用户名: 密码: 验证码:
夏季白令海和西北冰洋二氧化碳体系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北极地区是对全球变化响应和反馈最敏感的地区之一,由全球变化引发的以夏季北极海冰快速减薄、退缩为代表的一系列北极快速变化过程,举世瞩目,吸引了全世界全球变化研究者的目光。欣逢50年一遇的第4个国际极地年(IPY),作为IPY中国行动计划的重点考察计划之一,2008年7~9月,中国进行了第三次北极科学考察。本研究即利用此次宝贵的科学考察机会,在白令海与西北冰洋进行海—气CO_2走航观测以及现场采集大量的海样品进行二氧化碳体系(包括pH,总碱度(TA),溶解总无机碳(DIC)等)研究,总共采集121个站位共1166份海样品,其中白令海35个站位,北冰洋86个站位,每个站位都进行全深度采样测量。
     本研究通过对白令海和西北冰洋的二氧化碳体系进行深入研究,阐述CO_2体系在白令海和西北冰洋的分布状况,揭示造成其分布变化规律的主要影响因素,评估快速变化中的北极碳通量及其未来变化,借此增加我们对白令海和西北冰洋碳通量对北极快速变化响应的理解与认识。
     本论文主要研究结果如下:
     1、夏季白令海总体上表现为大气CO_2的汇区。夏季白令海表层海pCO_2的分布状况为:中部陆架区<海盆区<东北部陆架区<白令海峡上升流区。其中,白令海中部陆架区为213±34μatm(148-301μatm);白令海盆区平均pCO_2值为297±51μatm(178~374μatm);而白令海东侧陆架由于受径流冲淡影响,pCO_2值上升到为332±30μatm(277~387μatm);此外,在白令海峡观测到有局部上升流区,由于底层中含有较多的CO_2,其pCO_2值上升至476±68μatm(302~562μatm)。
     2、对白令海不同区域的pCO_2主要调控因子的分析表明,夏季白令海盆区pCO_2的分布主要与表层温(由北向南增温)密切相关,受溶解度泵(物理泵)主控;陆架区则不同,由于高生产力的影响,生物泵成为pCO_2的主要调控因子。但其中,东北部陆架由于受到径流冲淡影响,pCO_2受团非保守混合影响,情况相对复杂;在陆架上升流区,pCO_2受到文物理因素的主控,虽然生产力和叶绿素都很高,但是仍为一个源区;而在白令海峡,则受到不同团及其混合的主控,这些团共同通过狭窄的白令海峡,向北流入北冰洋。
     3、对CO_2体系参数的分析研究表明:
     夏季白令海表层DIC、TA值的范围分别为DIC:1827~2145μmolkg~(-1),TA:2097~2244μmol kg~(-1)。夏季白令海表层TA分布主要受淡化作用等因素的影响,而DIC由于受到多种因素综合影响呈现出复杂的变化。白令海上层柱中TA主要受团保守混合等过程影响,没有明显的碳酸钙溶解/沉淀等变化过程的影响。利用盐度标准化(S=35)去掉蒸发或淡化的影响之后(分别表示为nDIC和nTA),从nDIC与nTA的相关关系表明,nTA与nDIC的数据点的分布明显更加集中,而且成负相关的关系,其ΔnTA/ΔnDIC值接近Radfield比值,说明生物作用对夏季白令海上层体DIC影响显著,成为主要控制因子。
     4、用平均风速和平均pCO_2估算白令海测区的陆架陆坡区和海盆区海-气CO_2通量分别为-12.3 mmol m~(-2) d~(-1)和-7.6 mmol m~(-2) d~(-1),白令海每年吸收~30Tg C。
     5、整个西北冰洋测区在夏季对于大气CO_2都是不饱和的。西北冰洋的pCO_2的大致分布状况是:楚科奇海区<加拿大海盆海冰区<门捷列夫海脊区<加拿大海盆无冰区。夏季楚科奇海陆架整体pCO_2值都很低,在132~301μatm之间波动,平均值为200μatm。而陆坡区则明显升高,自陆架边缘的218μatm低值剧烈递增到367μatm。陆架区由于源自北太平洋富含营养盐入流的注入,保持着高速率的非常高的季节性初级生产力和净群落生产力,生物作用对CO_2的强吸收导致了海pCO_2的低值,这是保持楚科奇海在夏季是一个强汇区的主要原因。在陆架坡折处,pCO_2值由陆坡向海盆开始递增,并且在75°N,155°W为中心的海盆形成了一个高值区(303~363μatm),这是由于早期初级生产的有机质再矿化造成的,也受到了富含有机质的河流的影响。除了75°N,155°W为中心的高值区外,加拿大海盆的pCO_2并不高,范围为230~303μatm,主要是受冰藻等浮游植物对CO_2的生物吸收作用、低pCO_2向海盆的平输运,以及团北向输运冷却造成的。
     6、西北冰洋表层TA、nTA、DIC、和nDIC的范围分别为1757~2229μmolkg~(-1),2383~2722μmol kg~(-1),1681~2034μmol kg~(-1)和2119~2600μmolkg~(-1)。海盆区的TA、DIC,陆坡区的DIC和陆架陆坡区的TA与盐度呈现很好的线性关系,呈现保守混合。其中海盆区和陆坡区ΔnTA几乎与ΔnDIC同步变化,ΔnTA/ΔnDIC值约为1,表明海盆区和陆坡区体碳酸盐体系主要是由保守混合所主控。在楚科奇海的陆架区,DIC在盐度29到33的区域有强烈的生物去除过程,而在低盐和高盐端相对保守。
     7、楚科奇海陆架区和陆坡区的平均海-气CO_2通量为-16.5和-6.7 mmolm~(-2) d~(-1),得到楚科奇海区年吸收CO_2的量为~10.9T g。基于海冰条件和加拿大海盆各个区域海pCO_2的变异性,把加拿大海盆区分为4个区来研究:无冰区、浮冰区、密集海冰区、门捷列夫海脊区的通量分别为-3.6,-5.2,-0.5和-7.0 mmol m~(-2)d~(-1)。
The Arctic region is one of the most sensitive regions to the global change in the world.The rapid change occurring in the Arctic Ocean,such as sea ice dramatically thinning and shrinking,which were induced by global warming,are extremely remarkable and are focused by more and more global warming researchers.
     As an important part of schedule during the 4~(th) International Polar Year(IPY), which were held every 50 years normally,the 3~(rd) Chinese National Arctic Research Expedition(CHINARE 2008) was carried out from July to September in 2008.The partial pressure of CO_2(pCO_2) in the air and in the surface sea water were observed along the cruise track,and quantity numbers of sea water samples were taken for CO_2 system parameters measurements(viz.pH,total alkalinity(TA),total dissolved inorganic carbon(DIC)).121 stations in total and 1166 samples were taken for each parameter,including 35 and 86 stations in Bering Sea and the western Arctic Ocean respectively.
     The distributions of CO_2 system parameters in the Bering Sea and the western Arctic Ocean were all clarified,and the according controlling factors were discussed. The flux of CO_2 from air to sea and its trend of changing in the future were estimated in the Arctic Ocean under the rapid changes,which could give us the better knowledge of the response and its feedback of the Arctic to the global change.
     Results can be mainly summarized as the followings:
     1、Spatial-tempo distributions of pCO_2 in the surface sea water in the Bering Sea in summertime were described as the followings:central Bering shelf<Bering Basin<northeast Bering shelf<Bering strait upwelling,where pCO_2 in the central Bering shelf was 213±34μatm(148~301μatm),pCO_2 in the Bering basin was 297±51μatm(178~374μatm),pCO_2 in the northeast Bering shelf influenced by river plume was 332±30μatm (277~387μatm),and Bering strait upwelling had pCO_2 values of 476±68μatm(302~562μatm) because of high pCO_2 in the bottom water.Bering Sea acts as a net sink for atmospheric CO_2 in summer generally.
     2、Analyzing pCO_2 controlling factors for different areas of Bering Sea indicated that pCO_2 northward decrease in the Bering basin were attributed to temperature cooling and mainly driven by solubility pump, while low pCO_2 in Bering shelf was driven by biological pump as a result of high primary production.However,northeast Bering shelf received much river runoff discharge which was commonly supersaturated in pCO_2,so pCO_2 of this region was mainly influenced by water masses mixing and net balance of photosynthetic CO_2 fixation and respiration of organic material(OM).In the upwelling of Bering Strait,pCO_2 was controlled by hydrological processes,and acted as a strong CO_2 source though its primary production and chlorophyll were both high.In other regions of Bering Strait,pCO_2 was driven by different water masses and their mixing.
     3、The ranges of summertime DIC and TA in the Bering Sea surface water were 1827~2145μmol kg~(-1),2097~2244μmol kg~(-1),respectively.TA in Bering Sea surface water was mainly influenced by fresh water input,but DIC showed complicated distribution driven by many factors.Our results suggested TA in the upper water column of Bering Sea was mainly driven by conservative mixing with fresher water,and no obvious CaCO_3 dissolution/precipitation were detected.When removed the effect of dilution by normalized DIC and TA to salinity as 35,the nDIC showed a good relationship to the nTA,with a value ofΔnTA/ΔnDIC approximate to the Radfield ratio,and implicated that DIC in the upper water column of Bering Sea were mainly controlled by biological factors.
     4、Using the average wind speed and average pCO_2,the air-sea CO_2 fluxes in Bering shelf-slope and Bering basin were estimated,-12.3 mmol m~(-2)d~(-1) and -7.6 mmol m~(-2)d~(-1),respectively,then the annual uptake of Bering Sea was~30Tg C.
     5、The summertime pCO_2 distribution in the western Arctic Ocean was: Chukchi Sea<Canada Basin sea-ice zone<Mendeleyev Ridge<Canada Basin ice-free zone.The whole western Arctic Ocean was a CO_2 sink in summer.Summertime Chukchi Sea shelf pCO_2 was very low,varying from 132μatm to 301μatm,and average was 200μatm.However,pCO_2 increased sharply from shelf 218μatm to slope 367μatm.High rates of seasonal primary and net community production during the brief, summertime exposure of nutrient-laden surface waters of Pacific Ocean origin maintained the summertime Chukchi Sea shelf low pCO_2 and a perennial oceanic CO_2 sink.Relative high pCO_2(303~363μatm) was detected in the slope-basin area around 75°N and 155°W,and was attributed to a combination of OM remineralization generated earlier in this season and riverine OM decomposition.Except for area around 75°N and 155°W,Canada Basin pCO_2 was not high,ranging from 230μatm to 303μatm,and was a result of CO_2 biological removal by ice algae and phytoplankton,the shelf to basin outflow of low pCO_2 water from the Chukchi Sea shelf horizontally exports into the Canada Basin,and northward transit cooling.
     6.The ranges of summertime TA,nTA,DIC and nDIC in the western Arctic Ocean surface water were 1757~2229μmol kg~(-1),2383~2722μmol kg~(-1),1681~2034μmol,2119~2600μmol kg~(-1),respectively. The TA in the Canada Basin and Chukchi shelf-slope,as well as the DIC in the Canada Basin and the Chnkchi slope,have a good relationship with salinity,illustrating a mixing process together with sea-ice melt water and river runoff.ΔnTA/ΔnDIC was equal to 1 in the slope and basin, suggested a conservative mixing without net biological uptake of CO_2.In contrast,the DIC had an obvious biological removal in Chukchi shelf at the salinity of 29 to 33.However,it seems like conservative at both ends of relative low and high salinity.
     7、The air-sea CO_2 fluxes in the Chukchi shelf and the slope were -16.5,-6.7 mmol m~(-2) d~(-1),respectively,then an annual uptake~10.9T g was calculated.The Canada Basin was divided into 4 parts based on sea-ice condition and pCO_2 values:ice-free zone,floating ice zone,pack ice zone and Mendeleyev Ridge,and each air-sea CO_2 fluxes were -3.6,-5.2,-0.5 and -7.0 mmol m~(-2) d~(-1),respectively.
引文
[1]http://www.esrl.noaa.gov/gmd/ccgg/trends/
    [2]Miller J B. Carbon cycle - Sources, sinks and seasons[J]. Nature, 2008, 451(7174):26-27.
    [3] Battle M, Bender M L, Tans P P, et al. Global carbon sinks and their variability inferred from atmospheric O_2 and delta C-13[J]. Science, 2000, 287(5462): 2467-2470.
    [4] Feely R A, Sabine C L, Lee K, et al. Impact of anthropogenic CO_2 on the CaCO_3 system in the oceans[J]. Science, 2004, 305(5682): 362-366.
    [5] Falkowski P, Scholes R J, Boyle E, et al. The global carbon cycle: A test of our knowledge of earth as a system[J]. Science, 2000, 290(5490): 291-296.
    [6] Chapman W L and Walsh J E. Recent variations of sea ice and air temperature in high latitudes [J]. Bulletin of the American Meteorological Society, 1993, 74(1): 33-47.
    [7] Serreze M C, Walsh J E, Chapin F S, et al. Observational evidence of recent change in the northern high-latitude environment[J]. Climatic Change, 2000, 46(1-2): 159-207.
    [8] http://www.arctic.noaa.gov/reportcard/atmosphere.html
    [9] Stroeve J C, Serreze M C, Fetterer F, et al. Tracking the Arctic's shrinking ice cover:Another extreme September minimum in 2004[J]. Geophysical Research Letters, 2005,32(4): 4.
    [10] Comiso J C, Parkinson C L, Gersten R, et al. Accelerated decline in the Arctic Sea ice cover[J]. Geophysical Research Letters, 2008, 35(1): 6.
    [11] Parkinson C L and Cavalieri D J. Arctic sea ice variability and trends, 1979-2006[J].Journal of Geophysical Research-Oceans, 2008, 113(C7): 28.
    [12] Wang M Y and Overland J E. A sea ice free summer Arctic within 30 years?[J].Geophysical Research Letters, 2009, 36: L07502.
    [13] Kerr R A. GLOBAL WARMING Arctic Summer Sea Ice Could Vanish Soon But Not Suddenly[J]. Science, 2009, 323(5922): 1655-1655.
    [14] Steele M, Ermold W, and Zhang J L. Arctic Ocean surface warming trends over the past 100 years[J]. Geophysical Research Letters, 2008, 35(2): L02614.
    [15] Pabi S, van Dijken G L, and Arrigo K R. Primary production in the Arctic Ocean,1998-2006[J]. Journal of Geophysical Research-Oceans, 2008, 113(C8): C08005.
    [16]陈立奇.北极海洋环境与海气相互作用研究[M].北京:海洋出版社.2003.
    [17]Roach A T,Aagaard K,Pease C H,et al.Direct measurements of transport and water properties through the Bering Strait[J].Journal of Geophysical Research-Oceans,100(C9):18443-18457.
    [18]Thomas R.Loughlin K O.Dynamics of the Bering Sea:Physical,Chemical and Biological Characteristics and a Synopsis of Research on the Bering Sea[M].Alaska:University of Alaska Sea Grant.1999.
    [19]陈立奇,高众勇,王伟强,等.白令海盆pCO_2分布特征及其对北极碳汇的影响[J].中国科学D辑,2003(08):781-790.
    [20]王伟强,黄宣宝,杨绪林,等.北冰洋考察区海-气CO_2的分布特征和通量研究[J].中国科学D辑,2003(02):119-126.
    [21]Chen L and Gao Z.Spatial variability in the partial pressures of CO_2 in the northern Bering and Chukchi seas[J].Deep-Sea Research PartⅡ,2007,54:2619-2629.
    [22]Chen C T A.Carbonate chemistry of the wintertime Bering Sea marginal ice zone[J].Continental Shelf Research,1993,13:67-67.
    [23]Murphy P P,Nojiri Y,Harrison D E,et al.Scales of Spatial Variability for Surface Ocean pCO_2 in the Gulf of Alaska and Bering Sea:Toward a Sampling Strategy[J].Geophysical Research Letters,28(6):1047-1050.
    [24]Kaltin S and Anderson L G.Uptake of atmospheric carbon dioxide in Arctic shelf seas:evaluation of the relative importance of processes that influence pCO_2 in water transported over the Bering-Chukchi Sea shelf[J].Marine Chemistry,2005,94(1-4):67-79.
    [25]Pipko,II,Semiletov IP,Tishchenko P Y,et al.Carbonate chemistry dynamics in Bering Strait and the Chukchi Sea[J].PROGRESS IN OCEANOGRAPHY,2001,55:77-94.
    [26]Murata A and Takizawa T.Summertime CO_2 sinks in shelf and slope waters of the western Arctic Ocean[J].Continental Shelf Research,2003,23(8):753-776.
    [27]Bates N R,Best M H P,and Hansell D A.Spatio-temporal distribution of dissolved inorganic carbon and net community production in the Chukchi and Beaufort Seas[J].Deep-Sea Research Part Ii-Topicai Studies in Oceanography,2005,52(24-26):3303-3323.
    [28]Bates N R.Air-sea CO_2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean[J].Journal of Geophysical Research-Oceans,2006,111(C10):C10013.
    [29]Bates N R,Moran S B,Hansell D A,et al.An increasing CO_2 sink in the Arctic Ocean due to sea-ice loss[J].Geophysical Research Letters,2006,33(23):L23609.
    [30]汤毓祥,矫玉田,邹娥梅.白令海和楚科奇海文特征和团结构的初步分析[J].极地研究,2001(01):57-68.
    [31]Carmack E,Barber D,Christensen J,et al.Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves[J].Progress in Oceanography,2006,71(2-4):145-181.
    [32]史久新,赵进平,矫玉田,等.太平洋入流及其与北冰洋异常变化的联系[J].极地研究,2004(03):253-260.
    [33]Weingartner T J,Cavalieri D J,Aagaard K,et al.Circulation,dense water formation,and outflow on the northeast Chukchi shelf[J].Journal of Geophysical Research-Oceans,103(C4):7647-7661.
    [34]Shimada K,Carmack E C,Hatakeyama K,et al.Varieties of shallow temperature maximum waters in the western Canadian Basin of the Arctic Ocean[J].Geophysical Research Letters,28(18):3441-3444
    [35]Swift J H,Jones E P,Aagaard K,et al.Waters of the Makarov and Canada basins[J].Deep-Sea Research Part Ⅱ,1997,44(8):1503-1529.
    [36]M(u|¨)nchow A and Carmack E C.Synoptic flow and density observations near an Arctic shelf break[J].Journal of Physical Oceanography,1997,27(7):1402-1419.
    [37]Coachman L K and Aagaard K.Transports through Bering Strait:Annual and interannual variability[J].Journal of Geophysical Research-Oceans,1988,93(C12):15535-15539.
    [38]Steele M,Morison J,Ermold W,et al.Circulation of summer Pacific halocline water in the Arctic Ocean[J].Journal of Geophysical Research-Oceans,2004,109(C2):C02027.
    [39]Codispoti L A,Flagg C,Kelly V,et al.Hydrographic conditions during the 2002 SBI process experiments[J].Deep-Sea Research Part Ⅱ,2005,52(24-26):3199-3226.
    [40]Woodgate R A,Aagaard K,and Weingartner T J.A year in the physical oceanography of the Chukchi Sea:Moored measurements from autumn 1990-1991[J].Deep-Sea Research Part Ⅱ,2005,52(24-26):3116-3149.
    [41]Dickson A G,Sabine C L,and Christian J R.Guide to best practices for ocean CO_2measurements[M].2007.
    [42]陈宝山.台湾海峡西南部碳酸盐系统分布特征及海-气二氧化碳通量——上升流的作用[D]:厦门大学硕士论文.2007.
    [43]Weiss R F.Carbon dioxide in water and seawater:the solubility of a non-ideal gas[J].Marine Chemisty,1974,2(3):203-215.
    [44]Takahashi T,Olafsson J,Goddard J G,et al.Seasonal variation of CO_2 and nutrients in the high-latitude surface oceans:A comparative study[J].Global Biogeochemical Cycles,1993,7(4):843-878.
    [45]鲁中明和戴民汉.海气CO_2通量与涡动相关法应用研究进展[J].地球科学进展,2006(10):1046-1057.
    [46]高众勇,陈立奇,王伟强.南大洋二氧化碳源汇分布及其海-气通量研究[J].极地研究,2001(03):175-186.
    [47]徐永福,赵亮,浦一芬,等.二氧化碳海气交换通量估计的不确定性[J].地学前缘,2004(02):565-571.
    [48]Liss P S and Merlivat L.Air-sea gas exchange rates:Introduction and synthesis[J].The role of air-sea exchange in geochemical cycling,1986:113-127.
    [49]Tans P P,Fung I Y,and Takahashi T.Observational Contrains on the Global Atmospheric CO_2 Budget[J].Science,1990,247:1431-1438.
    [50]Woolf D K and Thorpe S A.Bubbles and the air-sea exchange of gases in near-saturation conditions[J].Journal of marine research,1991,49(3):435-466.
    [51]Wanninkhof R.Relationship between gas exchange and wind speed over the ocean[J].Journal of Geophysical Research,1992,97(C5):7373-7381.
    [52]Wanninkhof R and McGillis W R.A cubic relationship between air-sea CO_2 exchange and wind speed[J].Geophysical Research Letters,1999,26(13):1889-1892.
    [53]Jacobs C M J,Kohsiek W I M,and Oost W A.Air-sea fluxes and transfer velocity of CO_2 over the North Sea:results from ASGAMAGE[J].Tellus B,1999,51(3):629-641.
    [54]Okkonen S R,Schmidt G M,Cokelet E D,et al.Satellite and hydrographic observations of the Bering Sea 'Green Belt'[J].Deep-Sea Research Part Ⅱ-Topical Studies in Oceanography,2004,51(10-11):1033-1051.
    [55]http://www.nodc.noaa.gov/OC5/SELECT/woaselect/woaselect.html
    [56]高郭平,董兆乾,侍茂崇.1999年夏季中国首次北极考察区团特征[J].极地研究,2003(01):12-21.
    [57]de Boyer Mont(?)gut C,Madec G,Fischer A S,et al.Mixed layer depth over the global ocean:An examination of profile data and a profile-based climatology[J].Journal of Geophysical Research,2004,109:C12003.
    [58]Fransson A,Chierici M,and Nojiri Y.New insights into the spatial variability of the surface water carbon dioxide in varying sea ice conditions in the Arctic Ocean[J].Continental Shelf Research,2009,29:1317-1328.
    [59]http://www.esrl.noaa.gov/gmd/ccgg/iadv/
    [60]Banse K and English D C.Comparing phytoplankton seasonality in the eastern and western subarctic Pacific and the western Bering Sea[J].Progress in Oceanography,1999,43(2-4):235-288.
    [61]Springer A M,McRoy C P,and Flint M V.The Bering Sea Green Belt:shelf-edge processes and ecosystem production[J].Fisheries Oceanography,1996,5(3-4):205-223.
    [62]Clement Kinney J,Maslowski W,and Okkonen S.On the processes controlling shelf-basin exchange and outer shelf dynamics in the Bering Sea[J].Deep Sea Research Part Ⅱ:Topical Studies in Oceanography 2009,56(17):1351-1362
    [63]孙恒和高众勇.南大洋海-气CO_2通量研究进展[J].极地研究,2009,21(1):60-68.
    [64]Else B G T,Papakyriakou T N,Granskog M A,et al.Observations of sea surface fCO_2distributions and estimated air-sea CO_2 fluxes in the Hudson Bay region(Canada)during the open water season[J].Journal of Geophysical Research-Oceans,2008,113(C8):12.
    [65]Zhao J,S hi J,G ao G,et al.Water mass of the northward throughflow in the Bering Strait in the summer of 2003[J].Acta Oceanologica Sinaca,2006,25(002):25-32.
    [66]Fransson A,Chierici M,and Nojiri Y.Increased net CO_2 outgassing in the upwelling region of the southern Bering Sea in a period of variable marine climate between 1995and 2001[J].Journal of Geophysical Research-Oceans,2006,111(C8):C08008.
    [67]Takahashi T,Sutherland S C,Sweeney C,et al.Global sea-air CO_2 flux based on climatological surface ocean pCO_2,and seasonal biological and temperature effects[J].Deep-Sea Research Part Ⅱ,2002,49(9-10):1601-1622.
    [68]Cai W J,Dai M,and Wang Y.Air-sea exchange of carbon dioxide in ocean margins:A province-based synthesis[J].Geophysical Research Letters,2006,33(12):L12603.
    [69]http://www.iup.uni-bremen.de:8084/amsredata/asi_daygrid_swath/11a/n6250/2008/
    [70]张海生.中国第三次北极科学考察报告[M].2009.
    [71]Aagaard K and Carmack E C.The role of sea ice and other fresh water in the Arctic circulation[J].Journal of Geophysical Research-Oceans,94(C10):14485-14498.
    [72]Cooper L W,McClelland J W,Holmes R M,et al.Flow-weighted values of runoff tracers(delta ~(18)O,DOC,Ba,alkalinity) from the six largest Arctic rivers[J].Geophysical Research Letters,2008,35(18):5.
    [73]Yamamoto-Kawai M,Tanaka N,and Pivovarov S.Freshwater and brine behaviors in the Arctic Ocean deduced from historical data of δ~(18)O and alkalinity(1929-2002 AD)[J].Journal of Geophysical Research-Oceans,2005,110(C10):C10003.
    [74]ftp://ftp.cmdl.noaa.gov/ccg/co2/in-situ/
    [75]http://reason.gsfc.nasa.gov/Giovanni/
    [76]Gosselin M,Levasseur M,Wheeler P A,et al.New measurements of phytoplankton and ice algal production in the Arctic Ocean[J].Deep-Sea Research Part Ⅱ,1997,44(8):1623-1644.
    [77]何剑锋.北极浮冰生态学研究进展[J].生态学报,2004,24(4):750-754.
    [78]高众勇,陈立奇,CAIWeijun,等.全球变化中的北极碳汇:现状与未来[J].地球科学进展,2007,22(8):857-865.
    [79]Semiletov I P,Pipko,Ⅱ,Repina I,et al.Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interfaces in the Arctic Ocean:Pacific sector of the Arctic[J].JOURNAL OF MARINE SYSTEMS,2007,66(1-4):204-226.
    [80]Grebmeier J M,Cooper L W,Feder H M,et al.Ecosystem dynamics of the Pacific-influenced northern Bering and Chukchi Seas in the Amerasian Arctic[J].Progress in Oceanography,2006,71(2-4):331-361.
    [81]Springer A M and McRoy C P.The Paradox of Pelagic Food Webs in the Northern Bering Sea—Ⅲ.Patterns of Primary Production[J].Continental Shelf Research CSHRDZ,1993,13(5/6):575-599.
    [82]Hill V and Cota G.Spatial patterns of primary production on the shelf,slope and basin of the Western Arctic in 2002[J].Deep-Sea Research Part Ⅱ,2005,52(24-26):3344-3354.
    [83]Semiletov I,Makshtas A,Akasofu S I,et al.Atmospheric CO_2 balance:The role of Arctic sea ice[J].Geophysical Research Letters,2004,31(5):L05121.
    [84]Cavalieri D J,Parkinson C L,and Vinnikov K Y.30-Year satellite record reveals contrasting Arctic and Antarctic decadal sea ice variability[J].Geophysical Research Letters,2003,30(18):1970.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700