用户名: 密码: 验证码:
过氧化氢诱导的瑞氏木霉细胞凋亡研究及原生质体细胞活力流式细胞术检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瑞氏木霉(Trichoderma reesei,anamorph:Hypocrea fecorina)是一种重要的工业丝状真菌,是纤维素酶、半纤维素酶、淀粉酶以及蛋白酶的主要来源。可作为宿主载体表达多种外源蛋白质,具有重要的经济价值。此外瑞氏木霉作为低等多细胞真核生物,具有结构简单、生长迅速、操作简便的特点,是真菌遗传学与细胞生物学研究的理想生物材料。
     细胞凋亡(apoptosis)属于程序性细胞死亡(PCD),是受到精密调控的细胞自杀过程。在高等动物中,细胞凋亡紊乱可导致多种疾病,如癌症、艾滋病等。因此细胞凋亡一直是生命科学领域的前沿与热点,并于2002年获得诺贝尔奖医学奖。目前关于酵母和丝状真菌的细胞凋亡研究正在成为生命科学新的方向。工业发酵过程中,好氧真菌瑞氏木霉时刻暴露于氧化压力(oxidativestress)下,常导致菌丝死亡,这一过程可能由细胞凋亡引起。
     为研究氧化压力致死机理,本文选择活性氧物质H_2O_2模拟氧化压力。研究表明,低浓度的H_2O_2可导致瑞氏木霉QM 9414原生质体细胞活力发生可逆性的下降;而较高浓度的H_2O_2可导致原生质体活力发生不可逆的下降,直至全部死亡。显微镜观察结果显示,2.4 mmol/L H_2O_2处理后的瑞氏木霉菌丝出现细胞质“起泡”及原生质体凝缩等丝状真菌细胞凋亡的表型特征。AnnexinⅤ染色证明PS外翻这一凋亡生化表型。此外,PI染色排除了细胞坏死的可能性。对于动物细胞凋亡中常见的DNA ladder现象,瑞氏木霉与其他大多数真菌中的情况类似,未发现DNA ladder。本文证明细胞凋亡机制在瑞氏木霉细胞中具有保守性。为解释发酵过程中的菌体死亡提供了新的思路。
     流式细胞术(Flow cytometry,FCM)是一种基于荧光的细胞生物学分析手段,能快速检测细胞群体中单个细胞的性质。在动物、植物乃至酵母细胞凋亡研究中有广泛应用。但由于菌丝形态的限制,流式细胞术在丝状真菌中应用有限。对于原生质体的检测目前尚未见报道。
     本文以瑞氏木霉作为研究对象,成功建立了应用流式细胞术检测丝状真菌原生质体细胞活力的方法。采用绿色荧光蛋白GFP结合PI的策略检测了不同浓度H_2O_2作用后的原生质体活力。其结果与荧光显微镜观察和平板计数结果完全一致。证明流式细胞术是一种有效而准确的原生质体活力鉴定方法。该研究将为丝状真菌原生质体细胞凋亡检测提供重要参考。
     本文证明细胞凋亡机制在瑞氏木霉中具有保守性。2.4 mmol/L H_2O_2可导致瑞氏木霉原生质体细胞凋亡。目前正在尝试通过转基因和基因敲除的方法阻断细胞凋亡信号通路,构建具工业生产潜力的凋亡抑制菌株。延长存活时间,提高发酵效率。此外,本文开创了利用流式细胞术检测丝状真菌原生质体活力的技术。该技术不影响原生质体活性,结合细胞分选(cell sorting)技术有望直接得到感兴趣的原生质体细胞,并再生出性状优良的菌株。
Trichoderma reesei (anamorph: Hypocrea jecorina) is an important filamentous fungus, which can produce a complete set of cellulases, hemicellulases, amylase and protease. In addition, it is an efficient host for heterologous protein expression. As a lower multicellular eukaryote, T. reesei has simple structure and fast growth rate, which make it significant in the researches of fungi heredity and metabolism.
     Apoptosis is a conserved mechanism that plays an essential role in eukaryotes. Malfunction of apoptosis contributes to many human diseases including cancer and AIDS. Research on yeast and filamentous fungi apoptosis is also expected to become new growth point in the biological field. During industrial fermentation, aerophilic fungus T. reesei is exposed to oxidative stress constantly, which can cause death of filament. It is speculated that apoptosis involves in this course.
     Here hydrogen peroxide was selected to mimic oxygen stress to study the mechanism of cell death. We have found that apoptosis can be induced in T. reesei by low external doses of H_2O_2. The accepted morphological markers of apoptosis in fungi were observed, including cytoplasmic vacuolization and extemalization of phosphatidylserine. DNA ladder, a commol/Lon phenomenon in metazoan apoptosis, is deficient in T. reesei. This research provides new insight into the death during fermentation.
     Flow cytometry is a powerful biomedical technology, which is also called Fluorescence-Activated Cell Sorting. Data are collected for each individual cell, which enables the investigator to measure the distribution of a property or properties within the population. However, because of the filamentous morphological limits, flow cytometry has little applicant in fungal research.
     This study assesses the potential of flow cytometric method to study the protoplast viability in filamentous fungi T. reesei. Cell viability after treatment with H_2O_2 was determined using the green fluorescent protein marker gene in combination with the viability indicator propidium iodide. This study demonstrates the successful application of flow cytometry to monitor filamentous fungal protoplasts.
     Our findings show that enough functional conservation exists between apoptotic machineries of mammol/Lals and fungi. We are trying to construct industrial strains by expression of anti-apoptotic proteins or deletion of pro-apoptotic genes in T. reesei. These strains are expected to have prolonged longevity and exhibited enhanced stress resistance. Besides, flow cytometric method to study fungal viability was successfully built up in this thesis. Since flow cytometric analysis does not cause any damage to cell viability, sorting these cells directly onto agar plates is advantageous to microbiologists.
引文
1 Frohlich KU, Madeo F. Apoptosis in yeast--a monocellular organism exhibits altruistic behaviour. FEBS Lett, 2000, 473(1 ):6-9.
    2 Fleury C, Pampin M, Tarze A, etal. Yeast as a model to study apoptosis? Biosci Rep, 2002, 22(1):59-79
    3 Frohlich KU, Heike F, Christoph R. Yeast apoptosis—From genes to pathways. Seminars in Cancer Biology, 2007,17: 112-121.
    4 Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972, 26:239-257
    5 Matsuyama S, Xu Q, Velours J, etal. The Mitochondrial F_0F_1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammol/Lalian cells. Mol Cell, 1998, 1(3):327-36
    6 Xu Q, Reed JC. Bax inhibitor-1, a mammol/Lalian apoptosis suppressor identified by functional screening in yeast. Mol Cell, 1998, 1(3):337-46
    7 Ameisen JC. The origin of programmol/Led cell death. Science, 1996, 272(5266): 1278-9.
    8 Madeo, F., Frohlich, E., Frohlich, K.U. 1997. A yeast mutant showing diagnostic markers of early and late apoptosis. J Cell Biol, 139, 729- 734.
    9 Madeo F, Herker E, Wissing S, etal. Apoptosis in yeast. Curr Opin Microbiol, 2004, 7(6):655-60.
    10 Weinberger M, Ramachandran L, Feng L, etal. Apoptosis in budding yeast caused by defects in initiation of DNA replication. J Cell Sci, 2005, 118(Pt 15):3543-53
    11 Mazzoni C, Herker E, Palermo V, etal. Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep, 2005, 6(11):1076-81
    12 Hauptmann P, Riel C, Kunz-Schughart LA, etal. Defects in N-glycosylation induce apoptosis in yeast. Mol Microbiol, 2006, 59(3):765-78.
    13 Ren Q, Yang H, Rosinski M, etal. Mutation of the cohesin related gene PDS5 causes cell death with predominant apoptotic features in Saccharomyces cerevisiae during early meiosis. Mutat Res, 2005, 570(2):163-73.
    14 Laun P, Pichova A, Madeo F, etal. Aged mother cells of Saccharomyces cerevisiae show markers of oxidative stress and apoptosis. Mol Microbiol, 2001, 39(5): 1166-73.
    15 Fabrizio P, Battistella L, Vardavas R, etal. Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J Cell Biol, 2004, 166(7): 1055-67.
    16 Herker E, Jungwirth H, Lehmann KA, etal. Chronological aging leads to apoptosis in yeast. J Cell Biol, 2004, 164(4):501 -7.
    17 Vachova L, Devaux F, Kucerova H, etal. Sok2p transcription factor is involved in adaptive program relevant for long term survival of Saccharomyces cerevisiae colonies. J Biol Chem, 2004,279(36):37973-81
    18 Eisenberg T, Buttner S, Kroemer G, etal. The mitochondrial pathway in yeast. Apoptosis, 2007, 12(5): 1011-23.
    19 Buttner S, Eisenberg T, Herker E, etal. Why yeast cells can undergo apoptosis: death in times of peace, love, and war. J Cell Biol, 2006,175(4):521-525.
    20 Du L, Yu Y, Chen J, Liu Y, Xia Y, Chen Q, Liu X. Arsenic induces caspase-and mitochondria-mediated apoptosis in Saccharomyces cerevisiae. FEMS Yeast Res, 2007
    21 Liang J, Wu WL, Liu ZH, Mei YJ, Cai RX, Shen P. Study the oxidative injury of yeast cells by NADH autofluorescence. Spectrochim Acta A Mol Biomol Spectrosc, 2007, 67(2):355-9
    22 Madeo F, Herker E, Maldener C, etal. A caspase-related protease regulates apoptosis in yeast. Mol Cell, 2002, 9(4):911-7.
    23 Mazzoni C, Herker E, Palermo V, etal. Yeast caspase 1 links messenger RNA stability to apoptosis in yeast. EMBO Rep, 2005, 6(11): 1076-81
    24 Bettiga M, Calzari L, Orlandi I, etal. Involvement of the yeast metacaspase Yca1 in ubp10Delta-programmol/Led cell death. FEMS Yeast Res, 2004, 5(2):141-7.
    25 Vachova L, Palkova Z. Physiological regulation of yeast cell death in multicellular colonies is triggered by ammol/Lonia. J Cell Biol, 2005, 169(5):711-7.
    26 Dohi T, Okada K, Xia F, etal. An IAP-IAP complex inhibits apoptosis. J Biol Chem, 2004, 279(33):34087-90
    27 Fahrenkrog B, Sauder U, Aebi U. The S. cerevisiae HtrA-like protein Nma111p is a nuclear serine protease that mediates yeast apoptosis. J Cell Sci, 2004,117:115-26.
    28 Riedl SJ, Renatus M, Schwarzenbacher R, etal. Structural basis for the inhibition of caspase-3 by XIAP. Cell, 2001, 104(5):791-800.
    29 Walter D, Wissing S, Madeo F, Fahrenkrog B. The inhibitor-of-apoptosis protein Birlp protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2. J Cell Sci, 2006,119:1843-51.
    30 Wu M, Xu LG, Li X, etal. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem, 2002, 277(28):25617-23.
    31 Li W, Sun L, Liang Q, etal. Yeast AMID homologue Ndi1p displays respiration-restricted apoptotic activity and is involved in chronological aging. Mol Biol Cell, 2006,17(4): 1802-11.
    32 Cheung WL, Ajiro K, Samejima K, etal Apoptotic phosphorylation of histone H2B is mediated by mammol/Lalian sterile twenty kinase. Cell, 2003, 113(4):507-17.
    33 Ahn SH, Cheung WL, Hsu JY, etal. Sterile 20 kinase phosphorylates histone H2B at serine 10 during hydrogen peroxide-induced apoptosis in S. cerevisiae. Cell, 2005,120(1):25-36
    34 Rigaut G, Shevchenko A, Rutz B, etal. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol, 1999,17(10): 1030-2.
    35 Roze LV, Linz JE. Lovastatin triggers an apoptosis-like cell death process in the fungus Mucor racemosus. Fungal Genet Biol, 1998, 25: 119-133.
    36 Chen SR, Dunigan DD, Dickman MB. Bcl-2 family members inhibit oxidative stress-induced programmol/Led cell death in Saccharomyces cerevisiae. Free Radic Biol Med, 2003a, 34:1315-1325.
    37 Barhoom S, Sharon A. Bcl-2 proteins link programmol/Led cell death with growth and morphogenetic adaptations in the fungal plant pathogen Colletotrichum gloeosporioides. Fungal Genet Biol, 2006,44(1):32-43.
    38 Fedorova N, Badger J, Robson G, etal. Comparative analysis of programmol/Led cell death pathways in filamentous fungi. BMC Genomics, 2005,6:177.
    39 Cheng J, Park TS, Chio LC, etal. Induction of apoptosis by sphingoid long-chain bases in Aspergillus nidulans. Mol Cell Biol, 2003, 23:163-177.
    40 Leiter E, Szappanos H, Oberparleiter C, etal. Antifungal protein PAF severely affects the integrity of the plasma membrane of Aspergillus nidulans and induces an apoptosis-like phenotype. Antimicrob Agents Chemother, 2005, 49:2445-2453.
    41 Semighini CP, Hornby JM, Dumitru R, etal. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. Mol Microbiol, 2006, 59:753-764.
    42 Mousavi SA, Robson GD. Entry into stationary phase is associated with a rapid loss of viability and an apoptotic-like phenotype in the opportunistic pathogen Aspergillus fumigatus. Fungal Genet Biol, 2003, 39:221-229.
    43 Mousavi SA, Robson GD. Oxidative and amphotericin B-mediated cell death in the opportunistic pathogen Aspergillus fumigatus is associated with an apoptotic-like phenotype. Microbiology Rev Mol Cell Biol, 2004, 5: 305-315.
    44 Chen C, Dickman MB. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Pro. Natl Acad Sci, 2005, 102:3459- 3464.
    45 Lu BC, Gallo N, Kues U. White-cap mutants and meiotic apoptosis in the basidiomycete Coprinus cinereus. Fungal Genet Biol, 2003, 39:82-93.
    46 Madeo F, Herker E.Wissing, Jungwirth S, etal. Apoptosis in yeast. Curr Opin Microbiol, 2004, 7: 655-660.
    47 Gourlay CW, Du W, Ayscough KR. Apoptosis in yeast—mechanisms and benefits to a unicellular organism. Mol Microbiol, 2006, 62(6):1515-1521.
    48 Eisenberg T, Buttner S, Kroemer G, etal. The mitochondrial pathway in yeast. Apoptosis, 2007, 12(5): 1011-1023.
    49 Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY. Understanding, improving and using green fluorescent proteins. Trends Biochem Sci, 1995, 20(11):448-55.
    50 Stauber RH, Horie K, Carney P, Hudson EA, Tarasova NI, Gaitanaris GA, Pavlakis GN. Development and applications of enhanced green fluorescent protein mutants. Biotechniques, 1998, 24(3):462-6, 468-71.
    51 Gura T. Structure of gene-tag protein solved. Science, 1996, 273(5280):1336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700