用户名: 密码: 验证码:
强化膜生物反应器除磷性能及磷回收试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水中的磷未经有效处理是造成水体富营养化的主要原因,同时使磷这种不可再生资源流失。膜生物反应器具有良好的除污染性能和优良的出水水质而被认为是现有城市污水处理工艺的替代工艺,然而,它却存在着除磷效率低的问题。因此,开展强化膜生物反应器除磷和磷回收试验研究具有重要的意义。
     试验首先考察了复合式膜生物反应器(HMBR工艺)处理生活污水的净化效能。该工艺稳定运行时对COD、氨氮、SS的去除率都在90%以上,对总氮也有40%左右的去除率,但对磷的去除效果不理想。采用化学混凝预处理可以使MBR工艺出水TP低于1mg/L,相对于协同投药,前置投药能够取得更好的除磷效果。除磷混凝药剂的筛选试验结果表明,以硫酸铝作为混凝剂,同时投加不超过20mg/L的氢氧化钙为最佳的投药方式,并且处理后水pH值波动不大。
     试验重点考察了污泥外循环—复合式膜生物反应器(ERP-HMBR工艺)的除污染性能。在稳定运行的情况下,ERP-HMBR工艺对COD和氨氮的去除率都在90%以上,对总氮的去除率在70%左右。外循环污泥的释磷程度决定了工艺对总磷的去除效果,当外循环污泥释磷充分时,工艺对磷的去除率稳定在80%以上;当外循环污泥释磷受到抑制时,工艺对磷的去除率下降至60%左右。污泥厌氧释磷的最佳时间为1.5~2.0h;以乙酸钠作为释磷碳源时,污泥每释放1mmol的磷大约需要消耗1.048mmol的乙酸钠。
     根据ERP-HMBR工艺在污泥外循环过程中会产生少量富含磷的污水这一特征,设计烧杯试验考察了人工配制的富磷污水磷回收过程中的影响因素。在以鸟粪石沉淀为主要产物的磷回收过程中,最佳pH值随着初始磷浓度的增加而逐渐降低,并最终稳定在8.5左右,当pH值在不超过9时,磷酸镁沉淀副产物对鸟粪石沉淀过程的干扰可以忽略;当初始磷浓度低于35mg/L时不建议采用以鸟粪石形态对磷进行回收;当[Mg~(2+)]:[NH_3-N]:[P]由1:1:1逐渐增加至为2:2:1时,磷的回收率由33.2%增加至86.8%;且[NH_3-N]:[P]变化要比[Mg~(2+)]:[P]变化对磷回收率的影响严重;对于钙离子含量高的富磷污水,建议以磷酸钙盐的形式回收其中的磷。在以磷酸钙盐沉淀为主要形态的磷回收试验过程中,磷回收的最佳pH值随着初始磷浓度的增加而逐渐降低;在最佳反应pH值条件下,磷的回收率随钙磷比的增加而增加并逐渐趋于稳定,初始钙磷比在2:1以上时均能取得85%以上的磷回收率。
     对磷回收产物组分分析结果表明,采用模拟废水回收的鸟粪石中各主要元素的质量百分比与理论值较为接近,采用实际废水回收的鸟粪石中钙离子的干扰使得磷、镁和氨氮的质量百分比均低于理论值;在磷酸钙盐沉淀过程中,模拟废水与实际污水的回收产物中钙磷质量百分比比较接近,且均低于理论值,磷酸钙盐沉淀中可能含有结晶水是造成钙磷质量百分比低于理论值的原因。
Much phosphorus in the treated urban wastewater causes water eutrophication and phosphorus loss. Membrane Bioreactor (MBR) is gradually used in wastewater treatment for its good performance and excellent effluent except limited phosphorus removal. So, it is significant to study enhanced MBR phosphorus removal and phosphorus reclamation simultaneously.
     Firstly the effect of single Hybrid Membrane Bioreactor (HMBR) on treating domestic wastewater was studied. The removal efficiency of COD, NH4-N and SS were above 90% and TN was about 40% when the process was operated steadily.But the removal efficiency of P was bad. The chemical-coagulation pretreatment could make the TP in effluent under 1 mg/L. Pre-dosage was better than synergic dosage on phosphorus removal. The results of screening coagulant for phosphorus removal indicated that, the optimum addition method was selecting Al2(SO4)3 as coagulant and Ca(OH)2 at dosage no higher than 20mg/L, and the pH value of effluent was little fluctuating.
     Secondly the effect of External Recycle of Activated Sludge Processes- Hybrid Membrane Bioreactor(ERP-HMBR) on treating domestic wastewater was studied. In the steady state, the removal efficiency of COD and NH4-N were above 90% respectively, the removal efficiency of TN was about 70%. The removal efficiency of TP was determined by the amount of phosphorus release from external recycle sludge. The removal efficiency of P was steadly above 80% when the phosphorus releas from external recycle sludge is sufficient and less of 60% when the phosphorus releas was bad. The results of effecting factor analysise indicated that, suitable anaerobic phosphorus release time was 1.5~2.0h; when acetateas was used as phosphorus release carbon resource organic substrate, 1mmol phosphorus release need about 1.048mmol acetate.
     According to the characteristic that the ERP-HMBR process would produce less wastewater with higher phosphorus concentration, the impacting factors in the process of phosphorus reclamation were studied by batch tests used simulated high-phosphorus wastewater. During the reclamation process in which the main product was struvite, the best pH would gradually decrease with the increase of initial phosphorus concentration and eventually stabilized at about 8.5. If pH value was no more than 9, the disturbance of magnesium phosphorus to the struvite deposition could be neglected. If the initial phosphorus concentration was less than 35mg/L, it was not suggested toreclamation phosphorus in the form of struvite. When the ratio of [Mg~(2+)]:[NH_3-N]:[P] increase gradually from 1:1:1 to 2:2:1, the phosphorus reclamation percentage would increase from 33.2% to 86.8%. Moreover the ratio of [NH_3-N]:[P] can affect the reclamation percentage more than the ratio of [Mg~(2+)]:[P]. Phosphorus reclamation in the form of calcium phosphate was better than the form of struvite when there was much calcium ion in the wastewater. During the reclamation process in which the main product was calcium phosphate, the results of tests indicated that the best pH value for phosphorus reclamation would gradually diminish with the increase of initial concentration of phosphorus. Under the condition of best pH, the phosphorus reclamation percentage would gradually become stable with the increase of the ratio of calcium to phosphorus , it could come to 85% or more when the ratio of calcium to phosphorus was 2:1.
     The composition analysis of the phosphorus reclamation product indicated that, the mass percentage of main elements in struvite deposited from the reclamation process of simulated wastewater is approximately equal to the theoretic ratio, the mass percentage of phosphorus, magnesium and NH3-N was lower than the theoretic value because of the calcium disturbance. During the calcium phosphorus deposition process, the mass percentage of calcium and phosphorus in simulated wastewater approached to that in real wastewater, both of which were lower than the theoretic value, which indicated that the probable existence of crystal water in calcium phosphorus deposit may be the reason why the mass percentage of calcium and phosphorus was lower than the theoretic value.
引文
1 2006年国民经济和社会发展统计公报.国家统计局. 2007.
    2 2005年中国环境状况公报.国家环保总局. 2006.
    3杨士弘等.城市生态环境学.科学出版社, 2003: 122
    4中国节水技术政策大纲.中国国家发展与改革委员会. 2005.
    5 Xie L Q, Xie P, Li S X. The low TN:TP ratio, a cause or a resuIt of Microcystis blooms. Wat. Res. 2003, 37(8):2073~2080
    6陈利德,王偲.浅议污水厂的磷回收.环境工程. 2004, 22(4):26~28
    7 Nannette Woods, Liliana Maldonado, Glen T. Daigger.Phosphate Recovery Economic Assessment. International conference on phosphorus recovery from sewage and animal waste, Warwick University, UK. 1998.
    8 Woods NC, Sock SM, Daigger GT. Phosphorus recovery technology modeling and feasibility evaluation for municipal wastewater treatment plants. Environ Technology. 1999, 20:653~658
    9万亚珍,张浩勤,刘金盾等.含磷废水的一级处理一化学沉淀法.郑州大学学报. 2003, 24(1):54~58
    10阮复吕,莫炳禄,徐国想.铝系净水剂混凝过程的理论分析与计算.化学反应工程与工艺. 1997, 13(4):413~418
    11 James M, Philip L, Sarah R, et al. Evaluation of chemical coagulation-flocculation aids for the removal of suspended solids and phosphorus from intensive recirculating aquaculture effluent discharge. Aquacultural Engineering. 2003, 29: 23~42
    12王晟,徐祖信,屈计宁.铝盐一级强化处理城市污水的正交试验.中国给水排水. 2005, 21(1):37~40
    13唐建国,林洁梅.化学除磷的设计计算.给水排水. 2000, 26(9):17~21
    14吴海林,杨开,王弘宇.废水除磷技术的研究与发展.环境污染治理技术与设备. 2003, 4(1):53~57
    15田淑媛,杨睿,顾平.生物除磷工艺技术发展.城市环境与城市生态. 2000, 8(4):45~47
    16郑金伟,冉炜,钟增涛等.增强型生物除磷过程中聚磷酸盐积累微生物的研究进展.应用生态学报. 2004, 15(8):1487~1490
    17丛广治. A/0法除磷工艺中污水停留时间的控制.中国给水排水. 1999, 15(12):45~46
    18张学洪,李金城,刘荃. A2/O工艺生物除磷的运行实践.给水排水. 2000, 26(4):14~17
    19邱慎初,丁堂堂.探讨城市污水生物处理出水的总磷达标问题.中国给水排水. 2002, 18(9):23~25
    20王亚宜,彭永臻,王淑莹.碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律.环境科学. 2004, 25(4):54~58
    21 G.Bortone, S. M. Libelli. Anoxic Phosphate Uptake in the Dephanox Process. Wat Sci Tech . 1999, 40(4-5):177~185
    22刘章富,熊杨,侯铁等.同步生物除磷脱氮的几种实用新工艺.中国给水排水. 2002, 18(9):65~68
    23 Hascoet M C. Florentz M. Influence of nitrates on biological phosphorus removal nutrient wastewater. Water SA. 1985, 11(1):23~26
    24 Gerber A, Villiers R H, Mostert E et al. The phenomenon of simultaneous phosphate uptake and release and its importance in biological nutrient Removal in: Biological Phosphate Removal from wastewaters. Pergamon Press, Oxford. 1987:123~134
    25 Mino T, Van Loosdrecht, Heijnen J. Microbiology and biochemistry of the enhanced biological phosphate removal process. Wat. Res. 2003, 32:3193~3207
    26 Kerrn-Jespersen J P, Henze M. Biological phosphorus uptake under anoxic and aerobic condition. Wat. Res. 1993, 27 (4):617~624
    27 Wachtmeister A, Kuba T, Van Loosdrecht M C M. A sludge characterization for aerobic and denitrifying phosphorus removing sludge. Wat. Res. 1997, 31(3): 471~478
    28王亚宜,彭永臻,王淑莹.反硝化除磷理论、工艺及影响因素.中国给水排水. 2003, 19(1):33~36
    29 Kuba T, Van Loosd recht M C M, Brandse F A, et al. Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Nitrification in a Two-sludge system. Wat. Res. 1996, 42(12):1702~1710
    30 Kuba T, Van Loosd recht M C M, Brandse F A, et al. Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants. Wat. Res. 1997, 31(4):777~786
    31郝晓地等.可持续除磷脱氮BCFS工艺.给水排水. 2002, 28(9):7~9
    32操家顺,杨雪冬, Mark Van Loosdrecht. BCFS——生物除磷新工艺.中国给水排水. 2002, 18(3):23~26
    33 Wanner. J, Cech J.S. and M. Kos. New Process Design for Biological Nutrient Removal. Wat. Sci. Tech. 1992, 25(4-5):445~448
    34 Gerakd M Stevens, James L Bamard, Barry Rabinow itz. Optin izing biological nutrient removal in anoxic zones. Wat. Sci. Tech. 1999, 39(6):113~118
    35 Kuba T, Van Loosd recht M C M and Heijnen J. Phosphorus and Nitrogen Removal with Minimal COD Requirement by Integration of Denitrifying and Dephosphatation in A Two Sludge System. Wat. Res. 2004, 30:1608~1615
    36 Tadashi Shoji, Hiroyasu Satoh, Takashi Mino. Quantitative Estimation of Role of Denitrifying Phosphate Accumulating Organisms in Nutrient Removal. 3rd IWA World Congress. Melbourne, Australia , 2002
    37张自杰主编.排水工程(下册).中国建筑工业出版社, 2004:312~322
    38牛学义. PhoStrip侧流除磷工艺及其应用实例.给水排水. 2002, 28(11):8~12
    39 Richardson C J, Craft C B. Effective phosphorus retention in wetlands: fact or fiction? In: Constructed wetlands for water quality improvement. Moshiri G A. Boca Raton: Lewis Publishers. 1993:271-282
    40 Zhu T, Jenssen P D, Maehlum T et al. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)-potential filter media in treatment wetlands. Wat. Sci. Tech. 1997, 35(5):103~108
    41 Pant H K, Reddy K R. Potential internal loading of phosphorus in a wetland constructed in agricultural land. Wat. Res. 2003, 37(5):965~972
    42 Brix H. Do macrophytes play a role in constructed treatment wetlands? Wat. Sci. Tech. 1997, 35(5):11~17
    43 Geary P M, Moore J A. Suitability of a treatment wetland for dairy wastewater. Wat. Sci. Tech. 1999, 40(3):179~185
    44 Wang N M, William J M. A detailed ecosystem model of phosphorus dynamics in created riparian wetlands. Ecol Eng. 2000, 126:101~130
    45付融冰,杨海真,顾国维等.人工湿地基质微生物状况与净化效果相关分析.环境科学研究. 2005, 18(6):44~49
    46张鸿.两种人工湿地中氮、磷净化率与细菌分布关系的初步研究.华中师范大学学报. 1999, 33(4):575~578
    47赵庆祥,郑月华.晶析法脱磷的研究.化工环保. 1989, (9):130~135
    48黄瑾晖,王继徽.海泡石复合吸附剂在含磷废水处理中的应用.污染防治技术. 1998, 11(1):36~9
    49邓雁希,许虹,黄玲.钢渣在含磷废水处理中的应用.有色矿冶. 2002, 18(3):43~45
    50 Johansson L, Petter J, Gustafsson P. Phosphate removal using blast furnace slags and opoka-mechanisms. Wat. Res. 2000, 34:259~265
    51 Michael.J.Baker, David w.Blowes, Carol J.Ptacek.Laboratory Development of Permeable Reactive Mixtures for the Removal of Phosphorus from Onsite Wastewater Disposal Systems. Environ. Sci. Technol. 1998, 32:1545~1551
    52 Berg U, Donnert D, G.Weidler P, et al. Phosphorus removal and recovery from wastewater by tobermorite-seeded crystallisation of calcium phosphate. Wat. Sci. Tech. 2006, 53(3):131~138
    53 Weigang Li, Kwang Victor Lo, Donald s.Mavinic, et al. The Effects of Magnesium and Ammonium Additions on Phosphate Recovery from Greenhouse Wastewater. Journal of Enviromental Science and Health. 2005, 40:363~374
    54汪慧贞,王绍贵. pH值对污水处理厂磷回收的影响.北京建筑工程学院学报. 2004, 20(4):5~8
    55郭杰,曾光明,张盼月等.结晶法磷回收工艺在废水处理中的应用.水处理技术. 2006, 32(10):1~4
    56 Ret, J Guy, G K Morse. Phosphorus removal and recovery technologies. London: Selper Publica6on. 1997:31~44
    57 Jaffer Y, Clark T A, Pearce P, et al. Potential phosphorus recovery by struvite formation. Wat. Res. 2002, 36:1834~1842
    58郝晓地,甘一萍.排水研究新热点——从污水处理过程中回收磷.给水排水. 2003, 29(1):20~23
    59汪慧贞,王绍贵.以磷酸钙盐形式从污水厂回收磷研究.中国给水排水. 2006, 22(9):93~96
    60陈瑶,李小明,曾光明等.以磷酸钙盐的形式从污水处理厂回收磷的研究.环境科学与管理. 2006, 31(4):110~112
    61 Battistoni P., Fava G.., Pavan P., et al. Phosphate removal in anaerobic liquors by struvite crystallization without addition of chemicals: preliminary results. Wat. Res. 1997, 31:2925~2929
    62王绍贵,张兵,汪慧贞.以鸟粪石的形式在污水处理厂回收磷的研究.环境工程. 2005, 23(3):78~80
    63 Cote P., Thompson D. Wastewater treatment using membrane: The North American experience. Wat. Sci. Tech. 2000, 41(10-11):209~215
    64张立秋,封莉,邹联沛等.一体式与复合式MBR运行特性对比研究.给水排水. 2002, 28(12):17~19
    65顾国维,何义亮.膜生物反应器-在污水处理中的研究和应用.化学工业出版社, 2002.
    66 Yamamoto K., Hiasa M., Mahmood T. Direct solid-liquid separation using hollow fiber membrane in an activated sludge aeration tank. Wat. Sci. Tech. 1989, 20(4-5):43~54
    67邢传宏, Tardieu Eric,钱易.无机膜-生物反应器处理生活污水试验研究.环境科学. 1997, 18(3):1~4
    68李红兵,顾国维,谢维民.中空纤维膜生物反应器处理生活污水的特性.环境科学. 1999, 20(2):53~56
    69 Bussion.H., Cote P., Paderie M. The use of immersed membranes for upgrading wastewater treatment plants. Wat. Sci. Tech. 1998, 37(9):89~95
    70 Xia Huang, Rui Liu, Yi Qian. Behaviour of soluble microbial products in a membrane bioreactor. Process Biochemistry. 2000, 36:401~406
    71刘锐,黄霞,钱易.一体式膜生物反应器长期运行中的膜污染控制.环境科学. 2000, 21(2):58-61
    72郑祥,樊耀波.膜生物反应器运行条件的优化及膜污染的控制.给水排水. 2001, 27(4):41-45
    73 Liao B.Q., Bagley D.M., Kraemer G., et al. A review of biofouling and its control in membrane separation bioreactors. Water Environ. Res. 2004, 76(5):425~436
    74 Gaoka H, Kono S, Yamanishi S, et al. Influence of organic loading on membrane fouling in membrane sepa ration activated sludge process. Wat. Sci. Tech. 2000, 41(10-11):355~362
    75 Nagoaka H., Yamanishi S., Miya A. Modeling of biofouling by extracellular polymers in a membrane separation activated sludge. Wat. Sci. Tech. 1998, 38 (4-5): 497~504
    76 Boris Lesjean, Regina Gnirss, Christian Adam. Process configurations adapted to membrane bioreactors for enhanced biological phosphorous and nitrogenremoval. Desalination. 2002, 149: 217~224
    77 Yeom Ick-Tae, Nah Yoo-Mi, Ahn Kyu-Hong. Treatment of household wastewater with an intermittently aerated membrane bioreactor. Desalination. 1999, 124: 193~204
    78刘江峰,王志伟,吴志超等.一体式膜生物反应器同步硝化反硝化中试试验.环境工程. 2007, 25(1):13~15
    79邹联沛,王宝贞,范延臻等. SRT对膜生物反应器出水水质的影响研究.中国给水排水. 2000, 7:17~19
    80 Ghyoot W., Vandaele S., Verstraete W. Nitrogen removal from sludge reject water with a membrane assisted bioreactor. Wat. Res. 1999, 33:23~32
    81李春杰,耿琰,顾国维.焦化废水的-体式膜-序批式生物反应器处理研究.上海环境科学. 2001, 20(1): 24~27
    82 Tatsuli U., Kenji H. Domestic wasterwater treatment by a submerged membrane bioreactor with gravitational filtration. Wat. Res. 1999, 33(12):2888~2892
    83邹联沛,薛罡,王宝贞.膜生物反应器中化学除磷的研究.中国给水排水. 2002, 11:20~22
    84迟军,王宝贞,吕斯濠.一体化复合式膜生物反应器除磷研究.水处理技术. 2003, 29(1):47~49
    85成英俊,张捍民,张兴文等.生物膜-膜生物反应器脱氮除磷性能.中国环境科学. 2004, 24(1):72~75
    86张捍民,肖景霓,成英俊等.强化膜生物反应器脱氮除磷性能对比试验研究.环境科学学报. 2005, 25(2):242~248
    87 Pedro A.Castillo, Simon Gonzalez-Martinez, I?aki Tejero. Biological phosphorus removal using a biofilm membrane reactor: operation at high organic loading rates. Wat. Sci. Tech. 1999, 40(4-5): 321~329
    88 Kyu-Hong Ahn, Kyung-Guen Song, Eulsaeng Cho et al. Enhanced biological phosphorus and nitrogen removal using a sequencing anoxic/anaerobic membrane bioreactor (SAM) process. Desalination. 2003, 157:345~352
    89刘硕,王宝贞,王正等.复合式膜生物反应器强化脱氮除磷的实验研究.现代化工. 2006, 26(5):40~44
    90国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法,第四版.北京:中国环境科学出版社, 2002.
    91 Chiemchaisri, Yamamoto, Vigneswarons. Household membrane bioreactor fordomestic wastewater treatment. Wat. Sci. Tech. 1992, 27(1):171~178
    92 Davies W J, Le M S, Heat C R. Intensified activated sludg process with submerged membrane microfiltration. Wat. Sci. Tech. 1998, 38(4-5):421~428
    93王景峰,王暄,季民等.好氧颗粒污泥膜生物反应器脱氮特性.环境科学. 2007, 28(3):528~533
    94邱立平.曝气生物滤池处理生活污水的运行特性及生态学研究.哈尔滨工业大学博士毕业论文. 2003:38~40
    95郑兴灿,李亚新.污水除磷脱氮技术.中国建筑工业出版社, 1998
    96邢伟,黄文敏,李顿海等.铁盐除磷技术机理及铁盐混凝剂的研究进展.给水排水. 2006, 32(2):88~91
    97 Daijun Zhang, Peili Lu, Tengrui Long, et al. The integration of methanogensis with simultaneous nitrification and denitrification in a membrane bioreactor. Process Biochemistry. 2005, 40:541~547
    98 Suwa Y., Suzuki T., Toyohara H., et al. Single stage-single sludge nitrogen removal by an activated sludge process with cross flow filtration. Wat. Res. 1992, 26:1149~1157
    99吉芳英,罗固源.排出厌氧富磷污水生物化学除磷脱氮ERP-SBR系统研究.水处理技术. 2005, 31(1):57-61
    100尚岩,王宝贞,尚琳等.无磷条件下膜生物反应器处理化工废水.现代化工. 2003, 23(2):46~49
    101王景峰,王暄,田淑媛. SBR强化生物系统处理高浓度含磷废水.中国给水排水. 2003, 19(5):61~63
    102田淑媛,王景峰,杨睿等.厌氧下的PHB和聚磷酸盐及其生化机理研究.中国给水排水. 2000, 16(7):5~7
    103李勇智,彭永臻,张艳萍等.硝酸盐浓度及投加方式对反硝化除磷的影响.环境污染与防治. 2003, 12(6):323~325
    104尹军,王建辉,王雪峰等.污水生物除磷若干影响因素分析.环境工程学报. 2007, 1(4):6~11
    105 Straful I, Scrimshaw M D, Lester J N. Condition influencing the precipitation of magnesium phosphate. Wat. Res. 2001, 35(17):4919~4199

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700