用户名: 密码: 验证码:
近期长江口南北槽分流口水沙输运及其对分流口工程作用的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1998年以来,随着长江口北槽深水航道整治工程的建设,新形势下的北槽水沙运动规律及河床冲淤变化过程引起越来越多学者和工程师们的关注,尤其是近年来航道出现泥沙集中淤积现象,已成为长江河口动力沉积-地貌及工程泥沙研究领域的热点问题。从近十年北槽冲淤变化特点来看,北槽泥沙的淤积主要集中在北槽航道中段的拐点处附近和南北槽分流口的北槽入口河段。就北槽中段的泥沙淤积问题,诸多学者已做过大量相关的研究,但对北槽分流口的关注相对较少。在深水航道分流潜堤工程的影响下,分流口水沙输运特点及其过程、工程与分流口水沙运动、河床冲淤演变之间的关系缺乏较为系统的研究。因此,本文针对南北槽分流口,尤其是对分流口河床及九段沙洲头地貌冲淤演变规律,分流口水沙运动和输运机制进行分析研究,并结合数值模拟对深水航道分流口工程结构与分流口水沙输运及河床演变之间的相互关系做进一步探索性研究。
     研究结果表明:分流潜堤对南北槽分流口水沙输运与河床冲淤演变造成显著影响。1998年以后,由于分流潜堤工程固定九段沙洲头,沙头下挫过程得到缓解,但是从2000年重新开始上提,至2007年,沙洲向上游共延伸2.1km,延伸走向312~314°,相较下挫过程走向的延伸线向北偏转了7~9°;另一方面,北槽分流口大部分水域在2000年以后,其淤积状态与同期“南港—南槽”河段河床的冲刷共同形成了“南冲—北淤”的格局;同时,南北槽分流分沙比发生扭转,北槽落潮分流量持续降低,除了与航道中的丁坝建设和北槽总容积的减少有关外,还与潜堤走向、北槽分流口大范围淤积,造成北槽过水断面持续减小有重大关系。
     受南港下段河道形态的影响,分流口近口段(欧拉)余流与北槽口内余流流向存在约60°的夹角,而正好建设在该水流跃变区的分流潜堤,使得“南港—北槽”地貌衔接突然,对北槽分流口下泄水流走向及北槽分流产生了明显的影响。南北槽分流口泥沙主要来自于上游南港的下泄泥沙,其中进入北槽的泥沙一部分受到分流潜堤的拦截,堆积在九段沙洲头造成洲头沿潜堤北侧向前淤长,同时为口内中段泥沙的横向输运提供了丰富的沙源。本论文首次引入了输沙机制影响强度参考尺度的无量纲参数,并将输沙机制用数学表达式表达出来,结果显示:分流口不同区域的各项机制驱动的泥沙输运方向和大小存在显著差异。其中,近口段和口内段泥沙输移的大小和方向主要由拉格朗日余流决定,口内中段则由拉格朗日余流与潮泵作用两项机制共同控制。机制分解计算结果表明,口内中段泥沙净输运方向横贯航道,同时,口内中段输沙能力最低,易于泥沙落淤,从而造成了大量泥沙在口门段附近持续淤积,北槽分流入口口门过水断面减小
     现有分流潜堤工程条件下,涨、落潮时期潜堤上均有越堤流发生,其中,落潮阶段下泄水流从北侧向南侧翻越潜堤,涨潮阶段则恰好相反。数学模型计算结果证实了北槽入口处“S型”水沙输运结构的存在。潜堤结构对南北槽分流口的净水净沙输运强度有明显的影响,这主要表现在,现有潜堤工程结构使南槽分流口入口段净输运强度显著增大,这样的水动力环境进一步造成南槽分流口河床持续冲刷,河道的加深,南港下泄水流主体持续向南槽偏移。
     通过调整潜堤走向可以在一定程度上调整水沙净输运强度在南北槽上段的分配,然而基于现有线状潜堤工程布局形式下的工况结构局部调整对分流口水沙输运结构的影响范围比较有限,仅对潜堤附近的水流造成一定的影响。
Since1998years, with the construction of Deep-water Channel Regulation Project, flow and sediment transport in North Passage and morphological evolution of shoals and river bed under new circumstance has aroused increasing attentions, especially the problems that siltation in the channel turns out to be much larger than expected and concentrate in some particular area recently. According to the accumulation and erosion distribution in North Passage, sediment shows a tendency of silting in two locations:the middle section of the channel and the upper entrance. Compared to the closely watched to the former part, study on sediment transport and trapping on upper entrance, the impact of bifurcation project to local river bed morphological evolution are rare. Hereby, this research focused on the South and North Passage bifurcation, gained detailed morphological process of the bed and head of Jiuduansha shoal and deep insight of mechanisms of water and suspended sediment transport. Furthermore, the relation between water/sediment transport, river bed changes and engineering structure of V-shaped dike was explored with the employ of numerical model MIKE-21FM.
     Research indicated the head of Jiuduansha shoal stays stable under the diversion works after1998, its seaward movement trend has been eased and silted landward again since2000. Till2007, it grown2.1km up to South Channel with the direction of312~314°, which is7~9°north to the run of its downward movement period. Secondly, it showed a pattern of "Silted south-Eroded north" which most of the North Passage area was under the siltation during the last10years with the South Passage entrance, however, showed constant erosion simultaneously. Moreover, flow and sediment ratio between North and South Passage has twisted since the2000with constantly less water and sediment enter the North Passage. Our study revealed it is related with, except for the spur-dike-induced decline of the volume of North Passage, the run of V-shaped dike and decrease of flow section area of channel entrance due to the siltation.
     As the result of shape of down reaches of South Channel, there is about60°angle between (Eulerian) residual flow of South Channel and inner North Passage. With the construction of bifurcation project in this area of landforrm jump, the seaward flow in entrance area of the North Passage is affected significantly. Sediment of this zone mainly originate from the upper reaches of the estuary, those being transported into North Passage has been partly intercepted by the dike and silted in the front of Jiuduansha shoal, where also the major source of sediment transported at the local area. It also showed varies of sediment transport mechanisms in different sections of the bifurcation, in which the near entrance part and inner entrance part is dominated by (Lagrangian) residual flow, whereas the middle part in between is controlled both by the former one and tidal pumping effect. Moreover, the results also showed the existence of cross channel sediment transport at the middle part, but with the net transport ability weaker than there other two areas which means sediment from upper reaches silt in this area during its cross channel transport and leads to the decline of flow section area of the North Passage in the end.
     Flow run off over the dike from north to south was observed during the ebb and the other way around in flood. Numerical simulating confirmed the "S" structure of water and sediment transport in "South Channel-North Passage" section of the bifurcation, which is not related to the regulation works but the river bed topography. However, it strengthens the erosion and deeper the channel at the South Passage entrance, push more ebb run off the South Passage. Comparing with which this works didn't show any clear increase of net sediment transport intensity at entrance of the North Passage. Consider the compared weak sediment transport capacity at the north side, of which the shallower tendency at the entrance put more weight on flow and sediment ratio decrease of the North Passage, more water and sediment are forced into the South Passage.
     Readjusting the V-shaped dike redistributed the sediment transport intensity at two sides. However, this impact to the flow of bifurcation area based on the linear dike is limited, only those near the works affected to a certain extent. Moreover, our numerical model results also showed that all the readjusting solutions failed in promoting flow ratio of North Passage.
引文
1该部分研究成果于《泥沙研究》2011年发表:陈炜,李九发,蒋陈娟,等,2011.长江河口九段沙近期冲淤演变过程研究[J],泥沙研究.1:15-21.
    Bowden K F, (1963). The mixing processes in tidal estuary. International Journal of Air and Water Pollution,7:343—356.
    Chen C S, Huang H S, Beardsley R C, et al, (2007). A finite volume numerical approach for coastal ocean circulation studies:Comparisons with finite difference models[J]. Journal of Geophysical Research,112: C03018.
    Chen C S, Robert C. Beardsley and Geoffrey Cowles, (2006). An Unstructured Grid, Finite-Volume Coastal Ocean Model:FVCOM User Manual[M].
    Chenjuan Jiang, Jiufa Li and H. E. deSwart, (2012). Effects of navigational works on morphological changes in the bar area of the Yangtze Estuary, Geomorphology,139-140:205-219.
    Dyer K R, (1988). Fine sediment particle transport in estuaries. Physical Processes in Estuary (J Dronkers and W Van Leussen), Spring-Verlag, New York:295—310.
    Dyer, K. R. (1997). Estuaries:a physical introduction,2nd edition, John Wiley, Chichester, UK.
    Gangfeng Ma, Fengyan Shi, Shuanguang Liu, et al. (2010). Hydrodynamic modeling of Changjiang Estuary:Model skill assessment and large-scale structure impacts, Applied Ocean Research.33,69-78.
    Gaofeng Liu, Jianrong Zhu, Yuanye Wang, et al. (2010). Tripod measured residual currents and sediment flux:Impacts on the silting of the Deepwater Navigation Channel in the Changjinag Estuary, Estuarine, Coastal andShelf Science. Doi:10.1016/j.ecss.2010.08.008.
    Ge, J., Ding, P., Chen, S., (2010). Impacts of deep waterway project on local circulations and salinity in the Changjiang Estuary, China. Proceedings of the 32nd International Conference of Coastal Engineering 2010, Shanghai http://journals.tdl.org/ICCE/article/viewFile/1062.
    Huang H S, Chen C S, Blanton J O, et al, (2008). A numerical study of tidal asymmetry in Okatee Creek, South Carolina[J]. Estuarine Coastal and Shelf Science,2008,78 (1):190-202
    Kelin Hu and Pingxing Ding, (2009). The effect of deep waterway constructions on hydrodynamics and salinities in Yangtze estuary, China, Journal of Coastal Research S156,961-965 (Proceedings of the 10th International Coastal Symposium), Lisbon, Portugal, ISSN 0749-0258.
    Pan, L., Ding, P. and Ge, J., (2009). Morphological response to the deep waterway project around the Changjiang etuary, China, Proceedings of the 32nd International Conference of Coastal Engineering, http://journals.tdl.org/ICCE/article/view/1024.
    Uncles R J et al., (1985). Observed fluxes of water, salt and sediment in a partly mixed estuary, Estuarine, Coastal and Shelf Science, 20:147—167.
    Wang, Y., Shen, J., He, Q., (2010). A numerical model study of the transport timescale and change of estuarine circulation due to waterway constructions in the Changjiang Estuary, China, Journal of Marine Systems 82,154-170.
    陈吉余,沈焕庭,1987.我国河口基本水文特征分析[J], 水文,(3):2—8.
    陈吉余,沈焕庭,恽才兴,1988.长江河口动力过程和地貌演变[C],上海科学技术出版社.
    陈炜,李九发,蒋陈娟,等,2011.长江河口九段沙近期冲淤演变过程研究[J],泥沙研究.1:15-21.
    陈志昌,顾佩玉,朱元生,等,1995.长江口深水航道研究[J],水利水运科学研究,3:210-220.
    陈志昌,乐嘉钻,黄仁元,2001.长江口二期工程总平面调整试验研究[R],上海:交通部科学研究院河口海岸研究中心.
    陈志昌,2002.长江口深水航道治理工程二期工程动床物理模型试验[R],南京:南京水利科学研究院.
    陈志昌,乐嘉钻,2005.长江口深水航道整治原理[J],水利水运工程学报,1:1-7.
    窦国仁,董凤舞,窦希萍,等,1995.河口海岸泥沙数学模型研究[J],中国科学,9:995-1001.
    窦国仁,1999.长江口深水航道泥沙回淤问题的分析[J],水运工程,10:36-39.
    丁君松,丘凤莲,1981.汉道分流分沙计算[J],泥沙研究,(1):3-5.
    窦希萍,李来,窦国仁,1999.长江口全沙数学模型研究[J],水利水运科学研究,(2):136-145.
    杜景龙,杨世伦,张文祥,等,2005.长江口北槽深水航道工程对九段沙冲淤影响研究[J],海洋工程.23(3):78-83.
    冯凌旋,2010.长江口南北槽分流口演变及其对北槽深水航道整治工程的响应[D].上海:华东师范大学硕士学位论文.
    范期锦,1999.建设中的长江口深水航道[J],中国港口工程, (3):8-15.
    范期锦, 高敏,2009.长江口深水航道治理工程的设计与施工[J],人民长江,40(8):25—30.
    郭建强,茅志昌,2008.长江口瑞丰沙嘴演变分析[J],海洋湖沼通报.1:17-24.
    葛建忠,2010Multi-Scale FVCOM Model System for the East China Sea and Changjiang Estuary and Its Applications[D],华东师范大学博士学位论文.
    高敏,范期锦,谈泽炜,等,2009.对长江口北槽分流比的分析研究[J],水运工程(5):82-86.
    韩其为,何明民,陈显维,1992.汊道悬移质分沙模型[J],泥沙研究,(1):44-52.
    贺松林,2000.长江河口下段分汉口的组构模式[J],海洋学报,22(1):84-92.
    刘高峰,朱建荣,沈焕庭,2005.河口涨落潮槽水沙输运机制研究[J].泥沙研究,(5):51—57.
    刘高峰,2010.长江口水沙运动机三维泥沙模型研究[D],上海:华东师范大学博士学位论文.
    乐嘉钻,1997.长江口深水航道治理工程情况简介[D],上海水利,(2):14-16.
    刘杰,陈吉余,乐嘉海,2004.长江口深水航道治理一期工程实施后北槽冲淤分析[J],泥沙研究,(5):15-22.
    刘杰,2008a.长江口深水航道河床演变与航道回淤研究[D].上海:华东师范大学 博士学位论文.
    刘杰,陈吉余,徐志扬,2008b.长江口深水航道治理工程实施后南北槽分汊段河床演变[J],水科学进展,19(5):605-612.
    刘杰,徐志杰,赵德昭,等,2009.长江口深水航道(一、二期工程)回淤变化[J],泥沙研究,2:22-28.
    李九发,万新宁,应铭,等,2006.长江河口九段沙沙洲形成和演变过程研究[J],泥沙研究.6:44-49.
    李九发,戴志军,应铭,等,2007.上海市沿海滩涂土地资源圈围与潮滩发育演变分析[J],自然资源学报.22(3):361-371.
    李鹏,杨世伦,戴世宝,等,2007.近10年来长江口水下三角洲的冲淤变化一兼论三峡工程蓄水的影响[J],地理学报.62(7):707-716.
    交通部长江口航道管理局,2008.北槽航道回淤原因及减淤方案效果分析[R],上海:交通部长江口航道管理局.
    金缪,谈泽炜,李文正,等.长江口深水航道的回淤问题1[J],中国港湾建设,2003,3:5-9.
    金缪,谈泽炜,李文正,等.长江口深水航道的回淤问题2[J],中国港湾建设,2003,4:1-6.
    金鏐,谈泽炜,李文正,等.长江口深水航道的回淤问题3[J],中国港湾建设,2003,5:1-7.
    金鏐,虞志英,何青,2009.关于长江口深水航道维护条件与流域来水来沙关系的初步分析[J], 水运工程, (1):91-96.
    潘灵芝,丁平兴,葛建忠,等,2011.长江口深水航道整治工程影响下北槽河床冲淤变化分析[J],泥沙研究,5:51-60.
    时伟荣,李九发,1993.长江河口南北槽输沙机制及浑浊带发育分析[J],海洋通报,12(4):69—76.
    沈焕庭,等.长江河口物质通量[M].北京:海洋出版社,2001.
    沈健,沈焕庭,潘定安,等.长江河口最大浑浊带水沙输运机制分析[J].地理学报,1995,50(5):411—420.
    谈泽炜,范期锦,郑文燕,等,2009.长江口北槽航道回淤原因分析[J],水运工程,6:9卜102.
    王康墡,苏纪兰,1987.长江口南港环流及悬移物质输运的计算方法[J],海洋 学报,9(5):627—637.
    吴家学,沈焕庭,吴华林.潮汐河口悬沙通量组分模式及其在长江口的应用[J].海洋学报,24(6):49—58.
    郁微微,杨洪林,刘曙光,等,2007.深水航道工程对长江口流场的影响[J],水动力学研究与进展,22(6):709-715.
    严以新,高进,宋志尧,等,2001.长江口九段沙分流计算模式及工程应用[J],水利学报.4: 79-84.
    杨世伦,贺松林,谢文辉,1998.长江口九段沙的形成演变及其与南北槽发育的关系[J],海洋工程,16(4):55-64.
    余文畴,1987.长江分汉河道口门水流及输沙特性[J],长江科学院院报,(1):16-22.
    赵建春,2009.长江口九段沙尾水下沙洲近期演变过程及其对人类活动的响应[D],华东师范大学硕士论文
    朱建荣,朱首贤,2003ECOM模式的改进及在长江河口、杭州湾及邻近海区的应用[J],海洋与湖沼,34(4):364-388.
    朱建荣,2003.海洋数值计算方法和数值模式[M],海洋出版社,上海.
    张莉莉,李九发,吴华林,沈焕庭,2002.长江河口拦门沙冲淤变化过程研究[J],华东师范大学学报(自然科学版),(6):73-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700