用户名: 密码: 验证码:
中低温下MBBR在处理城市污水的中试及生产中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业的迅速发展,人口急剧增长和生活水平提高,需水量增长迅速,然而我国水资源水质恶化现象严重,这与城市污水处理率低、达标率不高、污染物排放总量超标密切相关。因此,提高城市污水的排放标准及污水处理率、再生水回用是保证水资源可持续发展的必要条件。然而,20世纪建造的许多污水处理厂难以满足新的排放标准,尤其是脱氮除磷的要求。
     论文采用移动床生物膜反应器(MBBR)与厌氧/好氧(A/O)复合工艺对其在中试和营口西部污水处理厂生化池改造的生产运行中的效果进行了研究,重点考察了小于15℃的中低温下的污染物去除情况。
     通过小试研究了BioMTM生物悬浮填料的充氧性能,并从经济性考虑,确定了合理的填料投加率为40%;在两段式MBBR中试工艺中通过改变溶解氧、进水量两个指标,重点考察了低温下脱氮的情况。结果表明,在5~12℃低温下,HRT为7.2h,好氧1、2段溶解氧分别为3~4mg/L、1~2mg/L ,表面有机负荷为8.5COD/(m2·d)、表面氨氮负荷率平均为1.4gNH4+-N/(m2·d)、表面总氮负荷为1.76gTN/(m2·d)时,出水COD、氨氮、总氮均能达到或接近于一级A标准,并证明了通过控制溶解氧实现稳定的同步硝化反硝化的可行性;同时,在微搅拌下A/O与MBBR复合中试工艺中,利用折流板反应器的特点,通过改变回流比、进水量两个指标,研究在较小的厌氧池搅拌强度下工艺的脱氮除磷效果。结果表明,在小于12℃低温下,当HRT为8.7h、回流比为70%时,该复合工艺出水COD、氨氮、总氮、总磷均能达到一级A标准。
     论文还重点研究了A/O与MBBR复合工艺在营口西部污水处理厂生化池改造工程的应用效果,考察了不同温度、不同填料投加率对脱氮除磷的影响。结果表明,当水温低于12℃时,在HRT为7h、回流比为70%的条件下生化池出水COD、氨氮均能达到一级A标准;在HRT为8h时,出水总氮能达到一级A标准;有机负荷为0.22kgBOD5/(kgMLSS·d),BOD5/TP为48的低温下,除磷效果良好。显示了该改造工艺相对于传统活性污泥工艺的优越性。最后指出了推流式MBBR在工程中存在的一些问题及其解决方案。
As the rapid development of industry, the sharp increasing of population and the improvement of the standards of living, the want for water is also rapidly increasing. However, it is serious that the water quality in China is deteriorating, which is in correlation with low removal efficiency of municipal wastewater, low efficiency of meeting the State’s discharge standards and exceeding in the total pullutants discharge. So it is necessary to improve the discharge standard and removal efficiency of municipal wastewater, and reclaim water reuse for keeping sustainable development of water resource. But it is difficult to meet the new standard, expecially the standard of denitrification and phosphorus removal for many wastewater treatment plants built in the twentieth century.
     The effect of operation of the process of MBBR and A/O used in pilot-scale and the practical transforming project in the Yingkou wastewater treatment plant was studied. It was concentrated on the removal of pullutant in middle and low temperatue, which is lower than 15℃.
     Firstly, the oxygenation capacity of the BioMTM Suspended Carriers was researched in small-scale and it was determinated that the rational holdup was 40% by considering economy. Secondly, Oxygen Demonad (DO) and influent quantity were changed in the two-stage MBBR process in pilot-scale. It was concentrated on the removal of nitrogen in middle and low temperatue. The results shows that COD, NH4+-N, TN in effluent all can meet or approach the 1th A standard in low temperature between 5℃and 12℃, HRT of 7.2h, DO of 3~4mg/L and 1~2mg/L in the two parts of the reator, surface organic loading of 1.76gTN/(m2·d), surface NH4+-N’s loading of 1.4gNH4+-N/(m2·d), surface TN’s loading of 1.4gTN/(m2·d). It was testified that it was possible to achive stable SND. On the operation of this process, in the process of MBBR and A/O in microblending which made use of the character of ABR, the effect of denitrification and phosphorus removal were studied in small stirring intensity in anaerobic reactor by changing the value of reflux ratio and influent quantity. The results indicated that COD, NH4+-N, TN in effluent all can meet the 1th A standard in low temperature that was lower than 12℃, HRT of 8.7h, reflux ratio of 70%.
     The effect of operation of the process of MBBR and A/O used in the practical transforming project in the Yingkou wastewater treatment plant was studied. The influence of temperature and holdup on denitrification and phosphorus removal were expecially invested. The results showed that COD, NH4+-N in effluent all can meet the 1th A standard in low temperature that was lower than 12℃, HRT of 7h, reflux ratio of 70%; TN in effluent all can meet the 1th A standard in low temperature with HRT of 8h; the effect of phosphorus removal was well in organic loading of 0.22kgBOD5/(kgMLSS·d), the ratio of BOD5/TP of 48. It indicated that this transforming process was better than the traditional process of activated sludge. Finally, some problems and their solutions of MBBR that was in plug flow were pointed out.
引文
1周军.城市污水再生利用现状分析. 2004, 30(2):12~25
    2胡大锵.城市污水处理厂技术改造路线及其展望.中国给水排水.自来水厂、污水处理厂技术改造研讨会论文集. 2005:233~236
    3张辰,李春光.浅谈城市污水处理厂的改造,中国给水排水.自来水厂、污水处理厂技术改造研讨会论文集. 2005:212~216
    4王淘.中国城市污水处理现状调查与技术经济指标评价.给水排水. 2004, 30(5):1~4
    5 J. B. Holman,D. G. Wareham. COD, Ammonia and Dissolved Oxygen Time Profiles in the Simultaneous Nitrification/Denitrification Process. Biochemical Engineering Journal. 2005, 22: 125~133
    6吕锡武,李峰稻,森悠平.氨氮废水处理过程中的好氧反硝化研究.给水排水. 2000, 26(4):17~20
    7 G. Nakhla, S. Farooq. Simultaneous Nitrification–denitrification in Slow Sand Filters. Journal of Hazardous Materials B. 2003, 96:291~303
    8 D. J. Zhang, P. L. Lu, T. Long, W.Verstraete. The Integration of Methanogensis with Simultaneous Nitrification and Denitrification in a Membrane Bioreactor Process. Biochemistry. 2005, 40: 541~547
    9 G. Ciudad. Partial Nitrification of High Ammonia Concentration Wastewater as a Part of a Shortcut Biological Nitrogen Removal Process. Process Biochemistry. 2005, 40:1715~1719
    10郝春明.低DO浓度下短程硝化试验研究.能源环境保护. 2005, 19(2):36~38
    11 C. Hellinga. The Sharon Process: An Innovative Method for Nitrogen Removal from Ammonium Rich Wastewater. Water. Sci. Technol. 1998, 37(9):135~142
    12宋学起,彭永臻,王淑莹.化学物质对硝化细菌的选择性抑制.北京工业大学学报. 2005, 31(3):294~297
    13 A. D. Mora, J. L. Campos, A. M. Corral, M.S.M.Jetten. Stability of the ANAMMOX Process in a Gas-lift Reactor and a SBR. Journal of Biotechnology. 2004, 110:159~170
    14胡宝兰,陈旭良,郑平,等.两种Anammox反应器性能的对比研究.环境科学学报. 2005, 25(4) :545~551
    15张少辉,郑平,华玉妹.反硝化生物膜启动厌氧氨氧化反应器的研究.环境科学学报. 2004, 24(2):69~72
    16操家顺,蔡娟.新型生物脱氮工艺—CANON工艺中国给水排水. 2005, 21(8):26~29
    17 H. Sicgrist, Reithaars, G. Koch, P. Lais. Nitrogen Loss in“Nitrifying Rotating Contactor Treating Ammonium-Rich Waste Water without Organic Carbon. Water. Sci. Technol. 1998, 38(8-9):241~248
    18杨虹,李道棠,朱章玉.全程自养脱氮新技术处理污泥脱水液的研究.环境科学, 2001, 22(5):105~107
    19杨国靖.一体化生物除磷脱氮技术—反硝化除磷.环境科学与技术, 2005, 28(2):107~109
    20 G. M. Stevens, J. L. Barnard, B. Rabinowitz. Optimizing Biological Nutrient Removal in Anoxic Zones. Water. Sci. Technol. 1999, 39(6):113 ~118
    21王晓莲,王淑莹. A2/O工艺中反硝化除磷及过量曝气对生物除磷的影响.化工学报. 2005, 56(8):1564~1570
    22 J. Y. Hu. A New Method for Characterizing Denitrifying Phosphorus Removal Bacteria by Using Three Different Types of Electron Acceptors. Water Res. 2003, 37:3463~3471
    23田淑媛,杨睿一,顾平,等.生物除磷工艺技术发展.城市环境与城市生态. 2004, 13(4):66~70
    24邹伟国,张善发,张辰,等.新型双污泥脱氮除磷工艺处理生活污水.中国给水排水,2004 ,20(6):16~18.
    25吴宛荪.生物膜法处理废水的机理和关键.污染防治技术. 1994, 7(2): 26~30
    26张景丽,幸福堂.移动床生物膜工艺特点研究现状及发展.工业安全与环保. 2003, 29(4):13~15
    27 J. Sigrun, H.Фdegaard. Treatment of Thermomachanical Pulping Whitewater in Thermophiic (55oC) Anaerobic-Aerobic Moving Bed Biofilm Reactors. Water. Sci. Technol. 1999, 40(8):58~67
    28 G. Andreottoia. Upgrading of a Small Wastewater Treatment Plant in a Cold Climate Region Using a Moving Bed Biofilm Reactor (MBBR) System. Water. Sci. Technol. 2000, 41(1): 177~185
    29马建勇,张兴文,杨凤林等.移动床生物膜反应器处理低浓度污水的性能.大连理工大学学报, 2003, 43(1): 46~50
    30李明,宋存义,邢奕,等.生物移动床技术在电厂生活污水回用工程中的应用研究.环境工程. 2005, 23(1):19~23
    31万田英,李多松. MBBR工艺及其运行中易出现问题的探讨.电力环境保护. 2006, 22(1):35~36
    32周明,施永生,吕其军.厌氧折流板反应器的技术探讨.有色金属设计. 2006, 31(1):59~64
    33 A. A. M. Langenhoff, D. C. Stuckey. Treatment of Diluted Wastewater Using an Anaerobic Baffled Reactor: Effect of Low Temperature. Water Res. 2000, 34(15): 3867~3875
    34 A. Orozco. Pilot and Full-Scale Anaerobic Treatment of Low Strength Wastewater at Sub-optimal Temperature(15℃) with a Hybrid Plug Flow Reactor. Proceedings of the 8th International Conference on Anaerobic Digestion. Sendai, Japan. 1997:183~191
    35国家环保局.水与废水监测分析方法(第四版).中国环境科学出版社. 2002:210~284
    36郑兰香,彭党聪.反硝化MBBR中生物膜和悬浮微生物的特性.宁夏工程技术. 2006, 5(1):54~56
    37赵庆良,刘淑彦,王琨.复合式生物膜反应器中生物膜量厚度及活性.哈尔滨建筑大学学报. 1999, 32(6):39~43
    38张景丽.移动生物膜工艺特点、研究现状及发展.工业安全与环保. 2003, 4(29):13~15
    39 M. X. Loukidou, A. I. Zouboulis. Comparision of Biological Treatment Process using Attached-growth Biomass for Sanitary Landfill Leachate Treatment. Enviromental Pollution. 2001, 11:273~281
    40 H.Фdegaard, B. Gisviod, J. Strickland. Influence of Carrier Size and Shape in the Moving Bed Biofilm Process. Water. Sci. Technol. 2000, 4(4):383~391
    41 H.Фdegaard. Advanced Compact Wastewater Treatment Based Coagulation and Moving Bed Biofilm Processes. Water. Sci. Technol. 2003, 142(12): 33~48
    42王学江.悬浮填料生物膜A/O法处理石化废水试验研究.工业水处理. 2001, 6(21):26~31
    43 G. Andreottola. Upgrading of a Small Wasterwater Treatment Plant in a Cold Climate Region Using a Moving Bed Biofilm Reater (MBBR)System. Water.Sci. Technol. 2002, 40(4):161~168
    44 B. Rusten, B. Eikebrokk, Y. Ulgenes. Design and Operations of the Kaldnes Moving Bed Biofilm Reactors. Aquacultural Engineering. 2006, 34:322~331
    45王宇,杜俊琪,杨祖荣.移动床生物膜反应器内气液传质性能研究.化工环保. 2005, 25(3):174~177
    46郝志明,周军党,宋珏容.悬浮填料对曝气池充氧能力影响的试验研究.工业安全与环保. 2005, 31(5):4~5
    47周平,何嘉汉,钱易,等.内循环生物流化床反应器载体挂膜特性的研究.环境科学学报. 1998, 18(1):68~72.
    48 L. Tijhuis, E. Rekswinkel. Formation and Growth of Heterotrophic Aerobic Biofilms on Small Suspended Partical in Airlift Reactors. Biotechnology and Bioengineering. 1994, 44:595~608
    49朱成辉,李秀芬,陈坚,等.好氧移动床生物膜反应器挂膜启动.过程食品与生物技术学报. 2005, 24(4):92~96
    50王学江,夏四清,陈玲,等. DO对MBBR同步硝化反硝化生物脱氮影响研究.同济大学学报(自然科学版). 2006, 34(4):514~517
    51郑兰香,彭党聪.反硝化MBBR中生物膜和悬浮微生物的特性.宁夏工程技术. 2006, 5(1):54~56
    52 B.Rusten, L.Hem, H.Фdegaard. Nitrogen Removal from Dilute Wastewater in Cold Climate Using Moving Bed Reactors. Water Environment Research. 1995, 67(1):65~74.
    53张燕,周小红.温度对强化混凝-悬浮填料床生物氧化工艺运行的影响.给水排水(增刊). 2006, 32:27~31
    54张自杰.排水工程下册(第四版).北京:中国建筑工业出版社,2002 6:311
    55 A. Esoy, H.Фdegaard, G. Bentzen. Effect of Sulfide and Organic Matter on the Nitrification Activity in a Biofilm Process. Water. Sci. Technol. 1998, 37(1):115~122
    56张若琳,冯东向,张发旺.进水碳氮比对悬浮载体生物膜反应器运行特性影响的研究.勘察科学技术. 2006, 4:24~28
    57王欣,李清雪,魏玲玲,等.厌氧折流板反应器(ABR)的低负荷启动研究.河北建筑科技学院学报. 2006, 23(4):42~44
    58 R. Boopathy. Biological Treatment of Swine Waste Using Anaerobic Baffled Reactors. Bioresource Tech. 1998, 64:1~6
    59何仕均,黄永恒,王建龙.折流式厌氧反应器的启动性能.清华大学学报(自然科学版). 2006, 46(6):865~867
    60杨红.营口市污水处理厂二级处理系统改造设计.给水排水. 2006, 5:42~44
    61龚云华,高廷耀,周增炎.好氧浮动床生物膜反应器运行参数的试验研究.工业用水与废水. 2003, 34(1):5~9
    62兰中仁.温度对NH3-N废水硝化动力学参数影响的实验研究.四川环境. 2005, 24(3):4~8
    63 U. Welander, T. Henrysson, T. Welander. Nitrification of Landfill Leachate Using Suspended Carrier Biofilm Technology. Water. Res. 1997, 31(9): 2351~2355
    64 B. Rusten, L. Hem, H.Фdegaard. Nitrification of Municipal Wastewater in Moving-Bed Biofilm Reactors. Wat Environ Research. 1995, 67(1):75~86
    65陈洪斌,屈计宁,何群彪.悬浮填料生物膜工艺的研究进展水.应用与环境生物学报. 2005, 11(4): 514~520
    66周丹丹,马放,董双石,等.溶解氧和有机碳源对同步硝化反硝化的影响.环境工程学报. 2007, 1(4):25~28
    67高景峰,彭永臻,王淑莹.有机碳源对低碳氮比生活污水好氧脱氮的影响.安全与环境学报. 2005, 5(6):11~15
    68周国胜,刘年丰,姚瑞珍,等.低DO下同步硝化反硝化现象新形式探讨.环境科学与技术. 2007, 30(2):97~101
    69王海霞,仲伟华,李红旭.厌氧-好氧(A/O)生物处理法的工艺参数及其影响因素.化学工程师. 2004, 103(4):59~60
    70张军,王宝贞,张立秋,等.复合淹没式膜生物反应器脱氮除磷效能研究.中国给水排水. 2000, 16(9):9~12
    71 Shanghai Municipal Engineering Design General Institute. Municipal Wastewater Biological N &P Removal Design Regulation. Beijing: China Planning Press 2003
    72 E. Lie. Carbon and Phosphorus Transformations in a Full-scale Enhanced Biological Phosphorus Removal Process. Water. Res. 1997, 31 (11): 2689~2693
    73朱五星,汪诚文,施汉昌.倒置AAO工艺中物料及能量流向的研究.环境工程学报. 2007, 1(3):50~55
    74 P. Artiga, V. Oyanedel, J. M. R. Garrldo. An Innovative Biofilm-Suspended Biomass Hybrid Membrane Bioreactor for Wastewater Treatment. Desalination.2005, 17(9):171~179
    75刘雨,赵庆良,郑兴灿.生物膜法污水处理技术.北京:中国建筑工业出版社. 2000:61~63
    76马勇,彭永臻,于德爽. A/O生物脱氮工艺处理生活污水中试(二)系统性能和SND现象的研究.环境科学学报. 2006, 26(5):710~715
    77姚文兵,林建国,褚云风.移动床生物膜反应器技术在实际工程应用中若干问题的讨论.工程与技术. 2002, (3):20~221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700