用户名: 密码: 验证码:
Meso位四取代卟啉及α位四卤代酞菁的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉酞菁化合物作为新型的功能材料,由于其具有迷人的、独特的光学、电学、磁性及其它的与其分子内部大环之间π-π相互作用有关的物理性质,因此使得它们在分子电子学、分子信息存储和非线形光学上具有潜在的应用价值,在材料科学领域拥有广阔的应用前景。
     为了更加深入地理解实验结果并对进一步的实验提供理论指导,我们决定在研究工作中引入量子化学。在过去的几年中,我们课题组使用量子化学计算研究了酞菁、卟啉及其衍生物和类似物的几何构型、电子结构以及红外光谱(IR)、拉曼光谱(Raman)、X射线电子光谱(XPS)、紫外可见光谱(U-V-vis)等性质,并获得了一些有意义的结果。作为在这方面工作的继续,我的研究主要集中在自由卟啉及其金属配合物以及金属酞菁的几何构型,电子结构和振动光谱方面的研究。
     首先,本论文用密度泛函(DFT)方法对H_2TPP、MgTPP、ZnTPP、H_2T3PyP、MgT3PyP和ZnT3PyP的优化的几何构型、电子构型进行了理论研究。比较了Meso位3-吡啶环取代苯环H_2TPP、MgTPP和ZnTPP分子的几何构型、分子轨道和原子电荷。根据我们的计算,H_2TPP为D_2构型,H_2T3PyP为C_2构型,MgTPP和ZnTPP为D_4构型,MgT3PyP和ZnT3PyP为C_4构型。通过计算表明3-N原子取代3-C原子导致分子半径减小,分子中央空穴变大。计算还发现,分子的轨道能级水平从HOMO-4到LUMO+4都随着3-N原子的取代而降低,而HOMO和LUMO之间的能隙没有发生变化。对这六个分子用密度泛函6-31G(d)基组在B3LYP水平计算了振动光谱,并借助动画进行了详细指认。
     其次,用密度泛函(DFT)B3LYP/6-31G(d)方法对H_2T2PyP、H_2T4PyP、MgT2PyP、MgT4PyP、ZnT2PyP和ZnT4PyP的优化的几何构型、电子构型进行了理论研究。H_2TPP,H_2T2PyP,H_2T3PyP,H_2T4PyP,MgTPP,MgT2PyP,MgT3PyP,MgT4PyP,ZnTPP,ZnT2PyP,ZnT3PyP和ZnT4PyP优化的几何构型、电子构型进行了对比,讨论了Meso位吡啶环上N原子位置对自由卟啉、卟啉镁和卟啉锌的几何构型、分子轨道和原子电荷的影响。根据我们的计算,Meso位毗啶环取代苯环使分子明显减小,分子减小的规律是随吡啶环上N原子远离中心16元环,分子的直径逐渐减小。分子中心空穴随取代N原子远离中心N原子而逐渐减小。计算发现,取代后化合物分子的HOMO和LUMO轨道能级水平都不高于取代前化合物,排序为2-N取代高于3-N取代高于4-N取代。对取代前和取代后分子用密度泛函6-31G(d)基组在B3LYP水平计算了振动光谱,并借助动画进行了详细指认和对比。
     最后,本论文用密度泛函(DFT)方法对α-位四氟取代酞菁镁的四种同分异构体和α-位四氯取代酞菁镁的四种同分异构体的优化的几何构型、电子构型进行了理论研究。比较了四种同分异构体之间的几何构型、分子轨道和原子电荷。根据我们的计算,α-位四取代MgPcF_4和MgPcCl_4的四种同分异构体分子分别是C_(4h)、C_5、D_(2h)和C_(2v)构型。当两个C-F/C-Cl键介于两个异吲哚环之间,C-F/C-Cl键的键长最短,对应的中心角∠NMgN也最小。C-F/C-Cl键相邻,有使分子的轨道能级水平增高的趋势。但两组C-Cl键相邻,分子的LUMO及LUMO和HOMO能隙降低。用密度泛函6-31G(d)基组在B3LYP水平计算了这八个分子的振动光谱,并借助动画进行了详细指认。
Porphyrins,and phthalocyanines,have been expected to have widely potential application in material science as novel functional materials,such as molecular electronics,molecular information storage,and nonlinear optics,etc.due to the unique optical,electrical,and properties,associated with the intriguing intramolecularπ-πinteractions.
     To further deepen the understanding of the experimental results and provide guidance for further experimental research,we decided to introduce quantum chemistry studies into our research.In the past few years,we have studied the geometry,electronic structure,IR,Raman,XPS,and UV-vis spectroscopy of many porphyrins, phthalocyanines,and their derivatives,using quantum chemistry calculations,and found some interesting results.In this thesis,the geometry,electronic structure,and vibrational spectroscopy of some substituted porphyrin and phthalocyanine compounds are studied on the basis of density functional theory calculation.
     Firstly,a theoretical investigation of the fully optimized geometries and electronic structure of meso-tetraphenyl porphyrin compounds H_2TPP,MgTPP and ZnTPP as well as meso-tetra(3-pyridyl)porphyrins H_2T3PyP,MgT3PyP and ZnT3PyP is conducted on the basis of density functional theory(DFT)method.The geometry, molecular orbital and atomic charge of the meso-tetra(3-pyridyl)substituted porphyrins H_2T3PyP,MgT3PyP,and ZnT3PyP are compared with those of H_2TPP,MgTPP,and ZnTPP,respectively.According to our calculation results,the molecular structrue of H_2TPP,MgTPP,and ZnTPP has D_2,D_4,and D_4 symmetry,respectively,while that of H_2T3PyP,MgT3PyP,and ZnT3PyP has C_2,C_4,and C_4 symmetry.The calculation results reavel that,the substitution of phenyl groups in meso-tetraphenyl porphrins with 3-pyridyl groups induces the reduction of molecular radius and the enlargement of the sizes of the central hole.The orbital energy level of the molecular from HOMO-4 to LUMO+4 of meso-tetra(3-phridyl)porphyrin show some decreace in comparison with corresponding orbitals of meso-tetraphenyl derivatives.However,almost no change is found for the HOMO-LUMO gaps.The vibrational bands in the IR spectra of all the six porphyrin compounds are assigned in detail with the assistance of the animated picture.
     Secondly,The geometries and electronic structures of the meso=substituted porphyrin Compounds with the nitrogen atom of pyridyl group at different position MT2PyP and MT4PyP(M=2H,Mg,Zn)are investigated using DFT calculation.A comparison between the geometry,molecular orbital,and atomic charge of MT2PyP and MT4PyP and those of MTPP and MT3PyP is carried out.R is found that the position of nitrogen atom in pyridyl groups has many influence to the structrue properties of porphyrins.According to our calculation results,the substitution of phenyl groups in Meso-tetraphenyl porphyrin compounds with pyridyl groups cause the reduction of molecular structrue.The farther the distance between N atom of pyridyl group and the central 16-membered ring is,the smaller the reduction degree of the molecular.On the contrary,the farther the N atom from the molecular center is,the smaller the size of the central hole.The vibrational bands in IR spectra of these porphyrins are comparatively assigned in detail.
     Finally,we studied the geometries and electronic structures of four isomers ofα-tetrahalogen substituted magnesium phthalocyanines on the basis of DFT calculations.The molecular symmetry of the four isomersα-MgPcF_4 andα-MgPcCl_4 is C_(4h),C_s,D_(2h)and C_(2v).respectively,according to the relative position of the halogen substituents in each isoindole segment.The calculation results show that when two C-F or two C-Cl bond between two isoindole link,the band length of C-F or C-Cl is the shortest.The homologous central angle /NMgN is the smallest.When two C-F or two C-Cl bond is neighboring,the molecular orbital energy level trend to increase.But the neighbor of two group of C-Cl bond cause the HOMO-LUMO gap to reduce.Detailed assignments of the vibrational band in IR spectra of the four isomers has been tried on basis of the assistance of the animated picture.
引文
[1]H.Ficsher et al.,"Die Chemic des pyrrols " Vol 2,part 1,Akademic Verlagsegesllschft,Liepzig,1937,158.
    [2]Zelaski,J.Z.Physiol.Chem.,1902,37,54.
    [3]A.Braun,J.Tscherniac,Products of the action of acetic anhydride on phthalamide.Ber.40(1907)2709-2714.
    [4]Mckeown N.B.'Phthalocyanine materials:Synthesis,Structrue and function'.Cambridge:Cambridge University Press 1998.
    [5]'Phthalocyanines:Properties and applications'Eds.C.C.Leznoff & A.B.P.Lever,Volumes 1-4,New York:VCH,1959,1993,1993&1996.
    [6]Linstead,R.P.J.Chem.Soc.,1934,1016.
    [7](a)Robertson,J.M.J.Chem.Soc.,(1936),1195-1209.
    (b)Robertson,J.M.J.Chem.Soc.1936,348.
    [8]D.D.Eley,phthaloeyanines as semiconductors.Natrue 162(1948)819.
    [9](a)N.Uyeda,T.Kobayashi,E.Suito,Y.Harada,and Mo.Watanabe;Molecular image resolution in electron microscopy.J.Appl.Phys.43(1972)5181-5189;
    (b)T.Kobayashi & S.Isoda.Lattice Images and Molecular Images of Organic Materials.J.Mater.Chem.3(1993)1-14.
    [10](a)C.J.Schramm,D.R.Stojakovic,B.M.Hoffman & T.J.Marks,New low-dimensional molecular metals:single-crystal electrical conductivity of nickel phthalocyanine iodide.Science 200(1978)47-48;
    (b)T.J.Marks,Electrically conductive metallomacrocyclic assemblies.Science 227(1985)881-889;
    (c)T.J.Marks,Interfaces between Molecular and Polymeric "Metals":Electrically Conductive,Structrue-Enforced Assemblies of Metallomacrocycles.Angew.Chem.Int.Ed.Engl.29(1990)857-879.
    [11](a)B.Bott & T.A.Jones,A highly sensitive NO_2 sensor based on electrical conductivity changes in phthalocyanine films.Sensors&Actuators 5(1984)43-53.
    (b)J.D.Wright,Gas adsorptoin on phthalocyanines and its effects on electrical properties.Prog.Surf.Sci..31(1989)1-60.
    [12]A.T.Vartanyan,Zh.Fiz.Khim.22(1948)769
    [13]K.Y.Law,Organic photoconductive material:recent trends and developments.Chem.Rev.93(1993)449-486.
    [14] (a) C.W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett. 48 (1986) 183-185; (b) J.B. Whitlock, et al, Investigations of metals and device structures for organic semiconductor solar cells. Optical Engineering 32 (1993) 1921-1934.
    [15] M.K. Nazeeruddin, et al, Efficient near IR sensitization of nanocrystalline TiO_2 films by ruthenium phthalocyanines. Chem. Commun. (1998)719-720.
    [16] D. Woehrle, et al, Molecular Crystals&Liquid Crystals 230 (1993)221.
    [17] R.P. Linstead, E.G. Noble and J.M. Wright, Derivatives of thiophan,thionaphthen, pyridine and pyrazine, and a note on the nomenclature. J. Chem.Soc. (1937)911-922.
    [18] J.S.Anderson, E.F. Bradbrook, A.H.Cook and R.P. Linstead, Phthalocyanines and associated compounds. Part ⅩⅢ Absorption spectra. J. Chem. Soc. (1938)1151-1156.
    [19] P. J. Brach, S. J. Grammatica, O. A. Ossanna and L. Weinberger, Improved synthesis of metal-free phthalocyanines. J. Heterocyclic Chem. 7 (1970)1403-1405.
    [20] H. Kropf and H. Hoffmann, Autoxidation von cumol in gegenwart von substituierten kupfer-phthalocyaninnen und verwandten kupfer-komplexen .Tetrahedron Lett. (1967) 659-663.
    [21] M. J. Danzig, C.Liang and E. Passaglia, Preparation and electronical conductivity of copper tetra-2,3-pyridinoporphyrazine and copper tetra-2,3-pyrazinoporphyrazine. J. Am. Chem. Soc. 85 (1963) 668-671.
    [22] M. Yokote, F Shibamiya and H.Hayakawa, Aza compounds. ⅩⅩⅨ.J. Synth.Org. Chem. Jpn. 23 (1965) 151-155.
    [23] M. Yokote, F. Shibamiya and S. Takairin, Aza compounds. ⅩⅩⅦ. Copper phthalocyanine nitrogen isolog (copper tetra-3,4—pyridinoporphyrazine) synthesized from cinchomeronic acid. J. Soc. Chem. Ind. Jpn. 67 (1964) 166-168.
    [24] M.Yokote, F. Shibamiya, Y. Adachi and H. Takeishi, Aza compounds.ⅩⅩⅤⅢ.Catalytic effect of a Co phthalocyanine nitrogen isolog (Co tetra-2,3-pyridinoporphyrizine) on the oxidation of mercaptans J. Synth. Org.Chem. Jpn. 23 (1965) 1147-1150.
    [25] G. Reinert, G. Holzle and G. Graf, Azaphthalocyanines and their use as photoactivators.UK Patent 2159516A,1985.
    [26]A.A.Tanaka,C.Fierro,D.A.Sharson and E.Yaeger,Oxygen reduction on adsorberd iron tetrapyridinoporphyrazine.Mater Chem.Phys.22.(3-4)(1989)431-456.
    [27]K.A.Radyushkina,M.V.Merenkova,M.R.Tarasevich,M.G.Gal'pern,S.V.Kudrevich and I.G.Novozhilova,Phthalocyanine aza-analogs in electrocatalysis of oxygen reduction.Elektrokhimiya 28(7)(1992)1032-1037.
    [28]M.Yamano,N.Kashivazaki,M.Yamamoto and T.Nakano,A storage type electrochromic display utilizing poly-Co-QTPP films,Jpn.J.Appl.Phys.Part2.26(7)(1987)L1113-L1115.
    [29]D.Schlettein,D.Woehrle and N.I.Jaeger,Reversible reduction an reoxidation of thin-films of tetrapyrazinotetraazaporphyrines,J.Electrochem.Soc.135(10)(1989)2882-2886.
    [30]T.Sato and S.Miyazaki,Optical recording medium.Jpn.Kokai Tokkyo Koho,JP0365,385 {9165,385},1991.
    [31]T.Sato and S.Miyazaki,Optical recrding medium.Jpn.Kokai Tokkyo Koho,JP03173,685[91173,685],1991.
    [32]K.Teuclmer,A.Pfarrherr,H.Stiel,W.Freyer and D.Leupold,Spectroscopic properties of potential sensitizers for new photodynamic therapy start mechanisms via 2-step excited electronic states.Photochem.Photobiol.57(3)(1993)465-471.
    [33]S.V.Kudrevich,M.G.Gal'pern and J.E.van Lier,Synthesis of octacarboxytetra (2,3-pyrazino)porphyrazine-novel water-soluble photosensitizers for photodynamic therapy.Synthesis(1994)779-781.
    [34]H.S.Nalwa,T.Saito,A.Kakuta,T.Iwayanagi,J.Phys.Chem.97(1993)10515.
    [35]M.M.Nicholson,F.A.Pizzarello,J.Electrochem.Soc.127(1980)821.
    [36]U K.Chau,C.Arbour,G.E.Collins,K.W.Nebesny,P.A.Lee,C.D.England,N.R.Armstrong,B.A.Parkinson,J.Phys.Chem.97(1993)2690.
    [37]A.Ghosh,P.G.Gassman and J.Almlof,Substituent effects in porphyrazines and phthalocyanines,J.Am:Chem.Soc.116(1994.)1932.
    [38]H.S.Nalwa,M.Hanack,G.Pawlowski,M.K.Engel,Chemical Physics 245(1999)17.
    [39] Y. Chen, S. O'Flaherty, M. Fujitsuka, M. Hanack, L. R. Subramanian, O. Ito and W. J. Blau, Chem. Mater. 14 (2002) 5163.
    [40] M. Isaacs, M. J. Aguirre, A. Toro-Labbé, J. Costamagna, M. Páez and J. H.Zagal, Electrochimica Acta 43 (1998) 1821.
    [41] N. Kobayashi, H. Miwa, and V. N. Nemykin, J. Am. Chem. Soc. 124 (2002) 8007.
    [42] E. Orti, M. C. Piqueras, R. Crespo and J. L. Brédas, Chem. Mat. 2 (1990) 110.
    
    [43] B. F. Hoskins, S. A. Mason and J. C. B. White, Chem. Commun., 1969, 554.
    [44] C. S. Vestling, J. R. Downing, Infrared studies of the porphyrin molecule. J. Am. Chem. Soc., 61,1939,3511.
    [45] S. F. Mason, The infrared spectra of N-heteroaromatic systems. Part I. The porphins.J. Chem. Soc. 1958,976-982.
    [46] L. J. Boucher, J. J. Katz, The infrared spectra of metalloporphyrins (4000-160 cm~(-1)). J. Am. Chem. Soc., 89(6), 1967,1340-1345.
    [47] L. J. Boucher, Manganese porphyrin complexes. I. Synthesis and spectroscopy of Manganese(Ⅲ) protoporphyrin Ⅸ demethyl ester halides. J. Am. Chem. Soc.,90(24), 1968, 6640-6645.
    [48] H. Ogoshi, N. Masai, Z. Yoshida, J. Takemoto, K. Nakamoto, The infrared spectra of metallooctaethylporphyrins. Bull. Chem. Soc. Japan, 44,1971, 49.
    [49] H. Ogoshi, Y. Saito, K. Makamoto, Infrared spectra and normal coordinate analysis of metalloporphins. J. Chem. Phys., 57(8), 1972, 4194-4202.
    [50] G. Jansen, M. Noort, High resolution spectra of zinc porphin and magnesium porphin in a n-octane matrix at 4.2 K. Effect of the addition of ethanol and other solvents. SpectroChimica, Acta 32A, 1976, 747-753.
    [51] H. Limbach, J. Hennig, J. Stulz, IR-spectroscopic study of isotope effects on the NH/ND-stretching bands of meso-tetraphenylporphine and vibrational hydrogen tunneling. J. Chem. Phys. 78(9), 1983, 5432-5436.
    [52] L. L. Gladkov, K. N. Solovyov, The normal coordinate analysis of porphin and its derivatives based on the solution of the inverse spectral problem for porphin and Cu porphin --- I. A valence force field for in-plane vibrations of the porphin molecule. Spectrochimica Acta 41A, 1985, 1437-1442.
    [53] L.L. Gladkov, K. N. Solovyov, The normal coordinate analysis of porphin and its derivatives based on the solution of the inverse spectral problem for porphin and Cu porphin---Ⅱ. A valence force field for in-plane vibrations of the Cu porphin molecule. Spectrochimica Acta 41A, 1985, 1443-1448.
    [54] J. G. Radziszewski, J. Waluk, J. Michl, Site-population conserving and site-population altering photo-orientation of matrix-isolated free-base porphine by double proton transfer: IR dichroism and vibrational symmetry assignments.Chem. Phys. 136(1989) 165-180.
    [55] J. G Radziszewski, J. Waluk, M. Nepra(?), J. Michl, Fourier transform fluorescence and phosphorescence of porphine in rare gas matrices. J. Phys.Chem., 1991,95,1963-1969.
    [56] X. Y. Li, M. Z. Zgierski, Porphine force field: in-plane normal modes of free-base porphine. Comparison with metalloporphines and structural implications. J. Phys. Chem., 1991, 95,4268-4287.
    [57] P. M. Kozlowski, M. Z. zgierski, P. Puly, An accurate in-plane force field for porphine. A scaled quantum mechanical study. Chem. Phys. Lett., 247 (1995) 379-385.
    [58] P. M. Kozlowski, A. A. Jarzecki, P. Pulay, Vibrational assignment and definite harmonic force field for porphine. 1. Scaled quantum mechanical results and comparison with empirical force field. J. Phys. Chem., 1996,100, 7007-7013.
    [59] P. M. Kozlowski, A. A. Jarzecki, P. Pulay, X. Y. Li, M. Z. Zgierski, Vibrational assignment and definite harmonic force field for porphine. 2. Comparison with nonresonance Raman data. J. Phys. Chem. 1996,100,13985-13992.
    [60] P. M. Kozlowski, T. S. Rush Ⅲ, A. A. Jarzecki, M. Z. Zgierski, B. Chase, C.Piffat, B. ye , X. Li, P. Pulay, T. G Spiro, DFT-SQM force field for nickel porphine: Intrinsic ruffling. J. Phys. Chem. A 1999,103,1357-1366.
    [61] M. Tazi, P. Lagant, G. Vergoten, Use of the resonance Raman intensities to check the density functional theory derived force field of the free base porphine.J. Phys. Chem. A 2000, 104, 618-625.
    [62] T. S. Rush, Ⅲ, P. M. Kozlowski, C. A. Piffat, R. Kumble, M. Z. Zgierski, T. G.Spiro, Computational modeling of metalloporphyrin structure and vibrational spectra: porphyrin ruffling in NiTPP. J. Phys. Chem. B 2000, 104, 5020-5034.
    [63] D. M. Chen, X. Liu, T. J. He, F. C. Liu, Density functional theory study on the geometric, electronic and vibrational structures of alkali metal porphyrin complexes. Chem. Phys. Lett., 361 (2002) 106-114.
    [64]C.G.Cannon,and G.B.B.M.Sutherland,The infra-red absorption spectra of some aromatic compounds.Spectrochim.Acta,1951,4,373.
    [65]I.M.Keen,and B.W.Malerbi,The preparation and infra-red spectra of phthalocyanine derivatives of the platinum-group metals.J.Inorg.Nucl.Chem.,1965,27,1311.
    [66]H.F.Shurvell,and L.Pinzuti,Sur les specters infrarouges des phthalocyanines.Can.J.Chem.,1966,44,125.
    [67]T.Kobayashi,F.Kurokawa,N.Uyeda,and E.Suito,The metal-ligand vibrations in the infrared spectra of various metal phthalocyanines.Spectrochim.Acta,1970,264,1305.
    [68]T.Kobayashi,The far infrared spectra of phthalocyanine and its metal derivatives.Spectrochim.Acta,1970,26A,1313.
    [69]P.J.Brach,S.J.Grammatica,O.A.Ossanna,and L.Weinberger,J.Heterocyclic Chem.,1970,7,1403.
    [70]M.P.Sammes,The infrared spectrum of phthalocyaninc:assignment of N-H modes.J.C S.Perkin Ⅱ,1972,2,160.
    [71]B.Styrene,F.X.Sauvage,and G.Wettermark,A spectroscopic study of the complexation of phthalocyanines with water,ethanol and phenol.Spectrochim.Acta,1979,35A,1195.
    [72]C.Clarisse,and M.T.Riou,Synthesis and characterization of some Lanthanide phthalocyanines.Inorganica Chimica Acta,1987,130,139.
    [73]J.Janczak,Spectroscopic properties of new Indium(Ⅲ)phthalocyaninc complexes.Polish J.Chem.,1998,72,1871.
    [74]R.Aroca,D.P.Dilclla,and R.O.Loutfy,Raman spectra of solid films-Ⅰmetal-flee phthalocyanine.J.Phys.Chem.Solids,1982,43,707.
    [75]G.Dent,and F.Farrell,NIR FT Raman examination of phthalocyanines at 1064nm.Spectrochim.Acta Part A,1997,53,21.
    [76]P.N.Day,Z.Q.Wang,and R.Pachtcr,Calculation of the structure and absorption spectra of phthalocyanines in the gas-phase and in solution.J.Mol.Struct.THEOCHEM,1998,455,33.
    [77]X.D.Gong,H.M.Xiao,and H.Tian,Comparative studies on the structures,infrared spectrum,and thermodynamic properties of phthalocyanine using Ab Initio Hartree-Fock and density functional theory methods.Int.J.Quantum Chem., 2002,56,531.
    [78] X. D. Gong, H. M. Xiao, H. Tian, J. Mol. Struct. THEOCHEM, 593 (2002) 93-100.
    [79] M. W. Wong, Vibrational frequency prediction using density functional theory. Chem. Phys. Lett., 1996, 256, 391.
    [80] J. Jiang, D. P. Arnold, and H. Yu, Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Polyhedron, 1999,18, 2129.
    [81] J. Jiang, L. Rintoul, and D. P. Arnold, Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich type (na)phthalocyaninato and porphyrinato rare earth complexes. Polyhedron, 2000,19, 1381.
    [82] N. Pan, L. Rintoul, D. P. Arnold, and J. Jiang, Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 3. The effect of rare earth ionic size on the Raman characteristics of naphthalocyanine in bis(naphthalocyaninato) rare earth complexes. Polyhedron, 2002, 21, 1905.
    [83] X. Sun, M. Bao, N. Pan, X. Cui, D. P. Arnold, J. Jiang, Sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 2. The effects of rare earth ionic size on the IR characteristics of naphthalocyanine in bis(naphthalocyaninato) rare earth complexes. Aust. J. Chem. 2002, 9, 587.
    [84] Y. Bian, L. Rintoul, D. P. Arnold, N. Pan, J. Jiang, Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes. Part 4. Raman spectroscopic characteristics of naphthalocyanine in mixed (naphthalocyaninato) (porphyrinato) rare earth double-deckers. Vib. Spectrosc. 2003,31, 173.
    [85] X. Sun, L. Rintoul, Y. Bian, D. P. Arnold, R. Wang, and J. Jiang, Raman spectroscopic characteristics of phthalocyanine and naphthalocyanine in sandwich-type phthalocyaninato and porphyrinato rare earth complexes Part 5. Raman spectroscopic characteristics of naphthalocyanine in mixed [tetrakis(4-tert- butylphenyl)porphyrinato](naphthalocyaninato) rare earth double-deckers. J Raman spectroscopy, 2003, 34, 306-314.
    [86] F. Lu, M. Bao, C. Ma, X. Zhang, D. P. Arnold, and J. Jiang, Infra-red spectra of phthalocyanine and naphthalocyanine in sandwich-type (na)phthalocyaninato and porphyrinato rare earth complexes Part 3.The effects of substituents and molecular symmetry on the IR characteristics of phthalocyanine in bis(phthalocyaninato)rare earth complexes.Specrrochim.Acta part A 2003,59,3273.
    [87]Y.Q.Ding,M.Simonyan,Y.Yonehara,M.Uruichi,K.Yakushi,J.Mater.Chem.2001,11,1469.
    [88]P.J.Brach,S.J.Grammatica,O.A.Ossanna,L.Weinberger,J.Heterocyl.Chem.1970,7,1403.
    [89]H.M.Ding,S.Y.Wang,S.Q.Xi,J.Mol.Struck.,475(1999)175-180.
    [90]D.R.Tackley,G.Dent,W.E.Smith,Phthalocyanines:structure and vibrations.Phys.Chem.Chem.Phys.,2(2000)3949-3955.
    [1] T. Mashiko, D. Dolphin, Porphyrins, hydroporphyrins,azaporphyrins,phthalocyanines,corroles, corrins and related macrocycles, in: G. Wilkinson(Chief Ed.), Comprehensive Coordination Chemistry, vol. 2,Pergamon,Oxford, 1987, p. 813 (Chapter 21.1).
    
    [2] K.M. Smith, Porphyrins, corrins and phthalo-cyanines, in: A.R. Katritzky,C.W.Rees (Eds.), Comprehensive Heterocyclic Chemistry, vol. 4, Pergamon,Oxford,1984, p. 377(Chapter3.07).
    
    [3] D. Dolphin (Ed.), The Porphyrins, vols. 1-7, Academic, New York, 1978.
    [4] K. Smith (Ed.), Porphyrins and Metalloporphyrins, Elsevier, Amsterdam, 1975.
    [5] A.R. Battersby, C.J.R. Fookes, G.W.J. Matcham, E. McDonald, Biosynthesisof the pigments of life: formation of the macrocycle, Nature (London)285 (1980) 17-21.
    [6] B. Krautler, The porphinoids-versatile biological catalyst molecules,Chimia 41 (1987) 277-292.
    [7] P. K. H. Ho, et al, Science 285 (1999) 233.
    
    [8] T. N. Lomova, B. D. Berezin, Russ. J. Cord. Chem. 85 (2001) 27.
    [9] I. Kumadaki, A. Ando, M. Omate, J. Flour. Chem. 67(2001) 109.
    [10] C. Chachaty, D. Gust, T. A. Moore, G. A. Nmeth, P. S. Liddell, A. L. Moore, Org. Magn.Reson. 39(1978)22.
    
    [11] X. -Y. Li, R. S. Czemuszewicz, J. R. Kincaid, Y. O. Su, T. G. Spiro, J. Phys.Chem. 94 (1990) 31.
    
    [12] Y. H. Zhang, D. M. Chen, T. J. He, F. C. Liu, Spectrochim. Acta 33A (1977) 561.
    
    [13] Seung-Doo Jeong,Jonathan L. Sessler, Vincent Lynch, and Chang-Hee Lee~* Dithiabenzisapphyrin: A Core-Modified Sapphyrin Bearing Exocyclic DoubleBonds at the meso-Positions, J. AM. CHEM. SOC. VOL. 130, NO. 2,2008 391
    
    [14] Steven M. LeCours, Stephen G. DiMagno, and Michael J. Therien, Modulation of Porphyrins through meso-Arylethynyl Groups, J. Am. Chem. Soc. 1996, 118,11854-11864
    [15] Xiaoyi Zhang, Erik C. Wasinger, Ana Z. Muresan, Klaus Attenkofer, Guy Jennings, Jonathan S. Lindsey, and Lin X. Chen~*, Ultrafast Stimulated Emission and Structural Dynamics in Nickel Porphyrins, J. Phys. Chem. A 2007,111,11736-11742
    [16] Kei Kurotobi and Atsuhiro Osuka~*, Synthesis of meso-Azulenylporphyrins,Org.Lett.,Vol. 7, No. 6,2005, 1055-1058
    [17] C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, Using redundant internal coordinates to optimize geometries and transition states. J. Comp. Chem., 17(1996) 49.
    
    [18] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R.Cheeseman,J.A.MontgomeryJr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone,B.Mennucci,M.Cossi,G.Scal-mani,N.Rega,G.A.Petersson,H.Nakatsuji,M.Hada,M.Ehara,K.Toyota,R. Fukuda, J. Hasegawa, M. Ishida, T.Nakajima,Y.Honda,O.Kitao,H.Nakai,M.Klene,X.Li,J.E.Knox,H.P.Hratchian,J.B.Cross,C.Adamo,J. Jaramillo, R. Gomperts, R.E. Stratmann, O.Yazyev, A.J.Austin,R.Cammi,C.Pomelli,J.W.Ochterski,P.YAyala,K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman,J.V.Ortiz,Q.Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G.Liu,A.Liashenko,P.Pi skorz,I.Komaromi,R.L.Martin,D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng,A.Nanayakkara,M.Challa-combe,P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong,C.GonzalezJ.A.Pople,Gaussian03,RevisionB.05,Gaussian,Inc, PittsburghPA,2003.
    [19] NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database, Number 101, Release 10, May 2004; Johnson, R.D., Ⅲ, Ed.; http://srdata.nist.gov/cccbdb.
    [20] Alan D.Adler, Frederick R. Long o,William Shergalis;Mechanistic Investigations of Porphyrin Syntheses,I. preliminary Studies on ms-Tetraphenyporphinl; J.Am.Chem.Soc;1964;86(15);3145-3149;
    [1] T. Mashiko, D. Dolphin, Porphyrins, hydroporphyrins,azaporphyrins,phthalocyanines,corroles, corrins and related macrocycles, in: G.Wilkinson(Chief Ed.), Comprehensive Coordination Chemistry, vol. 2,Pergamon,Oxford, 1987, p. 813 (Chapter 21.1).
    
    [2] K.M. Smith, Porphyrins, corrins and phthalo-cyanines, in: A.R. Katritzky,C.W.Rees (Eds.), Comprehensive Heterocyclic Chemistry, vol. 4, Pergamon,Oxford,1984, p.377(Chapter 3.07).
    
    [3] D. Dolphin (Ed.), The Porphyrins, vols. 1-7, Academic, New York, 1978.
    [4] K. Smith (Ed.), Porphyrins and Metalloporphyrins, Elsevier, Amsterdam, 1975.
    [5] A.R. Battersby, C.J.R. Fookes, G.W.J. Matcham, E. McDonald, Biosynthesisof the pigments of life: formation of the macrocycle, Nature (London)285 (1980) 17-21.
    [6] B. Kra¨utler, The porphinoids-versatile biological catalyst molecules,Chimia 41 (1987)277-292.
    [7] P. K. H. Ho, et al, Science 285 (1999) 233.
    
    [8] T. N. Lomova, B. D. Berezin, Russ. J. Cord. Chem. 85 (2001) 27.
    [9] I. Kumadaki, A. Ando, M. Omate, J. Flour. Chem. 67(2001) 109.
    [10] C. Chachaty, D. Gust, T. A. Moore, G. A. Nmeth, P. S. Liddell, A. L. Moore, Org.Magn. Reson. 39(1978)22.
    
    [11] X. -Y. Li, R. S. Czemuszewicz, J. R. Kincaid, Y O. Su, T. G. Spiro, J. Phys.Chem. 94 (1990) 31.
    
    [12] Y. H. Zhang, D. M. Chen, T. J. He, F. C. Liu, Spectrochim. Acta 33A (1977) 561.
    
    [13] C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, Using redundant internal coordinates to optimize geometries and transition states. J. Comp. Chem., 17(1996)49.
    
    [14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.Montgomery Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone, B.Mennucci,M.Cossi,G.Scal-mani,N.Rega,GA. Petersson, H.Nakatsuji,M.Hada,M.Ehara, K.Toyota,R. Fukuda, J.Hasegawa,M.Ishida, T. Nakajima, Y. Honda, O. Kitao, H.Nakai, M.Klene, X.Li,J.E.Knox,H.P.Hratchian,J.B.Cross,C.Adamo,J. Jaramillo,R. Gomperts, R.E.Stratmann, O.Yazyev, A.J. Austin, R.Cammi,C.Pomelli,J.W.Ochterski, P.Y.A yala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S.Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K.Raghavachari,J.B.Foresman,J.V.Ortiz,Q. Cui,A.G.Baboul,S.Clifford,J.Cioslowski,B.B.Stefanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin,D.J.Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.Challa-combe, P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong, C.GonzalezJ.A.Pople,Gaussian03, RevisionB.05,Gaussian, Inc., PittsburghPA,2003.
    [15] NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database, Number 101, Release 10, May 2004; Johnson, R.D., Ⅲ, Ed.; http://srdata.nist.gov/cccbdb.
    
    [16] Alan D.Adler, Frederick R. Long o,William Shergalis;Mechanistic Investigations of Porphyrin Syntheses,I. preliminary Studies on ms-Tetraphenyporphinl; J. Am.Chem. Soc; 1964; 86( 15);3145-3149;
    [1] N.B. Mckeown, Phthalocyanine Materials: Synthesis, Structure and Function,Cambridge University Press, Cambridge, England, 1998.
    
    [2] A.B.P. Lever, C.C. Leznoff, Phthalocyanine: Properties and Applications,vols.1-4, VCH, New York, 1989-1996.
    [3] K.M. Kadish, K.M. Smith, R. Guilard, The Porphyrin Handbook, vols. 1-20,Academic Press, San Diego, CA, 2000-2003.
    [4] P. Gregory, High-Technology Applications of Organic Colorants, Plenum Press,New York, 1991.
    
    [5] P. Gregory, J. Porphyrins Phthalocyanines 4 (2000) 432.
    [6] R. Ao, L. Kilmmert, D. Haarer, Adv. Mater. 7 (1995) 495.
    [7] D. Birkett, Chem. Ind. (2000) 178.
    [8] F.H. Moser, A.L. Thomas, The Phthalocyanines, Manufacture and Applications, vols. 1 and 2, CRC Press, Boca Raton, FL, 1983.
    [9] D. Wo¨hrle, D. Meissner, Adv. Mater. 3 (1991) 129.
    [10] H. Eichhorn, J. Porphyrins Phthalocyanines 4 (2000) 88.
    
    [11] J.D. Wright, Prog. Surf. Sci. 31 (1989) 1.
    
    [12] A.W. Snow, W.R. Barger, in: C.C. Leznoff, A.B.P. Lever (Eds.),Phthalocyanines:Properties and Applications, VCH, New York, 1989, pp. 341-392.
    [13] H.S. Nalwa, J.S. Shirk, in: C.C. Leznoff, A.B.P. Lever (Eds.), Phthalocyanines:Properties and Applications, VCH, New York, 1996, pp. 79-182.
    [14] J.S. Shirk, R.G.S. Pong, S.R. Flom, H. Heckmann, M. Hanack, J. Phys.Chem. A 104(2000)1438.
    [15] G. de la Torre, P. Vazquez, F. Agullo'lo'Pez, T. Torres, J. Mater. Chem.8(1998) 1671.
    
    [16] E.A. LukCentyanets, J. Porphyrins Phthalocyanines 3 (1999) 424.
    [17] H.H. Hasrar, J.E. van Lier, Chem. Rev. 99 (1999) 2379.
    [18] B. Cosomelli, G. Roncuccin, D. Dei, L. Fantetti, F. Ferroin, M. Ricci, D. Spinelli, Tetrahedron 59 (2003) 10025.
    [19] H.I. Beltra'n, R. Esquive, A. Sosa-Sa'nchez, J.L. Sosa-Sa'nchez, H. Ho¨pfl, V. Barba, N. Farfan, M.G. Garcia, O. Olivares-Xometl, L.S. Zamudio-Rivera, Inorg. Chem. 43 (2004) 3555.
    [20] T. Kobayashi, F. Kurokawa, N. Uyeda, E. Suito,The metal-ligand vibrations in the infrared spectra of various metal phthalocyanines. Spectrochim. Acta Part A.26(1970)1305.
    [21] C.A.Melendres,Mossbauer and Raman spectra of carbon-supported iron phthalocyanines. J.Phys.Chem. 84(1980)1936.
    [22] S.Hayashi,M.Samejima, Surface -enhanced raman-scattering from copper phthalocyanine thin-films.Surface Science 137(1984)442-462.
    [23] D.R. Tackley, G. Dent, W.E. Smith, IR and Raman assignments for zinc phthlocyanine from dft calculations.Phys. Chem. Chem. Phys. 2 (2000)3949-3955.
    [24] I.V.Aleksandrov,Ya.S.Bobovich,V.G.Maslov,and A.N.Sidorov, Spectra of spontaneous raman-scattering of metal-phthalocyanines and their negative iones. Opt. Spektrosk 37 (1974) 467.
    [25] X.X. Zhang, M. Bao, N. Pan, Y.X. Zhang, J.Z. Jiang, IR and Raman Vibrational Assignments for Metal-free Phthalocyanine from Density Functional B3LYP/6-31G(d) Method. Chin. J. Chem. 22(2004)325-332.
    [26] X.X. Zhang, Y.X. Zhang, J.Z. Jiang, Isotope effect in the infrared spectra of free base phthalocyanine and its N,N'-dideuterio-derivative: density functional calculations. Vib. Spectro. 33 (1-2) (2003)153-161.
    [27] X.X. Zhang, Y.X. Zhang, J.Z. Jiang, Towards clarifying the N-M vibrational natrue of metallo-phthalocyanines Infrared spectrum of phthalocynine magnesium complex :density functional calculation s.Spectrochim. Acta Part A 60(2004)2195-2200.
    [28] X.X. Zhang, Y.X. Zhang, J.Z. Jiang, Infrared spectra of metal-free, N,N'-dideuterio, and magnesium porphyrins: density functional calculations.Spectrochim. Acta Part A 61 (2005)2576-2583.
    [29] X.X.Zhang,Y.X.Zhang,J.Z. Jiang, Geometry and electronic structure of metal free of metal free porphyrazine, phthalocyanine and naphthalocynine as well as their magnesium complexes. J.Mol.Struct. (Theochem.)673(2004)103-108.
    [30] X.X.Zhang,Z.Q.Liu,N.Sheng,J.Z.Jiang,J.Molecular structrue, electronic structrue and vibrational spectra of metal-free, N,N'-dideuterio, and magnesium Tetrakis(thiadiazole) porphyrazines:Density functional calculations.J.Mol.Strut. (Theochem)775(2005) 179-186.
    [31] Z.Q. Liu, X.X. Zhang, Y.X. Zhang, R.J. Li, J.Z. Jiang, The molecular, electronic structrues and vibrational spectra of metal-free, N,N'-dideuterio and magnesium tetra-2,3-pyridino-porphyrazines: Density functional calculations. Spectrochim. Acta Part A 65(2006)467-480.
    
    [32] C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, Using redundant internal coordinates to optimize geometries and transition states. J. Comp. Chem., 17 (1996)49.
    [33] M.J. Frisch, G.W. Trucks, H.B. Schlegel, GE. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.Montgomery Jr.,T.Vreven,K.N.Kudin,J.C.Burant,J.M.Millam,S.S.Iyengar,J.Tomasi,V.Barone, B.Mennucci,M.Cossi,G.Scal-mani,N.Rega,G.A. Petersson, H.Nakatsuji,M.Hada,M.Ehara, K.Toyota,R. Fukuda, J.Hasegawa, M.Ishida, T. Nakajima, Y. Honda, O. Kitao, H.Nakai, M.Klene, X.Li,J.E. Knox,H.P.Hratchian,J.B.Cross,C.Adamo,J. Jaramillo,R. Gomperts, R.E. Stratmann, O.Yazyev, A.J. Austin, R.Cammi,C.Pomelli,J.W.Ochterski, P.Y.A yala, K.Morokuma,G.A.Voth,P.Salvador,J.J.Dannenberg,V.G.Zakrzewski,S. Dapprich,A.D.Daniels,M.C.Strain,O.Farkas,D.K.Malick,A.D.Rabuck,K. Raghavachari,J.B.Foresman,J.V.Ortiz,Q. Cui,A.G.Baboul,S.Clifford,J. Cioslowski,B.B.Stefanov,G.Liu,A.Liashenko,P.Piskorz,I.Komaromi,R.L.Martin, D.J.Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challa-combe, P.M.W.Gill,B.Johnson,W.Chen,M.W.Wong, C.GonzalezJ.A. Pople,Gaussian03, RevisionB.05,Gaussian, Inc., Pittsburgh PA,2003.
    [34] NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database, Number 101, Release 10, May 2004; Johnson, R. D., Ⅲ, Ed.; http://srdata.nist.gov/cccbdb.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700