用户名: 密码: 验证码:
电动潜油螺杆泵减速装置优化设计及虚拟建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油工业的发展,井下驱动采油系统得到广泛重视,由于受到管径的限制,实现大扭矩成为国内一直没有彻底解决的难题。该系统需要的是高速电机驱动、大扭矩的螺杆泵输出,所以需要一套减速系统实现增大扭矩、降低转速。本文通过对比分析选择传动比较大的2K-H类双级行星齿轮传动作为螺杆泵井下减速传动装置。论文主要研究内容如下:
     根据采油环境的要求进行减速系统方案的设计,确定采用具有径向尺寸小、传动范围大的2K-H类双级行星齿轮传动作为螺杆泵井下驱动装置。
     综合考虑螺杆泵定子和转子之间的初始配合过盈量、定子橡胶的热胀以及定子橡胶在油液中溶胀等因素的影响,利用ANSYS有限元分析工具,模拟定子和转子的接触状态,改进了定子和转子之间摩阻扭矩的计算方法,提高了螺杆泵输入扭矩计算精度。
     将电动潜油螺杆泵的驱动及传动系统简化为单自由度刚性转子动力学系统,建立了其启动过程动力学仿真模型。分析结果表明,电动潜油螺杆泵减速器输出扭矩的动载系数可选1.6左右,在电动潜油螺杆泵传动系统零部件的结构设计中是不可忽略的因素。
     以减速器体积最小为减速器传动参数优化设计的目标函数,综合减速器传动约束与强度约束,建立了减速器传动参数优化设计的数学模型。应用MATLAB优化工具箱完成了φ138mm套管内、传递功率10kW、传动比为10的减速器传动参数的优化设计。
     采用ANSYS对减速器关键元件及齿轮啮合接触状态分析,校核零件强度及齿轮在啮合过程中的应力。在其计算结果基础上,最终确定减速系统结构参数并进行三维建模,完成采油管内减速器的设计。
Along with the oil industry development, the mine shaft actuation extraction system obtains wide attention and due to restrictions of the tubing diameter, it has become a problem to increase the torque. The system needs a set of apparatus to increase the torque and to cut down the speed. This article takes 2K-H kind of two-stage planetary transmission through the contrast analysis. The main results are as follows:
     According to the extraction environment, 2K-H kind of two-stage planetary transmission has been taken as the screw rod pump mine shaft drive, which has smaller diameter and larger range of the transmission ratio.
     Considering all the factors, such as stator and the rotor initial tight, thermal expansion of the stator rubber, swelling expansion of the stator rubber, ANSYS finite element analysis tool has been used to simulate the contact state between the stator and the rotor. Calculation method of the friction torque has been improved and calculation precision has been improved.
     Electric submersible screw pump drives and drive system has been simplified to a single degree of freedom rigid rotor dynamics system and established of electric submersible screw pump system dynamic simulation model of the startup process. Analysis results show that the electric submersible screw pump reducer output torque of the dynamic load factor has been around 1.6 optional, and in the electric submersible screw pump drive system components is the structural design of the factors that can not be ignored.
     Reducer in the criteria for the design of the smallest, from the center gear and the size of the planetary gear reducer drive and minimum as the optimum design parameters of the objective function, considering constraints and strength reducer transmission constraints, transmission reducer mathematical optimization model has been established .Application of MATLAB optimization toolbox casingψ138mm completed, the power of 10kW, the transmission ratio of the reducer 10 to optimize the design of transmission parameters.
     ANSYS has been used as finite element analysis of components to the key parts of the reducer and to check gear contact stress in meshing process stress. In the finite element method based on the results, and structure parameters has been ultimately determined and three-dimensional modeling has been finished .
引文
1贾福民.大庆油田人工举升技术现状及特高含水期发展趋势.油田节能, 2005,16(2):17-21
    2 K1ein.S. Enhancements Expand Use of Progressing Cavity Pumps. American Oil and Gas Reporter, 1993, 36 (6):46-48
    3 Hott.M. Attributes of Progressing Cavity Pumps Earn Aroval In Market.American Oil and Gas Reporter, 1994, 37 (11):64-67
    4 Wright D议Adair R L. Progressive cavity pumps prove more efficient In mature waterflood tests. Oil&Gas Journal, 1993, 91(32):43-47
    5廖漠圣.当今国外石油天然气技术装备的发展趋势.石油矿场机械, 2002,31(1):1-6
    6王世杰,吕彬彬,李勤.潜油螺杆泵采油系统设计与应用技术分析.沈阳工业大学学报, 2005,27(2)121-125
    7 Saveth.K.J, Field Study of Efficiencies Reciprocating and Electric Submersible Pump.Between Progressing Cavity,1993 SPE25448
    8 Lea J F,et al. What' s new In artificial lift. World Oil, 2001, 222(3): 72-81
    9 Stutzle T, Hoos HH.MAX-MIN ant system and local search for the travelingsalesman problem. In: IEEE lnt’1 Conf Evolutionary Computetion,lndidnapolis: IEEE Press, 1997: 309-314
    10 Lee Sq Jung TU, Chung TC. An effective dynamic weighted rule for ant colony system optimization.In:Proc.of the 2001 Congress on Evolutionary Computation Vo12. IEEE Press, 2001:321-325
    11 CASIL,LAS J, etc. Learning Cooperatve fuzzy rules using ant Colony optimization algorithms. Technical Repoa-00119, Spaln: Department of Computer Science and Artificial Intellgence: University of Granada, 2000:203-206
    12 Dorigo M, Bocabeau E, Theraola G. Ant algorithms and stigmergy. Future GenerationComputer System, 2000, 16: 851-871
    13 Rajeev K A. Modular approach toward flexible manufacturing. Integrated Manufacturing Systems, 1998, 34 (7):323-331
    14王艳飞.高效采油管内减速系统设计和仿真. [哈尔滨工业大学工学硕士学位论文], 2006:1-5
    15王世杰,李勤.潜油螺杆泵采油技术及系统设计.北京:冶金工业出版社, 2006:1-15
    16田方,陶柯,姜芳.潜油螺杆泵用进动式减速机的设计与试验.机械传动, 2005:29(1)50-52
    17毕凤琴.基于CADDS5的井下螺杆泵用减速器的虚拟设计. [大庆石油学院硕士学位论文], 1999:1-3
    18杨伟君.井下驱动螺杆泵采油系统滚柱活齿减速器的研制.[哈尔滨工业大学博士学位论文], 2003: 85-94
    19梅思杰,邵永实,刘军.潜油电泵技术.北京:石油工业出版社. 2004:49-57
    20饶振刚.行星齿轮传动设计.北京:化学工业出版社, 2003:11-154
    21吕彬彬,王世杰,李聪.潜油螺杆泵采油系统转子扭矩求解方法研究.机械设计与制造, 2005:12(1)50-51
    22魏继德,师国臣,于波.螺杆泵抽油杆柱负载扭矩计算.石油机械, 1995(23):38-40
    23张劲,张士诚.常规螺杆泵定子有限元求解策略.机械工程学报, 2004(5):189-193
    24杨秀萍,郭津津.单螺杆泵定子和螺杆的有限元分析.机床与液压, 2007 (3):43-45
    25刘涛,杨凤鹏.精通ANSYS.北京:清华大学出版社, 2002:267~280
    26姜广彬,崔学政. ANSYS中的扭矩分析.电子机械工程, 2005(21):57-59
    27康渊,陈信吉. ANSYS入门.北京:中国电力出版社, 2007:1-23
    28吴晓,周星元.如何在ANSYS中实现动态边界条件的加载.武汉科技学院学报, 2005(5): 17-19
    29龚曙光. ANSYS在应力分析设计中的应用[J].化工装备技术, 2002(1):31-35
    30许丽娇,叶平,叶惺.浅谈大型有限元分析软件ANSYS [J].煤矿机械, 2005(4):51-53
    31吴晓,周星元.如何在ANSYS中实现动态边界条件的加载.武汉科技学院学报,2005(18):12-14
    32董世民,李志刚,高辉.地面驱动螺杆泵采油系统启动过程动力学研究.石油机械, 2006(34):6-9
    33董世民.抽油机井动态参数计算机仿真与系统优化.石油机械,2003:52-62
    34王爱兵,宋兴元,侯红伟.带式输送机启动过程动力学行为研究.煤矿机电, 2008(2):13-16
    35宋相坤,杜长龙,盛永林.螺旋钻采煤机钻头运动学研究.煤矿机电, 2008(2):16-19
    36吕彦平,吴晓东,李远超.单螺杆泵采油系统扭矩动力学模型研究.中国石油大学学报(自然科学版, 2000(6):75-78
    37罗玉峰,刘治志,石志新.一种机械系统动力学响应分析方法.工程设计学报, 2008,15(1):1-4
    38陈杰. MATLAB宝典.北京:电子工业出版社, 2007:103-128
    39 [美]Edward B.Magrab. MATLAB原理与工程应用.北京:电子工业出版社, 2002:433-468
    40魏巍. MATLAB应用数学工具箱技术手册.北京:国防工业出版社, 2004:203-236
    41宋志安,徐瑞银.机械工程控制基础:MATLAB工程应用.北京:国防工业出版社, 2008:123-125
    42张德丰. Matlab数值分析与应用.北京:国防工业出版社, 2007:102-145
    43 J. M. del Castillo } The analytical expression of the efficiency of planetary gear trains Mechanism and Machine Theory 1997, 21 (6): 257-267
    44 Yan H. -S.; T. Laic Geometry design of an elementary planetary gear train with cylindrical tooth-profiles Mechanism and Machine Theory, 1998, 34 (7): 757-767
    45 E. Pennesri-i;P.P. Valentini, Dynamic Analysis of Epicyclic Gear Trains by Means of Computer Algebra. Multibody System Dynamics, 1995, 24 (7): 249-264
    46徐灏主.机械设计手册第3卷.北京:机械工业出版社, 1991,9:354-367
    47汪萍,候慕英.机械优化设计.北京:中国地质大学出版社, 1986.7:190-193
    48李阿楠,王三民.圆柱齿轮传动优化设计的遗传算法及Matlab实现.机械设计与制造, 2005(11):4-6
    49伦冠德.齿轮传动优化设计的MATLAB实现.现代机械, 2006(1):52-54
    50王泉,刘如春.用MATLAB实现齿轮传动优化设计的探讨.职大学报, 2007(4):18-19
    51徐梓斌,闵剑青.齿轮传动优化设计及MATLAB实现.林业机械与木工设备, 2006(1):32-34
    52李斌,朱如鹏.基于遗传算法的行星齿轮传动优化及MATLAB实现.机械设计, 2004, 21(10):29-31
    53李党索,何频,黄经元.基于MATLAB工具箱的齿轮传动优化设计.九江职业技术学院学报, 2008:21-22
    54 Timothy L KarnL. A Method to Analyze and Optimize the Load Sharing of SplitPath Tranamissions. Seventhnternational Power Tranamission and Gearing Conference, 1996 (10):6-9
    55 Krantz T L, Delgado 1 R. Experimental Study of Split-path Transmissio LoadSharing. NASA technical memorandum,1996, 107-202
    56 Jarchow.F, Vonderschmidt R. Gearing power transmission. Proc. Int. Symp, 1981 327-329
    57陈满意,陈定方.基于MATLAB的齿轮减速器的可靠性优化设计.机械传动, 2002,26(3):34-36
    58 (美)Edward B.Magrab等著. MATLAB原理与工程应用.北京:电子工业出版社2002:448-449
    59王世杰,李勤.潜油螺杆泵采油技术及系统设计.北京:冶金工业出版社, 2006:82-83
    60龚景安,许立忠.机械设计.北京:机械工业出版社, 1998:32-34
    61黄晓东,王月梅.基于的齿轮传动优化设计与应用.湖南工程学院学报, 2007,17(4):38-40
    62武江传. ANSYS在结构分析中的应用.连云港化工高等专科学校学报, 2002(3): 31-33
    63 (美) SolidWorks公司著. SolidWorks高级教程:2007版.高级零件.北京:机械工业出版社, 2007:354-387
    64赵罘,张云杰,王平.中文版SolidWorks2007从入门到精通.北京:北京希望电子出版社, 2008:321-365
    65和庆娣,王军. Solidworks2007案例精解.北京:中国电力出版社, 2008:125-154
    66龚曙光. ANSYS在应力分析设计中的应用.化工装备技术, 2002(1): 31-35
    67 Yangsh. Trend and application of new finite element methods in copmuing root stress. Proceeding of national mechanics 2000 conference, 2000,8:205-236
    68 C.Baret, A.Pidello, F.A.Raffa and P.P.Strona. Stress Path Along the Face-Width in Sur Gear fillet by 3D P-Fem Modles. Proceeding of The 1989 International Power Transmission and Gearing Conference, 1989: 173-180
    69罗高作,王平. ANSYS及结构分析应用[J].黄石高等专科学校学报, 2002(3): 27-29
    70张祖强,李平昌. ANSYS有限元程序在结构工程领域的应用[J].四川建筑, 2004(2): 50-51
    71雷镭,武宝林,谢新兵.基于ANSYS有限元软件的直齿轮接触应力分析.机械传动, 2006(30):50-59
    72 Litvin.FL .Vecchiato D, Demenego A Karedes E Hansen B, Handschuh R. Design of onestage planetary gear train with improved conditions of load distribution and reduced transmissionemors. Transactions of the ASME Journal of Mechanical Design, 2002,12:745-752
    73 N Zhang; A Crowther; D K Liu; J Jeyakumaran. A finite element method for the dynamic analysis of automatic transmission gear shifting withfour-degree-of-freedom planetary gear set element. Proceedings of the I MECH E Part D Journal of Automobile Engineering, 2003:461-473
    74姚英姿,邓召义,莫云辉.齿轮的精确建模及其接触应力有限元分析.现代机械, 2004(6):16-17
    75叶友东.基于ANSYS的渐开线直齿圆柱齿轮有限元分析.煤矿机械, 2004(6):43-45
    76吴春兰,王世杰,刘玉春.井下专用行星减速器中心齿轮有限元分析.沈阳工业大学学报, 2004,26(4):371-372

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700