [21] Leira, B.J., S rensen, A.J.&Larsen, C.M.(2004). A reliability based control algorithm fordynamic positioning of floating vessels. Structural Safety,26, pp.128.
    [22] Lindegaard, K.P.W.(2003). Acceleration feedback in dynamic positioning. Ph.D. thesis,Department of Engineering Cybernetics, NTNU, Trondheim, Norway.
    [23] Hespanha J.P., Liberzon, D.&Morse, A.S.(2003). Hysteresis based switching algorithms forsupervisory control of uncertain systems. Automatica,39(2), pp.263272.
    [24] Hespanha, J.P.,&Morse, A.S.(2002). Switching between stabilizing controllers. Automatica,38(11), pp.19051917.
    [25] B ling, J.M., Seborg, D.,&Hespanha, J.(2007). Multi model adaptive control of a simulated pHneutralization process. Control Engineering Practice,15(6), pp.663672.
    [26] Hespanha, J.P.(2001). Tutorial on supervisory control. Lecture notes for the Workshop, ControlUsing Logic and Switching for the40th Conference on Decision and Control, Orlando, FL.
    [27] Liberzon, D.&Morse, A.S.(1999). Basic problems in stability and design of switched systems.IEEE Control Systems Magazine,19(5), pp.5970.
    [28] Skjetne R., Fossen, T.I.&Kokotovic, P.V.(2005) Adaptive output maneuvering with experimentsfor a model ship in a marine control laboratory. Automatica,41(4), pp.289298.
    [29] Katebi, M.R., Grimble, M.J.,&Zhang, Y.(1997). H∞robust control design for dynamic shippositioning. IEEE Proceedings Control Theory and Applications,144, pp.110120.
    [30]王元慧(2006).模型预测控制在动力定位系统的应用,哈尔滨工程大学,硕士学位论文.
    [31]李兰花,夏国清(2005). H∞滤波器在船舶动力定位系统中的应用,自动化技术与应用,24(11), pp.3537.
    [32] Kongsberg, Green DP Control, http://www.km.kongsberg.com.
    [33] Marine Cybernetic Laboratory (MCLab), www.itk.ntnu.no/marinkyb/MCLab/.
    [34] Marine Systems Simulator (MSS), Norwegian University of Science and Technology (NTNU),Trondheim, www.cesos.ntnu.no/mss.
    [35] Perez, T., Smogeli,.N. Fossen, T.I.&S rensen, A.J.(2005). An overview of marine systemssimulator (MSS): A simulink toolbox for marine control systems. Scandinavian Conference onSimulation and Modeling SIMS05, Trondheim, Norway.
    [36]赵志高,杨建民,王磊,程俊勇(2002).动力定位系统发展状况及研究方法,海洋工程,20(1), pp.9197.
    [37]赵志高(2002).动力定位控制系统的设计和研究,上海交通大学,硕士学位论文.
    [38]程俊勇,杨建民,肖龙飞,赵志高(2002).动力定位系统的推力系统设计,海洋工程,20(4),pp.5862.
    [39]周利(2009).半潜式钻井平台动力定位推力系统理论设计及模型试验研究,上海交通大学,硕士学位论文.
    [40]陈恒(2008).深海半潜式平台动力定位推力系统设计研究,上海交通大学,硕士学位论文.
    [41]王先福,杨建民,王磊(2005).海上浮体动力定位外力计算,海洋工程,23(3), pp.4550.
    [42]王磊,王先福,杨建民(2006).动力定位船舶二阶低频慢漂力模型试验研究,海洋工程,24(3), pp.15.
    [43]赵大威,边信黔(2011).线性船舶动力定位控制器设计,哈尔滨工程大学学报,32(1),pp.5761.
    [44]夏国清(2001).水面舰船动力定位系统智能控制技术研究,哈尔滨工程大学,博士论文.
    [45]夏国清, Corbett D.R.(2006).基于DRNN神经网络的PD混合控制技术在船舶动力定位系统中的应用,中国造船,47(1), pp.4854.
    [46]刘芙蓉(2011).半潜船动力定位控制系统建模和仿真研究,武汉理工大学,博士学位论文.
    [47]童进军,何黎明,田作华(2002).船舶动力定位系统控制器的设计,船舶工程,6, pp.2729.
    [48]商子斌(2009).基于船舶动力定位系统的研究,大连理工大学,硕士学位论文.
    [49] Corneliussen, J.(2003). Implementation of a Guidance System for Cybership II, MSc thesis,Department of Engineering Cybernetics, NTNU.
    [50] Department of Engineering Cybernetics, NTNU, http://www.itk.ntnu.no/.
    [51] Blendermann W.(1995). Estimation of wind loads on ships in wind with a strong gradient,Proceedings of the14th International Conference on Offshore Mechanics and Arctic Engineering(OMAE), New York,1, pp.271277.
    [52] OCIMF (1994). Prediction of wind and current loads on VLCCs. John Wiley&Sons Ltd.
    [53] Torsethaugen K.(1996) Model for a doubly peaked wave spectrum. Technical Report STF22A96204. SINTEF, Trondheim, Norway.
    [54] S lid S.&Jenssen, N.A.(1983). Adaptive ship autopilot with wave filter, Modeling,Identification and Control4(1), pp.3346.
    [55] Brett N.(2010). Spectral analysis using the FFT, Lecture Notes, Department of Electrical andComputer Engineering, The University of Newcastle, Australia.
    [56] Duhamel, P.&Vetterli, M.(1990). Fast Fourier Transforms: a tutorial review and a state of theart, Signal Processing,19, pp.259299.
    [57] Cooley, J.W.&Tukey, J.W.(1965). An algorithm for the machine computation of the complexFourier series, Mathematics of Computation,19, pp.297301.
    [58] Morse, A.S.(1992). Towards a unified theory of parameter adaptive control part II: Certaintyequivalence and implicit tuning. IEEE Trans. on Automat. Contr.,37(1), pp.1529.
    [59] Hespanha, J.P.&Morse, A.S.(1999). Certainty equivalence implies detectability, Syst.&Contr.Lett.,36(1), pp.113.
    [60] Safonov, M.G.&Tsao, T.C.(1997). The unfalsifed control concept and learning, IEEEtransactions on automatic control,42(6), pp.16.
    [61] Safonov, M.G.(1997). Focusing on the knowable: controller invalidation and learning, LectureNotes in Control and Information Sciences,222, pp.224233.
    [62] Hespanha, J.P., Liberzon, D.&Morse, A.S.(2000). Bounds on the number of switchings withscale independent hysteresis: applications to supervisory control, proceedings of the39th Conf.on Decision and Contr.,4, pp.36223627.
    [63] Strand, J.P.&Fossen, T.I.(1999). Nonlinear passive observer for ships with adaptive wavefiltering, New Directions in Nonlinear Observer Design, pp.113134. Springer Verlag LondonLtd.
    [64] Torsetnes, G., Joufroy, J.&Fossen, T.I.(2004). Nonlinear dynamic positioning of ships withgain scheduled wave filtering, proceedings of43rd IEEE Conference on Decision and Control,5,pp.53405347.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700