用户名: 密码: 验证码:
六自由度平台设计及控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
六自由度平台是一种用于模拟飞机、舰船、宇航飞行器和车载设备等运动姿态的实验设备,平台采用并联机械机构,液压驱动,由计算机实时控制,完成了垂荡、纵荡、横荡、纵摇、横摇和艏摇六个自由度的运动。本文对六自由度平台系统进行设计和研究。
     首先,分析了平台的机械组成及其工作原理,并根据平台的运动性能指标,设计平台的机械本体,选取了液压阀、液压缸及位移传感器的型号。并对位移传感器进行了测试实验。
     其次,对系统控制方案的选择进行了论证,并完成六自由度平台的软件和硬件设计,并确定了硬件型号。建立了单缸、比例方向阀、位移传感器的数学模型,得出其传递函数。提出了单缸的控制方法,进行了单缸的位置控制实验,提出了对称阀控非对称缸匹配的方法,并在实验数据的支持下,改进了单缸PID控制,得到了比较满意的结果。
     最后,本文详细的分析了平台空间运动姿态反解,并根据姿态反解提出了平台控制系统的方法。研究了平台的轨迹规划,并在VC++ 6.0环境下用OpenGL建立了六自由度运动平台仿真模型,通过仿真证明了平台控制方法的可行性。
The 6-DOF swing test platform is an experimental equipment that is mainly used to simulate the kinetic posture of airplanes, vessels, space flights and vehicles. It adopts parallel mechanisms, hydraulic pressure drive and real-time control by the computer, and simulates pitching, rolling and turning, leeway, departing and landing of the warship. This thesis has carried on the design and research to the 6-DOF swing platform system.
     Firstly, the mechanical constitution and operating principle of the 6-DOF swing platform are analyzed. According to performance index of the system, the mechanical entity is introduced in the article. Meanwhile, the models of electro-hydraulic servo valve, constant force variable pump, servo pneumatic cylinder are selected, as well as the displacement sensor, whose performance index has been experimented.
     Secondly, The scheme of control system was demonstrated and the type of hardwares were confirmed through the design of the hardwares and softwares of the 6-DOF swing test platform. The mathematical model and the transfer function of the system established which takes pneumatic cylinder, electro-hydraulic valve and displacement sensor into account. The method of single pneumatic cylinder control is put forward, and the control experiment of single pneumatic cylinder is executed.The control method based on asymmetrical hydraulic cylinder controlled symmetrical valve is studied. According to the development methods with experiment data, a more satisfactory result is gained.
     Finally, the inverse solution about the kinetic posture of swing platform is analyzed in detail in the paper. According to the inverse solution, a control method of swing platform is put forward. The trajectory of 6-DOF swing platform is studied in the paper. At the same time, a model of motion platform is drawn by OpenGL Shading Language under VC++ 6.0 environment. Through the emulational system on machines, the method of system control is proved.
引文
[1]黄真,孔令富,方跃法.并联机器人机构学理论及控制.机械工业出版社.1997
    [2]张曙,U.Heisel.并联运动机床.机械工业出版社.2003.4
    [3]Ficter E.F A Stewart Platform Based Manipulator:General Theory and Practical Construction.Int.J.of Robotics Research.1986,5(2):157-182
    [4]杨灏权、赵克定、吴盛林等.飞行模拟器六自由度运动系统的关键技术及研究现状,系统仿真学报,Jan.2002,vol.14,no.1:84-87
    [5]http://ppsc.pme.nthu.edu.tw/hexapod/.台湾清华大学精密定位与控制实验室
    [6]刘荣,王宣银.并联六自由度平台的运动仿真及其可视化设计研究[J].液压与气动,2005,1:5-7
    [7]章晨.90年代飞行模拟器的发展动向.国际航空.1993,(4):53-55页
    [8]李运华,史维祥,林延圻编著.近代液压伺服系统控制策略的现状与发展.液压与气动.1995(1):3-6页
    [9]安百超.并联运动平台系统设计及单通道试验研究.哈尔滨工程大学硕士学位论文.2007:44-52页
    [10]吴江宁.并联式六自由度平台及其控制研究.浙江大学博士毕业论文1996.
    [11]H.Wang,C.Xue,W A.Gruver.Neural Network Control of a Parallel Manipulator.Proc.of 1995 IEEE International Conference on Systems,Man,and Cybernetics,1995:2934-2938P
    [12]董彦.六自由度飞行模拟器运动平台仿真.南京航空航天大学硕士学位论文.2003:3-5页
    [13]Y H.Kim and F.L.Lewis,Reinforced adaptive learning neural network based friction compensation for high speed and precision,In and Control,Dec.1998:1064-1069P
    [14]吴建新,刘一江,易理刚,董桦.电液伺服系统的神经网络在线学习补 偿自适应控制.液压与气动.2003(4):8-12页
    [15]G.M.Mckinnon.Hydraulic servomechanisms in flight simulation.Hydraulic&Pneumatics.1981,10
    [16]翟传润,赵克定,张日华.一种用于飞行模拟器的新型集成式静压伺服油缸.机床与液压,1999,1
    [17]刘白雁,陈奎生.阀控非对称缸电液系统的模型跟随自适应控制.湖北工学院学报.2002(6):150-154页
    [18]张启先,空间机构的分析与综合,机械工业出版社,1984
    [19]吴振顺,卢剑锋,董泳.变结构自适应控制器及其在液压伺服系统中的应用.机械工程学报.2000(5):107-110页
    [20]陶永华主编.新型PID控制及其应用.第二版.北京:机械工业出版社,2002
    [21]蒋伟.模糊自适应PID控制算法在电液伺服系统中的应用.南京理工大学硕士学位论文.2004:15-41页
    [22]Levent Guvenc.Adaptive Closed Loop Material Testing Using Fuzzy Logic Control.International Conference on Systems Man and Cybernetic-s.1995,5(3):2478-2482P
    [23]Jeffery,T.Spooner,Kevin,M.Passino.Adaptive Control of a Class of Decentralized Nonlinear systems.IEEE Transactions on Automatic Control,1996,41(2):281-284P
    [24]周学才,张启先.机器人位姿误差的显著性分析法,机械工程学报,1994,30(增刊):167-175页
    [25]彭熙伟,赵洪刚,谭日飞,杨会菊.电液比例方向阀特性的应用研究.气动.2004(4)
    [26]刘小初.六自由度运动模拟器结构参数分析设计[D].哈尔滨:哈尔滨工业大学,2006
    [27]苗成义.三自由度并联驱动仿真转台工程设计及研究.哈尔滨工程大学硕士学位论文.2004:20-24页
    [28]李冰.着舰引导仿真转台单自由度控制系统研究.哈尔滨工程大学硕士学位论文.2006:4-5页,21-23页,62-64页,57-59页
    [29]李福义.液压技术与液压伺服系统.哈尔滨:哈尔滨船舶工程学院出版社,1992
    [30]刘胜,宋佳,李晚龙,枉延春.并联六自由度运动平台控制系统研究[J].自动化技术与应用,2006,25(4):7-10
    [31]何克忠,李伟主编.计算机控制系统.北京:清华大学出版社,1998:1-37页
    [32]姚一新,王广雄.具有大摩擦力矩的伺服系统的设计.自动化技术与应用.1985(4):5-11页
    [33]张卯瑞,梅晓榕,庄显义.高精度液压伺服系统改善低速性能的几项措施.哈尔滨工业大学学报.1998(4):66-69页
    [34]陈娟.伺服系统低速特性与抖动补偿研究.中国科学院长春光机所博士学位论文.2001:21-67页
    [35]周长义.三轴飞行仿真转台控制系统设计与控制算法研究.中国科学院研究生院博士学位论文.2005(1):60-65页
    [36]路甬祥,胡大紘编著.电液比例控制技术.北京:机械工业出版社,1988:26-55页
    [37]黎柏编著.电液比例控制与数字控制系统.北京:机械工业出版社,1997
    [38]王占林编著.近代液压控制.北京:机械工业出版社,1997
    [39]李洪人,关广丰,郭洪波,丛大成,张辉,叶正茂.考虑阀口误差的阀控非对称液压缸系统建模、仿真与试验.机械工程学报.2007.9
    [40]刘胜,彭侠夫等编著.现代伺服系统设计.哈尔滨:哈尔滨工程大学出版社,2001:207-231页
    [41]李友善编著.自动控制原理.国防工业出版社,1990
    [42]P.E.Dupont,B.Armstrong and C.Canudas dde Wit,A survey of analysis tools and compensation methods for control of machines with Vol.30,No.7:1083-1138P,1994P
    [43]C.Canudas de Wit and S.S.Ge,Adaptive friction compensation for systems with generalized velocity/position friction dependency,In Proc.IEEE Conf.Decision and Control,SanDiego,Dec.1997,Vol.3:2465-2470P
    [44]J.S.Yu,R.Hu,P.C.Millers.An Approach to Adaptive Decentralized

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700